TCDB is operated by the Saier Lab Bioinformatics Group

References included in TCDB:


Grigoryan, G., D.T. Moore, and W.F. DeGrado. (2011). Transmembrane communication: general principles and lessons from the structure and function of the M2 proton channel, K⁺ channels, and integrin receptors. Annu. Rev. Biochem. 80: 211-237. 21548783


and ?. (2012). RETRACTED ARTICLE: Deprotonation of arginines in S4 is involved in NaChBac gating. J Membr Biol. 245(11):761. 22527606
and Abbott GW. (2016). KCNE1 and KCNE3: The yin and yang of voltage-gated K(+) channel regulation. Gene. 576(1 Pt 1):1-13. 26410412
and Atlas D. (201). The voltage-gated calcium channel functions as the molecular switch of synaptic transmission. Annu Rev Biochem. 82:607-35. 23331239
and Rothberg BS. (2012). The BK channel: a vital link between cellular calcium and electrical signaling. Protein Cell. 3(12):883-92. 22996175
and Thevenod F. (2010). Catch me if you can! Novel aspects of cadmium transport in mammalian cells. Biometals. 23(5):857-75. 20204475
Agarkova, I., D. Dunigan, J. Gurnon, T. Greiner, J. Barres, G. Thiel, and J.L. Van Etten. (2008). Chlorovirus-mediated membrane depolarization of Chlorella alters secondary active transport of solutes. J. Virol. 82: 12181-12190. 18842725
Akopian, A.N., L. Sivilotti, and J.N. Wood. (1996). A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature 379: 257-262. 8538791
Alexander, S.P.H. and J.A. Peters. (1997). Receptor and ion channel nomenclature supplement. Trends Pharmacol. Sci., Elsevier, pp. 76-84.
Altrichter, S., M. Haase, B. Loh, A. Kuhn, and S. Leptihn. (2016). Mechanism of the Spontaneous and Directional Membrane Insertion of a 2-Transmembrane Ion Channel. ACS Chem Biol. [Epub: Ahead of Print] 27960258
An, F.A., M.R. Bowlby, M. Betty, J. Cao, H. Ling, G. Mendoza, J.W. Hinson, K.I. Mattsson, B.W. Strassle, J.S. Trimmer, and K.J. Rhodes. (2000). Modulation of A-type potassium channels by a family of calcium sensors. Nature 403: 553. 10676964
Anderson, P.A.V. and R.M. Greenberg. (2001). Phylogeny of ion channels: clues to structure and function. Comp. Biochem. Physiol. B 129: 17-18. 11337248
Aqvist, J. and V. Luzhkov. (2000). Ion permeation mechanism of the potassium channel. Nature 404: 881-884. 10786795
Aryal, P., F. Abd-Wahab, G. Bucci, M.S. Sansom, and S.J. Tucker. (2015). Influence of lipids on the hydrophobic barrier within the pore of the TWIK-1 K2P channel. Channels (Austin) 9: 44-49. 25487004
Aryal, P., V. Jarerattanachat, M.V. Clausen, M. Schewe, C. McClenaghan, L. Argent, L.J. Conrad, Y.Y. Dong, A.C. Pike, E.P. Carpenter, T. Baukrowitz, M.S. Sansom, and S.J. Tucker. (2017). Bilayer-Mediated Structural Transitions Control Mechanosensitivity of the TREK-2 K2P Channel. Structure. [Epub: Ahead of Print] 28392258
Ashmole, I., D.V. Vavoulis, P.J. Stansfeld, P.R. Mehta, J.F. Feng, M.J. Sutcliffe, and P.R. Stanfield. (2009). The response of the tandem pore potassium channel TASK-3 (K(2P)9.1) to voltage: gating at the cytoplasmic mouth. J. Physiol. 587: 4769-4783. 19703964
Bachnoff, N., M. Cohen-Kutner, M. Trus, and D. Atlas. (2013). Intra-membrane Signaling Between the Voltage-Gated Ca2+-Channel and Cysteine Residues of Syntaxin 1A Coordinates Synchronous Release. Sci Rep 3: 1620. 23567899
Bagal, S.K., B.E. Marron, R.M. Owen, R.I. Storer, and N.A. Swain. (2015). Voltage gated sodium channels as drug discovery targets. Channels (Austin) 9: 360-366. 26646477
Bagnéris, C., P.G. Decaen, B.A. Hall, C.E. Naylor, D.E. Clapham, C.W. Kay, and B.A. Wallace. (2013). Role of the C-terminal domain in the structure and function of tetrameric sodium channels. Nat Commun 4: 2465. 24051986
Bagriantsev, S.N., R. Peyronnet, K.A. Clark, E. Honoré, and D.L. Minor, Jr. (2011). Multiple modalities converge on a common gate to control K2P channel function. EMBO. J. 30: 3594-3606. 21765396
Baker, K.A., C. Tzitzilonis, W. Kwiatkowski, S. Choe, and R. Riek. (2007). Conformational dynamics of the KcsA potassium channel governs gating properties. Nat Struct Mol Biol 14: 1089-1095. 17922011
Balagué, C., B. Lin, C. Alcon, G. Flottes, S. Malmström, C. Köhler, G. Neuhaus, G. Pelletier, F. Gaymard, and D. Roby. (2003). HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell 15: 365-379. 12566578
Balss, J., P. Papatheodorou, M. Mehmel, D. Baumeister, B. Hertel, N. Delaroque, F.C. Chatelain, D.L. Minor, Jr, J.L. Van Etten, J. Rassow, A. Moroni, and G. Thiel. (2008). Transmembrane domain length of viral K+ channels is a signal for mitochondria targeting. Proc. Natl. Acad. Sci. USA 105: 12313-12318. 18719119
Bang, H., Y. Kim, and D. Kim. (2000). TREK-2, a new member of the mechanosensitive tandem-pore K+ channel family. J. Biol. Chem. 275: 17412-17419. 10747911
Barber AF., Carnevale V., Raju SG., Amaral C., Treptow W. and Klein ML. (2012). Hinge-bending motions in the pore domain of a bacterial voltage-gated sodium channel. Biochim Biophys Acta. 1818(9):2120-5. 22579978
Barmeyer, C., C. Rahner, Y. Yang, F.J. Sigworth, H.J. Binder, and V.M. Rajendran. (2010). Cloning and identification of tissue-specific expression of KCNN4 splice variants in rat colon. Am. J. Physiol. Cell Physiol. 299: C251-263. 20445171
Becchetti, A., S. Crescioli, F. Zanieri, G. Petroni, R. Mercatelli, S. Coppola, L. Gasparoli, M. D'Amico, S. Pillozzi, O. Crociani, M. Stefanini, A. Fiore, L. Carraresi, V. Morello, S. Manoli, M.F. Brizzi, D. Ricci, M. Rinaldi, A. Masi, T. Schmidt, F. Quercioli, P. Defilippi, and A. Arcangeli. (2017). The conformational state of hERG1 channels determines integrin association, downstream signaling, and cancer progression. Sci Signal 10:. 28377405
Becker, C., D. Geiger, B. Dunkel, A. Roller, A. Bertl, A. Latz, A. Carpaneto, P. Dietrich, M.R.G. Roelfsema, C. Voelker, D. Schmidt, B. Mueller-Roeber, K. Czempinski, and R. Hedrich. (2004). AtTPK4, an Arabidopsis tandem-pore K+ channel, poised to control the pollen membrane voltage in a pH- and Ca2+-dependent manner. Proc. Natl. Acad. Sci. USA 101: 15621-15626. 15505206
Ben Mahmoud, A., R. Ben Mansour, F. Driss, S. Baklouti-Gargouri, O. Siala, E. Mkaouar-Rebai, and F. Fakhfakh. (2015). Evaluation of the effect of c.2946+1G>T mutation on splicing in the SCN1A gene. Comput Biol Chem 54: 44-48. 25590135
Bennett, V., and J. Healy. (2008). Being there: cellular targeting of voltage-gated sodium channels in the heart. J. Cell. Biol. 180: 13-15. 18180365
Berkefeld, H. and B. Fakler. (2013). Ligand-Gating by Ca2+ Is Rate Limiting for Physiological Operation of BKCa Channels. J. Neurosci. 33: 7358-7367. 23616542
Berkefeld, H., C.A. Sailer, W. Bildl, V. Rohde, J.O. Thumfart, S. Eble, N. Klugbauer, E. Reisinger, J. Bischofberger, D. Oliver, H.G. Knaus, U. Schulte, and B. Fakler. (2006). BKCa-Cav channel complexes mediate rapid and localized Ca2+-activated K+ signaling. Science 314: 615-620. 17068255
Bertaccini EJ., Dickinson R., Trudell JR. and Franks NP. (2014). Molecular modeling of a tandem two pore domain potassium channel reveals a putative binding site for general anesthetics. ACS Chem Neurosci. 5(12):1246-52. 25340635
Bertl, A., J. Ramos, J. Ludwig, H. Lichtenberg-Fraté, J. Reid, H. Bihler, F. Calero, P. Martinez, and P.O. Ljungdahl. (2003). Characterization of potassium transport in wild-type and isogenic yeast strains carrying all combinations of trk1, trk2 and tok1 null mutations. Mol. Microbiol. 47: 767-780. 12535075
Bezanilla, F. (2000). The voltage sensor in voltage-dependent ion channels. Physiol. Rev. 80: 555-592. 10747201
Bezanilla, F. (2008). How membrane proteins sense voltage. Nat Rev Mol. Cell Biol. 9: 323-332. 18354422
Bianchi L., S.M. Kwok, M. Driscoll, F. Sesti. (2003). A potassium channel-MiRP complex controls neurosensory function in Caenorhabditis elegans. J Biol. Chem. 278:12415-12424. 12533541
Biel M., S. Michalakis. (2007). Function and dysfunction of CNG channels: insights from channelopathies and mouse models. Mol Neurobiol. 35: 266-277. 17917115
Biel, M., C. Wahl-Schott, S. Michalakis, and X. Zong. (2009). Hyperpolarization-activated cation channels: from genes to function. Physiol. Rev. 89: 847-885. 19584315
Biswas, S., I. Deschênes, D. Disilvestre, Y. Tian, V.L. Halperin, and G.F. Tomaselli. (2008). Calmodulin regulation of Nav1.4 current: role of binding to the carboxyl terminus. J. Gen. Physiol. 131: 197-209. 18270170
Blasic, J.R., D.L. Worcester, K. Gawrisch, P. Gurnev, and M. Mihailescu. (2015). Pore Hydration States of KcsA Potassium Channels in Membranes. J. Biol. Chem. 290: 26765-26775. 26370089
Bocksteins, E., N. Ottschytsch, J.P. Timmermans, A.J. Labro, and D.J. Snyders. (2011). Functional interactions between residues in the S1, S4, and S5 domains of Kv2.1. Eur Biophys. J. 40: 783-793. 21455829
Borger C., Schunke S., Lecher J., Stoldt M., Winkhaus F., Kaupp UB. and Willbold D. (2015). Resonance assignment of the ligand-free cyclic nucleotide-binding domain from the murine ion channel HCN2. Biomol NMR Assign. 9(2):243-6. 25324217
Börjesson, S.I. and F. Elinder. (2011). An electrostatic potassium channel opener targeting the final voltage sensor transition. J Gen Physiol 137: 563-577. 21624947
Bosmans, F., M. Puopolo, M.F. Martin-Eauclaire, B.P. Bean, and K.J. Swartz. (2011). Functional properties and toxin pharmacology of a dorsal root ganglion sodium channel viewed through its voltage sensors. J Gen Physiol 138: 59-72. 21670206
Boukhabza, M., J. El Hilaly, N. Attiya, A. El-Haidani, Y. Filali-Zegzouti, D. Mazouzi, and M.Y. Amarouch. (2016). In Silico Evaluation of the Potential Antiarrhythmic Effect of Epigallocatechin-3-Gallate on Cardiac Channelopathies. Comput Math Methods Med 2016: 7861653. 27882075
Boulton, S., M. Akimoto, S. Akbarizadeh, and G. Melacini. (2017). Free Energy Landscape Remodeling of the Cardiac Pacemaker Channel Explains the Molecular Basis of Familial Sinus Bradycardia. J. Biol. Chem. [Epub: Ahead of Print] 28174302
Brailoiu, E., R. Hooper, X. Cai, G.C. Brailoiu, M.V. Keebler, N.J. Dun, J.S. Marchant, and S. Patel. (2010). An ancestral deuterostome family of two-pore channels mediates nicotinic acid adenine dinucleotide phosphate-dependent calcium release from acidic organelles. J. Biol. Chem. 285: 2897-2901. 19940116
Brams M., Kusch J., Spurny R., Benndorf K. and Ulens C. (2014). Family of prokaryote cyclic nucleotide-modulated ion channels. Proc Natl Acad Sci U S A. 111(21):7855-60. 24821777
Brettmann, J.B., D. Urusova, M. Tonelli, J.R. Silva, and K.A. Henzler-Wildman. (2015). Role of protein dynamics in ion selectivity and allosteric coupling in the NaK channel. Proc. Natl. Acad. Sci. USA 112: 15366-15371. 26621745
Brohawn, S.G., E.B. Campbell, and R. MacKinnon. (2014). Physical mechanism for gating and mechanosensitivity of the human TRAAK K+ channel. Nature 516: 126-130. 25471887
Brohawn, S.G., J. del Mármol, and R. MacKinnon. (2012). Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel. Science 335: 436-441. 22282805
Brontein-Sitton, N. (2006). The ether-a-go-go Related Gene (erg) Voltage-Gated K+ Channels: A Common Structure with Uncommon Characteristics. Modulator. 21: 13-15.
Bruening-Wright, A., F. Elinder, and H.P. Larsson. (2007). Kinetic relationship between the voltage sensor and the activation gate in spHCN channels. J Gen Physiol 130: 71-81. 17591986
Bruening-Wright, A., W.S. Lee, J.P. Adelman, and J. Maylie. (2007). Evidence for a Deep Pore Activation Gate in Small Conductance Ca2+-activated K+ Channels. J. Gen. Physiol. 130(6):601-610. 17998394
Buraei, Z. and J. Yang. (2010). The ß subunit of voltage-gated Ca2+ channels. Physiol. Rev. 90: 1461-1506. 20959621
Butterwick, J.A. and R. MacKinnon. (2010). Solution structure and phospholipid interactions of the isolated voltage-sensor domain from KvAP. J. Mol. Biol. 403: 591-606. 20851706
Cang, C., B. Bekele, and D. Ren. (2014). The voltage-gated sodium channel TPC1 confers endolysosomal excitability. Nat Chem Biol 10: 463-469. 24776928
Cang, C., Y. Zhou, B. Navarro, Y.J. Seo, K. Aranda, L. Shi, S. Battaglia-Hsu, I. Nissim, D.E. Clapham, and D. Ren. (2013). mTOR regulates lysosomal ATP-sensitive two-pore Na+ channels to adapt to metabolic state. Cell 152: 778-790. 23394946
Canto-Bustos, M., E. Loeza-Alcocer, R. González-Ramírez, M.A. Gandini, R. Delgado-Lezama, and R. Felix. (2014). Functional expression of T-type Ca2+ channels in spinal motoneurons of the adult turtle. PLoS One 9: e108187. 25255145
Carraretto, L., E. Formentin, E. Teardo, V. Checchetto, M. Tomizioli, T. Morosinotto, G.M. Giacometti, G. Finazzi, and I. Szabó. (2013). A thylakoid-located two-pore K+ channel controls photosynthetic light utilization in plants. Science 342: 114-118. 24009357
Casida, J.E. and K.A. Durkin. (2013). Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Annu Rev Entomol 58: 99-117. 23317040
Castellano, A., M.D. Chiara, B. Mellström, A. Molina, F. Monje, J.R. Naranjo, and J. López-Barneo. (1997). Identification and functional characterization of a K+ channel α-subunit with regulatory properties specific to brain. J. Neurosci. 17: 4652-4661. 9169526
Catterall, W.A. (2010). Ion channel voltage sensors: structure, function, and pathophysiology. Neuron. 67: 915-928. 20869590
Catterall, W.A., S. Dib-Hajj, M.H. Meisler, and D. Pietrobon. (2008). Inherited neuronal ion channelopathies: new windows on complex neurological diseases. J. Neurosci. 28: 11768-11777. 19005038
Cavinder, B. and F. Trail. (2012). Role of Fig1, a component of the low-affinity calcium uptake system, in growth and sexual development of filamentous fungi. Eukaryot. Cell. 11: 978-988. 22635922
Cha, A., G.E. Snyder, P.R. Selvin, and F. Bezanilla. (1999). Atomic scale movement of the voltage sensing region in a potassium channel measured via spectroscopy. Nature 402: 809-813. 10617201
Chancey, J.H., P.E. Shockett, and J.P. O''Reilly. (2007). Relative resistance to slow inactivation of human cardiac Na+ channel hNav1.5 is reversed by lysine or glutamine substitution at V930 in D2-S6. Am. J. Physiol. Cell Physiol. 293: C1895-1905. 17928536
Chanda, B., and F. Bezanilla (2008). A common pathway for charge transport through voltage-sensing domains. Neuron 57: 345-51. 18255028
Charalambous, K. and B.A. Wallace. (2011). NaChBac: The Long Lost Sodium Channel Ancestor. Biochemistry 50: 6742-6752. 21770445
Charpentier, M., J. Sun, T.V. Martins, G.V. Radhakrishnan, K. Findlay, E. Soumpourou, J. Thouin, A.A. Véry, D. Sanders, R.J. Morris, and G.E. Oldroyd. (2016). Nuclear-localized cyclic nucleotide-gated channels mediate symbiotic calcium oscillations. Science 352: 1102-1105. 27230377
Charpentier, M., R. Bredemeier, G. Wanner, N. Takeda, E. Schleiff, and M. Parniske. (2008). Lotus japonicus CASTOR and POLLUX are ion channels essential for perinuclear calcium spiking in legume root endosymbiosis. Plant Cell 20: 3467-3479. 19106374
Chartrand, E., A.A. Arnold, A. Gravel, S. Jenna, and I. Marcotte. (2010). Potential role of the membrane in hERG channel functioning and drug-induced long QT syndrome. Biochim. Biophys. Acta. 1798: 1651-1662. 20510171
Chauhan, D.S., D.K. Swain, N. Shah, H.P. Yadav, U.P. Nakade, V.K. Singh, R. Nigam, S. Yadav, and S.K. Garg. (2017). Functional and molecular characterization of voltage gated sodium channel Nav 1.8 in bull spermatozoa. Theriogenology 90: 210-218. 28166971
Checchetto, V., A. Segalla, G. Allorent, N. La Rocca, L. Leanza, G.M. Giacometti, N. Uozumi, G. Finazzi, E. Bergantino, and I. Szabò. (2012). Thylakoid potassium channel is required for efficient photosynthesis in cyanobacteria. Proc. Natl. Acad. Sci. USA 109: 11043-11048. 22711813
Checchetto, V., E. Formentin, L. Carraretto, A. Segalla, G.M. Giacometti, I. Szabo, and E. Bergantino. (2013). Functional characterization and determination of the physiological role of a calcium-dependent potassium channel from cyanobacteria. Plant Physiol. 162: 953-964. 23640756
Checchetto, V., E. Teardo, L. Carraretto, E. Formentin, E. Bergantino, G.M. Giacometti, and I. Szabo. (2013). Regulation of photosynthesis by ion channels in cyanobacteria and higher plants. Biophys Chem 182: 51-57. 23891570
Chemin, J., A. Patel, F. Duprat, M. Zanzouri, M. Lazdunski, and E. Honoré. (2005). Lysophosphatidic acid-operated K+ channels. J. Biol. Chem. 280: 4415-4421. 15572365
Chemin, J., C. Girard, F. Duprat, F. Lesage, G. Romey, and M. Lazdunski. (2003). Mechanisms underlying excitatory effects of group 1 metabotropic glutamate receptors via inhibition of 2P domain K+ channels. EMBO J. 22: 5403-5411. 14532113
Chen, B., P. Liu, H. Zhan, and Z.W. Wang. (2011). Dystrobrevin controls neurotransmitter release and muscle Ca2+ transients by localizing BK channels in Caenorhabditis elegans. J. Neurosci. 31: 17338-17347. 22131396
Chen, H., J. Kronengold, Y. Yan, V.R. Gazula, M.R. Brown, L. Ma, G. Ferreira, Y. Yang, A. Bhattacharjee, F.J. Sigworth, L. Salkoff, and L.K. Kaczmarek. (2009). The N-terminal domain of Slack determines the formation and trafficking of Slick/Slack heteromeric sodium-activated potassium channels. J. Neurosci. 29: 5654-5665. 19403831
Chen, J., S.C. Cassar, D. Zhang, and M. Gopalakrishnan. (2005). A novel potassium channel encoded by Ectocarpus siliculosus virus. Biochem. Biophys. Res. Commun. 326: 887-893. 15607752
Chen, X., M.Y. Ruan, and S.Q. Cai. (2015). KChIP-like auxiliary subunits of Kv4 channels regulate excitability of muscle cells and control male turning behavior during mating in Caenorhabditis elegans. J. Neurosci. 35: 1880-1891. 25653349
Chen, X., Q. Wang, F. Ni, and J. Ma. (2010). Structure of the full-length Shaker potassium channel Kv1.2 by normal-mode-based X-ray crystallographic refinement. Proc. Natl. Acad. Sci. USA 107: 11352-11357. 20534430
Cherki, R., L. Luques, Y. Anis, and A. Meir. (2006). Ion Channels in Endocrine Pancreatic Cell and their Role in Diabetes. Modulator. 21: 16-21.
Cho, T., A. Ishii-Kato, Y. Fukata, Y. Nakayama, K. Iida, M. Fukata, and H. Iida. (2016). Coupling of a voltage-gated Ca2+ channel homologue with a plasma membrane H+ -ATPase in yeast. Genes Cells. [Epub: Ahead of Print] 27935186
Choi, S.W., K.S. Kim, D.H. Shin, H.Y. Yoo, H. Choe, T.H. Ko, J.B. Youm, W.K. Kim, Y.H. Zhang, and S.J. Kim. (2013). Class 3 inhibition of hERG K+ channel by caffeic acid phenethyl ester (CAPE) and curcumin. Pflugers Arch 465: 1121-1134. 23440458
Chotoo, C.K., G.A. Silverman, D.C. Devor, and C.J. Luke. (2013). A small conductance calcium-activated K+ channel in C. elegans, KCNL-2, plays a role in the regulation of the rate of egg-laying. PLoS One 8: e75869. 24040423
Chowdhury, S., B.W. Jarecki, and B. Chanda. (2014). A molecular framework for temperature-dependent gating of ion channels. Cell 158: 1148-1158. 25156949
Chung, J.J., B. Navarro, G. Krapivinsky, L. Krapivinsky, and D.E. Clapham. (2011). A novel gene required for male fertility and functional CATSPER channel formation in spermatozoa. Nat Commun 2: 153. 21224844
Churamani, D., R. Hooper, E. Brailoiu, and S. Patel. (2012). Domain assembly of NAADP-gated two-pore channels. Biochem. J. 441: 317-323. 21992073
Clapham, D.E. (1999). Unlocking family secrets: K+ channel transmembrane domains. Cell 97: 547-550. 10367883
Clayton, G.M., S. Altieri, L. Heginbotham, V.M. Unger, and J.H. Morais-Cabral. (2008). Structure of the transmembrane regions of a bacterial cyclic nucleotide-regulated channel. Proc. Natl. Acad. Sci. USA 105: 1511-1515. 18216238
Cohen, A., Y. Ben-Abu, S. Hen, and N. Zilberberg. (2008). A novel mechanism for human K2P2.1 channel gating. Facilitation of C-type gating by protonation of extracellular histidine residues. J. Biol. Chem. 283: 19448-19455. 18474599
Cohen, L., Y. Moran, A. Sharon, D. Segal, D. Gordon, and M. Gurevitz. (2009). Drosomycin, an innate immunity peptide of Drosophila melanogaster, interacts with the fly voltage-gated sodium channel. J. Biol. Chem. 284: 23558-23563. 19574227
Cohen-Kutner, M., D. Nachmanni, and D. Atlas. (2010). CaV2.1 (P/Q channel) interaction with synaptic proteins is essential for depolarization-evoked release. Channels (Austin) 4: 266-277. 20495360
Colosimo, E., A. Gambardella, M. Mantegazza, A. Labate, R. Rusconi, E. Schiavon, F. Annesi, R.R. Cassulini, S. Carrideo, R. Chifari, M.P. Canevini, R. Canger, S. Franceschetti, G. Annesi, E. Wanke, and A. Quattrone. (2007). Electroclinical features of a family with simple febrile seizures and temporal lobe epilepsy associated with SCN1A loss-of-function mutation. Epilepsia 48: 1691-1696. 17565594
Cong, B., G. Han, X.H. Huang, S.H. Liu, C.L. Liu, X.Z. Lin, P.Q. He, and H. Gasaino. (2009). Molecular cloning and tissue expression patterns of a small conductance calcium-activated potassium channel gene in turbot (Scophthalmus maximus L.). Fish Shellfish Immunol 27: 221-229. 19481607
Coskun, C. and N. Purali. (2016). Cloning and molecular characterization of a putative voltage-gated sodium channel gene in the crayfish. Invert Neurosci 16: 2. 27032955
Cox, J.J., F. Reimann, A.K. Nicholas, G. Thornton, E. Roberts, K. Springell, G. Karbani, H. Jafri, J. Mannan, Y. Raashid, L. Al-Gazali, H. Hamamy, E.M. Valente, S. Gorman, R. Williams, D.P. McHale, J.N. Wood, F.M. Gribble, and C.G. Woods. (2006). An SCN9A channelopathy causes congenital inability to experience pain. Nature 444: 894-898. 17167479
Cregg, R., A. Momin, F. Rugiero, J.N. Wood, and J. Zhao. (2010). Pain channelopathies. J. Physiol. 588: 1897-1904. 20142270
Cribbs L.L., B.L. Martin, E.A. Schroder, B.B. Keller, B.P. Delisle, J. Satin. (2001). Identification of the t-type calcium channel (Cav3.1d) in developing mouse heart. Circ. Res. 88: 403-407. 11230107
Cuello, L.G., D.M. Cortes, and E. Perozo. (2004). Molecular architecture of the KvAP voltage-dependent K+ channel in a lipid bilayer. Science 306: 491-495. 15486302
Cuello, L.G., V. Jogini, D.M. Cortes, and E. Perozo. (2010). Structural mechanism of C-type inactivation in K+ channels. Nature 466: 203-208. 20613835
Cui, J. (2010). BK-type calcium-activated potassium channels: coupling of metal ions and voltage sensing. J. Physiol. 588: 4651-4658. 20660558
Czempinski K., S. Zimmermann, T. Ehrhardt, B. Muller-Rober. (1997). New structure and function in plant K+ channels: KCO1, an outward rectifier with a steep Ca2+ dependency. EMBO J. 16:2565-75. 9184204
Czirják, G., D. Vuity, and P. Enyedi. (2008). Phosphorylation-dependent binding of 14-3-3 proteins controls TRESK regulation. J. Biol. Chem. 283: 15672-15680. 18397886
Czirjak, G., Z.E. Toth, and P. Enyedi. (2004). The two-pore domain K+ channel, TRESK, is activated by the cytoplasmic calcium signal through calcineurin. J. Biol. Chem. 279: 18550-18558. 14981085
D'Adamo, M.C., C. Gallenmüller, I. Servettini, E. Hartl, S.J. Tucker, L. Arning, S. Biskup, A. Grottesi, L. Guglielmi, P. Imbrici, P. Bernasconi, G. Di Giovanni, F. Franciolini, L. Catacuzzeno, M. Pessia, and T. Klopstock. (2014). Novel phenotype associated with a mutation in the KCNA1(Kv1.1) gene. Front Physiol 5: 525. 25642194
Dabby, R., M. Sadeh, R. Gilad, Y. Lampl, S. Cohen, S. Inbar, and E. Leshinsky-Silver. (2011). Chronic non-paroxysmal neuropathic pain - Novel phenotype of mutation in the sodium channel SCN9A gene. J Neurol Sci 301: 90-92. 21094958
Davies, A.G., J.T. Pierce-Shimomura, H. Kim, M.K. VanHoven, T.R. Thiele, A. Bonci, C.I. Bargmann, and S.L. McIntire. (2003). A central role of the BK potassium channel in behavioral responses to ethanol in C. elegans. Cell 115: 655-666. 14675531
Davies, L.A., C. Hu, N.A. Guagliardo, N. Sen, X. Chen, E.M. Talley, R.M. Carey, D.A. Bayliss, and P.Q. Barrett (2008). TASK channel deletion in mice causes primary hyperaldosteronism. Proc. Natl. Acad. Sci. U.S.A. 105: 2203-2208. 18250325
de la Cruz, I.P., J.Z. Levin, C. Cummins, P. Anderson, and H.R. Horvitz. (2003). sup-9, sup-10, and unc-93 may encode components of a two-pore K+ channel that coordinates muscle contraction in Caenorhabditis elegans. J. Neurosci. 23: 9133-9145. 14534247
De Marchi, U., N. Sassi, B. Fioretti, L. Catacuzzeno, G.M. Cereghetti, I. Szabò, and M. Zoratti. (2009). Intermediate conductance Ca2+-activated potassium channel (KCa3.1) in the inner mitochondrial membrane of human colon cancer cells. Cell Calcium 45: 509-516. 19406468
Debnath, D.K., R.V. Basaiawmoit, K.L. Nielsen, and D.E. Otzen. (2011). The role of membrane properties in Mistic folding and dimerisation. Protein Eng Des Sel 24: 89-97. 21097953
Decher N., M. Maier, W. Dittrich, J. Gassenhuber, A. Bruggemann, A.E. Busch, K. Steinmeyer. (2001) Characterization of TASK-4, a novel member of the pH-sensitive, two-pore domain potassium channel family. FEBS Lett. 492:84-9. 11248242
Delemotte, L., M.A. Kasimova, M.L. Klein, M. Tarek, and V. Carnevale. (2015). Free-energy landscape of ion-channel voltage-sensor-domain activation. Proc. Natl. Acad. Sci. USA 112: 124-129. 25535341
Delemotte, L., W. Treptow, M.L. Klein, and M. Tarek. (2010). Effect of sensor domain mutations on the properties of voltage-gated ion channels: molecular dynamics studies of the potassium channel Kv1.2. Biophys. J. 99: L72-74. 21044565
Derebe, M.G., W. Zeng, Y. Li, A. Alam, and Y. Jiang. (2011). Structural studies of ion permeation and Ca2+ blockage of a bacterial channel mimicking the cyclic nucleotide-gated channel pore. Proc. Natl. Acad. Sci. USA 108: 592-597. 21187429
Desai, R., J. Kronengold, J. Mei, S.A. Forman, and L.K. Kaczmarek. (2008). Protein kinase C modulates inactivation of Kv3.3 channels. J. Biol. Chem. 283: 22283-22294. 18539595
DeSimone, C.V., V.V. Zarayskiy, V.E. Bondarenko, and M.J. Morales. (2011). Heteropoda toxin 2 interaction with Kv4.3 and Kv4.1 reveals differences in gating modification. Mol Pharmacol 80: 345-355. 21540294
Di, L., S. Srivastava, O. Zhdanova, Y. Sun, Z. Li, and E.Y. Skolnik. (2010). Nucleoside diphosphate kinase B knock-out mice have impaired activation of the K+ channel KCa3.1, resulting in defective T cell activation. J. Biol. Chem. 285: 38765-38771. 20884616
Dib-Hajj, S.D., T.R. Cummins, J.A. Black, and S.G. Waxman. (2007). From genes to pain: Na v 1.7 and human pain disorders. Trends Neurosci. 30(11):555-63. 17950472
Dixon, R.E., E.P. Cheng, J.L. Mercado, and L.F. Santana. (2012). L-type ca(2+) channel function during timothy syndrome. Trends Cardiovasc Med 22: 72-76. 22999068
Dobler, T., A. Springauf, S. Tovornik, M. Weber, A. Schmitt, R. Sedlmeier, E. Wischmeyer, and F. Döring. (2007). TRESK two-pore-domain K+ channels constitute a significant component of background potassium currents in murine dorsal root ganglion neurones. J. Physiol. 585: 867-879. 17962323
Docampo R., Moreno SN. and Plattner H. (2014). Intracellular calcium channels in protozoa. Eur J Pharmacol. 739:4-18. 24291099
Doherty, T., Y. Su, and M. Hong. (2010). High-resolution orientation and depth of insertion of the voltage-sensing S4 helix of a potassium channel in lipid bilayers. J. Mol. Biol. 401: 642-652. 20600109
Dong, Y.Y., A.C. Pike, A. Mackenzie, C. McClenaghan, P. Aryal, L. Dong, A. Quigley, M. Grieben, S. Goubin, S. Mukhopadhyay, G.F. Ruda, M.V. Clausen, L. Cao, P.E. Brennan, N.A. Burgess-Brown, M.S. Sansom, S.J. Tucker, and E.P. Carpenter. (2015). K2P channel gating mechanisms revealed by structures of TREK-2 and a complex with Prozac. Science 347: 1256-1259. 25766236
Douglas, R.M., J.C. Lai, S. Bian, L. Cummins, E. Moczydlowski, and G.G. Haddad. (2006). The calcium-sensitive large-conductance potassium channel (BK/MAXI K) is present in the inner mitochondrial membrane of rat brain. Neuroscience 139: 1249-61. 16567053
Downey, P., I. Szabó, N. Ivashikina, A. Negro, F. Guzzo, P. Ache, R. Hedrich, M. Terzi, and F. Lo Schiavo. (2000). KDC1, a novel carrot root hair K+channel: cloning, characterization, and expression in mammalian cells. J. Biol. Chem. 275: 394420-39426. 10970888
Doyle, D.A, J.M. Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait, and R. MacKinnon. (1998). The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280: 69-77. 9525859
Drenth, J.P., and S.G. Waxman. (2007). Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders. J. Clin. Invest. 117: 3603-3609. 18060017
Dreyer, I. and N. Uozumi. (2011). Potassium channels in plant cells. FEBS J. 278: 4293-4303. 21955642
Du Y., Nomura Y., Zhorov BS. and Dong K. (2015). Rotational Symmetry of Two Pyrethroid Receptor Sites in the Mosquito Sodium Channel. Mol Pharmacol. 88(2):273-80. 25972447
Du, Y., D. Garden, B. Khambay, B.S. Zhorov, and K. Dong. (2011). Batrachotoxin, pyrethroids, and BTG 502 share overlapping binding sites on insect sodium channels. Mol Pharmacol 80: 426-433. 21680776
Du, Y., W. Song, J.R. Groome, Y. Nomura, N. Luo, and K. Dong. (2010). A negative charge in transmembrane segment 1 of domain II of the cockroach sodium channel is critical for channel gating and action of pyrethroid insecticides. Toxicol Appl Pharmacol 247: 53-59. 20561903
Duan, J.J., J.H. Ma, P.H. Zhang, X.P. Wang, A.R. Zou, and D.N. Tu. (2007). Verapamil blocks HERG channel by the helix residue Y652 and F656 in the S6 transmembrane domain. Acta Pharmacol Sin 28: 959-967. 17588331
Duarri, A., J. Jezierska, M. Fokkens, M. Meijer, H.J. Schelhaas, W.F. den Dunnen, F. van Dijk, C. Verschuuren-Bemelmans, G. Hageman, P. van de Vlies, B. Küsters, B.P. van de Warrenburg, B. Kremer, C. Wijmenga, R.J. Sinke, M.A. Swertz, H.H. Kampinga, E. Boddeke, and D.S. Verbeek. (2012). Mutations in potassium channel kcnd3 cause spinocerebellar ataxia type 19. Ann Neurol 72: 870-880. 23280838
Duby, G., E. Hosy, C. Fizames, C. Alcon, A. Costa, H. Sentenac, and J.B. Thibaud. (2008). AtKC1, a conditionally targeted Shaker-type subunit, regulates the activity of plant K+ channels. Plant J. 53(1):115-123. 17976154
Durdagi, S., J. Subbotina, J. Lees-Miller, J. Guo, H.J. Duff, and S.Y. Noskov. (2010). Insights into the molecular mechanism of hERG1 channel activation and blockade by drugs. Curr. Med. Chem. 17: 3514-3532. 20738248
Durell, S.R., Y. Hao, T. Nakamura, E.P. Bakker, and H.R. Guy. (1999). Evolutionary relationship between K+ channels and symporters. Biophys. J. 77: 775-788. 10423425
Edwards A., A.B. Heckmann, F. Yousafzai, G. Duc, J.A. Downie. (2007). Structural implications of mutations in the pea SYM8 symbiosis gene, the DMI1 ortholog, encoding a predicted ion channel. Mol Plant Microbe Interact. 20: 1183-1191. 17918620
Eldstrom, J., H. Xu, D. Werry, C. Kang, M.E. Loewen, A. Degenhardt, S. Sanatani, G.F. Tibbits, C. Sanders, and D. Fedida. (2010). Mechanistic basis for LQT1 caused by S3 mutations in the KCNQ1 subunit of IKs. J Gen Physiol 135: 433-448. 20421371
Elinder, F., M. Madeja, H. Zeberg, and P. Århem. (2016). Extracellular Linkers Completely Transplant the Voltage Dependence from Kv1.2 Ion Channels to Kv2.1. Biophys. J. 111: 1679-1691. 27760355
Ellekvist, P., J. Maciel, G. Mlambo, C.H. Ricke, H. Colding, D.A. Klaerke, and N. Kumar. (2008). Critical role of a K+ channel in Plasmodium berghei transmission revealed by targeted gene disruption. Proc. Natl. Acad. Sci. USA 105: 6398-6402. 18434537
Elter, A., A. Hartel, C. Sieben, B. Hertel, E. Fischer-Schliebs, U. Lüttge, A. Moroni, and G. Thiel. (2007). A plant homolog of animal chloride intracellular channels (CLICs) generates an ion conductance in heterologous systems. J. Biol. Chem. 282: 8786-8792. 17267397
Enyedi, P. and G. Czirják. (2010). Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol. Rev. 90: 559-605. 20393194
Enyedi, P., I. Veres, G. Braun, and G. Czirják. (2014). Tubulin Binds to the Cytoplasmic Loop of TRESK Background K+ Channel In Vitro. PLoS One 9: e97854. 24830385
Estacion, M., J.E. O'Brien, A. Conravey, M.F. Hammer, S.G. Waxman, S.D. Dib-Hajj, and M.H. Meisler. (2014). A novel de novo mutation of SCN8A (Nav1.6) with enhanced channel activation in a child with epileptic encephalopathy. Neurobiol Dis 69: 117-123. 24874546
Fawcett, G.L., C.M. Santi, A. Butler, T. Harris, M. Covarrubias, and L. Salkoff. (2006). Mutant analysis of the Shal (Kv4) voltage-gated fast transient K+ channel in Caenorhabditis elegans. J. Biol. Chem. 281: 30725-30735. 16899454
Fedida, D. and J.C. Hesketh. (2001). Gating of voltage-dependent potassium channels. Prog. Biophys. Mol. Biol. 75: 165-199. 11376798
Feinshreiber, L., D. Chikvashvili, I. Michaelevski, and I. Lotan. (2009). Syntaxin modulates Kv1.1 through dual action on channel surface expression and conductance. Biochemistry 48: 4109-4114. 19331362
Feng, Z.-P., J. Hamid, C. Doering, S.E. Jarvis, G.M. Bosey, E. Bourinet, T.P. Snutch, and G.W. Zamponi. (2001). Amino acid residues outside of the pore region contribute to N-type calcium channel permeation. J. Biol. Chem. 276: 5726-5730. 11120735
Fernández-Trillo, J., F. Barros, A. Machín, L. Carretero, P. Domínguez, and P. de la Peña. (2011). Molecular determinants of interactions between the N-terminal domain and the transmembrane core that modulate hERG K+ channel gating. PLoS One 6: e24674. 21935437
Fink M., F. Lesage, F. Duprat, C. Heurteaux, R. Reyes, M. Fosset, M. Lazdunski. (1998). A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids. EMBO J. 17:3297-308. 9628867
Fischer, T.Z. and S.G. Waxman. (2010). Familial pain syndromes from mutations of the NaV1.7 sodium channel. Ann. N.Y. Acad. Sci. 1184: 196-207. 20146699
Fischer, W.B. and M.S. Sansom. (2002). Viral ion channels: structure and function. Biochim. Biophys. Acta 1561: 27-45. 11988179
Ford, K.J. and G.W. Davis. (2014). Archaerhodopsin voltage imaging: synaptic calcium and BK channels stabilize action potential repolarization at the Drosophila neuromuscular junction. J. Neurosci. 34: 14517-14525. 25355206
Freites JA. and Tobias DJ. (2015). Voltage Sensing in Membranes: From Macroscopic Currents to Molecular Motions. J Membr Biol. 248(3):419-30. 25972106
Freites, J.A., D.J. Tobias, and S.H. White. (2006). A voltage-sensor water pore. Biophys. J. 91: L90-92. 17012321
Fujinami, S., T. Sato, J.S. Trimmer, B.W. Spiller, D.E. Clapham, T.A. Krulwich, I. Kawagishi, and M. Ito. (2007). The voltage-gated Na+ channel NavBP co-localizes with methyl-accepting chemotaxis protein at cell poles of alkaliphilic Bacillus pseudofirmus OF4. Microbiology. 153: 4027-4038. 18048917
Fujiu, K., Y. Nakayama, A. Yanagisawa, M. Sokabe, and K. Yoshimura. (2009). Chlamydomonas CAV2 encodes a voltage- dependent calcium channel required for the flagellar waveform conversion. Curr. Biol. 19: 133-139. 19167228
Fukasaku, M., J. Kimura, and O. Yamaguchi. (2016). Swelling-activated and arachidonic acid-induced currents are TREK-1 in rat bladder smooth muscle cells. Fukushima J Med Sci. [Epub: Ahead of Print] 26911303
Furini, S. and C. Domene. (2012). On conduction in a bacterial sodium channel. PLoS Comput Biol 8: e1002476. 22496637
Galindo, B.E., J.L. de la Vega-Beltrán, P. Labarca, V.D. Vacquier, and A. Darszon. (2007). Sp-tetraKCNG: A novel cyclic nucleotide gated K+ channel. Biochem. Biophys. Res. Commun. 354: 668-675. 17254550
Gao, Q.F., L.L. Gu, H.Q. Wang, C.F. Fei, X. Fang, J. Hussain, S.J. Sun, J.Y. Dong, H. Liu, and Y.F. Wang. (2016). Cyclic nucleotide-gated channel 18 is an essential Ca2+ channel in pollen tube tips for pollen tube guidance to ovules in Arabidopsis. Proc. Natl. Acad. Sci. USA 113: 3096-3101. 26929345
García Segarra, N., I. Gautschi, L. Mittaz-Crettol, C. Kallay Zetchi, L. Al-Qusairi, M.X. Van Bemmelen, P. Maeder, L. Bonafé, L. Schild, and E. Roulet-Perez. (2014). Congenital ataxia and hemiplegic migraine with cerebral edema associated with a novel gain of function mutation in the calcium channel CACNA1A. J Neurol Sci 342: 69-78. 24836863
Garciadeblas, B., J. Barrero-Gil, B. Benito, and A. Rodríguez-Navarro. (2007). Potassium transport systems in the moss Physcomitrella patens: pphak1 plants reveal the complexity of potassium uptake. Plant J. 52: 1080-1093. 17916113
Gardella, E., F. Becker, R.S. Møller, J. Schubert, J.R. Lemke, L.H. Larsen, H. Eiberg, M. Nothnagel, H. Thiele, J. Altmüller, S. Syrbe, A. Merkenschlager, T. Bast, B. Steinhoff, P. Nürnberg, Y. Mang, L. Bakke Møller, P. Gellert, S. Heron, L. Dibbens, S. Weckhuysen, H.A. Dahl, S. Biskup, N. Tommerup, H. Hjalgrim, H. Lerche, S. Beniczky, and Y.G. Weber. (2015). Benign infantile seizures and paroxysmal dyskinesia caused by an SCN8A mutation. Ann Neurol. [Epub: Ahead of Print] 26677014
Garg, P., A. Gardner, V. Garg, and M.C. Sanguinetti. (2013). Structural basis of ion permeation gating in Slo2.1 K+ channels. J Gen Physiol 142: 523-542. 24166878
Garneau, L., H. Klein, M.F. Lavoie, E. Brochiero, L. Parent, and R. Sauvé. (2014). Aromatic-aromatic interactions between residues in KCa3.1 pore helix and S5 transmembrane segment control the channel gating process. J Gen Physiol 143: 289-307. 24470490
Garrett, S. and J.J. Rosenthal. (2012). RNA editing underlies temperature adaptation in K+ channels from polar octopuses. Science 335: 848-851. 22223739
Garten, M., S. Aimon, P. Bassereau, and G.E. Toombes. (2015). Reconstitution of a Transmembrane Protein, the Voltage-gated Ion Channel, KvAP, into Giant Unilamellar Vesicles for Microscopy and Patch Clamp Studies. J Vis Exp. 25650630
Gaymard, F., G. Pilot, B. Lacombe, D. Bouchez, D. Bruneau, J. Boucherez, N. Michaux-Ferriere, J.B. Thibaud, and H. Sentenac. (1998). Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap. Cell 94: 647-655. 9741629
Gazzarrini, S., J.L. Van Etten, D. DiFrancesco, G. Thiel, and A. Moroni. (2002). Voltage-dependence of virus-encoded miniature K+ channel Kcv. J. Membrane Biol. 187: 15-25. 12029374
Gazzarrini, S., M. Kang, A. Abenavoli, G. Romani, C. Olivari, D. Gaslini, G. Ferrara, J.L. van Etten, M. Kreim, S.M. Kast, G. Thiel, and A. Moroni. (2009). Chlorella virus ATCV-1 encodes a functional potassium channel of 82 amino acids. Biochem. J. 420: 295-303. 19267691
Geiger D., Becker D., Vosloh D., Gambale F., Palme K., Rehers M., Anschuetz U., Dreyer I., Kudla J. and Hedrich R. (2009). Heteromeric AtKC1{middle dot}AKT1 channels in Arabidopsis roots facilitate growth under K+-limiting conditions. J Biol Chem. 284(32):21288-95. 19509299
Geng, Y. and K.L. Magleby. (2014). Single-channel kinetics of BK (Slo1) channels. Front Physiol 5: 532. 25653620
Gessner, G., Y.M. Cui, Y. Otani, T. Ohwada, M. Soom, T. Hoshi, and S.H. Heinemann. (2012). Molecular mechanism of pharmacological activation of BK channels. Proc. Natl. Acad. Sci. USA 109: 3552-3557. 22331907
Gilch, S., O. Meyer, and I. Schmidt. (2010). Electron paramagnetic studies of the copper and iron containing soluble ammonia monooxygenase from Nitrosomonas europaea. Biometals 23: 613-622. 20204476
Giordanetto, F., L. Knerr, and A. Wållberg. (2011). T-type calcium channels inhibitors: a patent review. Expert Opin Ther Pat 21: 85-101. 21087200
Glaaser, I.W., J.R. Bankston, H. Liu, M. Tateyama, and R.S. Kass. (2006). A carboxyl-terminal hydrophobic interface is critical to sodium channel function. Relevance to inherited disorders. J. Biol. Chem. 281: 24015-24023. 16798729
Glauner, K.S., L.M. Mannuzzu, C.S. Gandhi, and E.Y. Isacoff. (1999). Spectroscopic mapping of voltage sensor movement in the Shaker potassium channel. Nature 402: 813-817. 10617202
Gobert, A., G. Park, A. Amtmann, D. Sanders, and F.J. Maathuis. (2006). Arabidopsis thaliana cyclic nucleotide gated channel 3 forms a non-selective ion transporter involved in germination and cation transport. J Exp Bot 57: 791-800. 16449377
Gofman Y., Shats S., Attali B., Haliloglu T. and Ben-Tal N. (2012). How does KCNE1 regulate the Kv7.1 potassium channel? Model-structure, mutations, and dynamics of the Kv7.1-KCNE1 complex. Structure. 20(8):1343-52. 22771213
Gofman, Y., C. Schärfe, D.S. Marks, T. Haliloglu, and N. Ben-Tal. (2014). Structure, dynamics and implied gating mechanism of a human cyclic nucleotide-gated channel. PLoS Comput Biol 10: e1003976. 25474149
Gohar, O. (2006). Ion Channel Modulation by G-protein Coupled Receptors. Modulators. 21:2-9.
Gomez-Lagunas, F. (2010). Quinidine interaction with Shab K+ channels: pore block and irreversible collapse of the K+ conductance. J. Physiol. 588: 2691-2706. 20547671
Gomez-Ospina, N., F. Tsuruta, O. Barreto-Chang, L. Hu, and R. Dolmetsch. (2006). The C terminus of the L-type voltage-gated calcium channel Ca(V)1.2 encodes a transcription factor. Cell 127: 591-606. 17081980
Gong, Q., M.A. Jones, and Z. Zhou. (2006). Mechanisms of pharmacological rescue of trafficking-defective hERG mutant channels in human long QT syndrome. J. Biol. Chem. 281: 4069-4074. 16361248
Gonzalez W., Riedelsberger J., Morales-Navarro SE., Caballero J., Alzate-Morales JH., Gonzalez-Nilo FD. and Dreyer I. (2012). The pH sensor of the plant K+-uptake channel KAT1 is built from a sensory cloud rather than from single key amino acids. Biochem J. 442(1):57-63. 22070190
Gonzalez W., Valdebenito B., Caballero J., Riadi G., Riedelsberger J., Martinez G., Ramirez D., Zuniga L., Sepulveda FV., Dreyer I., Janta M. and Becker D. (2015). K(2)p channels in plants and animals. Pflugers Arch. 467(5):1091-104. 25369776
Gonzalez, C., G.F. Contreras, A. Peyser, P. Larsson, A. Neely, and R. Latorre. (2012). Voltage sensor of ion channels and enzymes. Biophys Rev 4: 1-15. 28509999
Goodchild, S.J., C. Lamy, V. Seutin, and N.V. Marrion. (2009). Inhibition of K(Ca)2.2 and K(Ca)2.3 channel currents by protonation of outer pore histidine residues. J Gen Physiol 134: 295-308. 19786583
Goral RO., Leipold E., Nematian-Ardestani E. and Heinemann SH. (2015). Heterologous expression of NaV1.9 chimeras in various cell systems. Pflugers Arch. 467(12):2423-35. 25916202
Grabe, M., H.C. Lai, M. Jain, Y. Nung Jan, and L. Yeh Jan. (2007). Structure prediction for the down state of a potassium channel voltage sensor. Nature 445: 550-553. 17187053
Grabner, M., R.T. Dirksen, N. Suda, and K.G. Beam. (1999). The II-III loop of the skeletal muscle dihydropyridine receptor is responsible for the bi-directional coupling with the ryanodine receptor. J. Biol. Chem. 274: 21913-21919. 10419512
Grahammer, F., R. Warth, J. Barhanin, M. Bleich, and M.J. Hug. (2001). The small conductance K+ channel, KCNQ1. Expression, function, and subunit composition in murine trachea. J. Biol. Chem. 276: 42268-42275. 11527966
Grefen, C., Z. Chen, A. Honsbein, N. Donald, A. Hills, and M.R. Blatt. (2010). A novel motif essential for SNARE interaction with the K+ channel KC1 and channel gating in Arabidopsis. Plant Cell 22: 3076-3092. 20884800
Griguoli, M., A. Maul, C. Nguyen, A. Giorgetti, P. Carloni, and E. Cherubini. (2010). Nicotine blocks the hyperpolarization-activated current Ih and severely impairs the oscillatory behavior of oriens-lacunosum moleculare interneurons. J. Neurosci. 30: 10773-10783. 20702707
Groome JR., Lehmann-Horn F., Fan C., Wolf M., Winston V., Merlini L. and Jurkat-Rott K. (2014). NaV1.4 mutations cause hypokalaemic periodic paralysis by disrupting IIIS4 movement during recovery. Brain. 137(Pt 4):998-1008. 24549961
Gulbins, E., N. Sassi, H. Grassmè, M. Zoratti, and I. Szabò. (2010). Role of Kv1.3 mitochondrial potassium channel in apoptotic signalling in lymphocytes. Biochim. Biophys. Acta. 1797: 1251-1259. 20114030
Gulbis, J.M., M. Zhou, S. Mann, and R. MacKinnon. (2000). Structure ofthe cytoplasmic β subunit-T1 assembly of voltage-dependent K+ channels. Science 289: 123-127. 10884227
Gulbis, J.M., S. Mann, and R. MacKinnon. (1999). Structure of a voltage-dependent K+ channel beta subunit. Cell 97: 943-952. 10399921
Guo, J., W. Zeng, and Y. Jiang. (2017). Tuning the ion selectivity of two-pore channels. Proc. Natl. Acad. Sci. USA. [Epub: Ahead of Print] 28096396
Guo, J., W. Zeng, Q. Chen, C. Lee, L. Chen, Y. Yang, C. Cang, D. Ren, and Y. Jiang. (2015). Structure of the voltage-gated two-pore channel TPC1 from Arabidopsis thaliana. Nature. [Epub: Ahead of Print] 26689363
Gurevitz, M. (2012). Mapping of scorpion toxin receptor sites at voltage-gated sodium channels. Toxicon 60: 502-511. 22694883
Haitin, Y. and B. Attali. (2008). The C-terminus of Kv7 channels: a multifunctional module. J. Physiol. 586: 1803-1810. 18218681
Hamamoto, S., J. Marui, K. Matsuoka, K. Higashi, K. Igarashi, T. Nakagawa, T. Kuroda, Y. Mori, Y. Murata, Y. Nakanishi, M. Maeshima, I. Yabe, and N. Uozumi. (2008). Characterization of a tobacco TPK-type K+ channel as a novel tonoplast K+ channel using yeast tonoplasts. J. Biol. Chem. 283: 1911-1920. 18029350
Hamid, J., J.B. Peloquin, A. Monteil, and G.W. Zamponi. (2006). Determinants of the differential gating properties of Cav3.1 and Cav3.3 T-type channels: a role of domain IV? Neuroscience 143: 717-728. 16996222
Hamilton, K.L., Syme, C.A., and Devor, D.C. (2003). Molecular localization of the inhibitory arachidonic acid binding site to the pore of hIK1. J. Biol. Chem. 278: 16690-16697. 12609997
Han, C., Y. Yang, R.H. Te Morsche, J.P. Drenth, J.M. Politei, S.G. Waxman, and S.D. Dib-Hajj. (2016). Familial gain-of-function Nav1.9 mutation in a painful channelopathy. J Neurol Neurosurg Psychiatry. [Epub: Ahead of Print] 27503742
Han, W., S. Nattel, T. Noguchi, and A. Shrier. (2006). C-terminal domain of Kv4.2 and associated KChIP2 interactions regulate functional expression and gating of Kv4.2. J. Biol. Chem. 281: 27134-27144. 16820361
Hanlon, M.R. and B.A. Wallace. (2002). Structure and function of voltage-dependent ion channel regulatory β subunits. Biochemistry 41: 2886-2894. 11863426
Hantouche, C., B. Williamson, W.C. Valinsky, J. Solomon, A. Shrier, and J.C. Young. (2016). Bag1 Promotes TRC8-Dependent Degradation of Misfolded hERG Potassium Channels. J. Biol. Chem. [Epub: Ahead of Print] 27998983
Hashimoto, K., M. Saito, H. Matsuoka, K. Iida, and H. Iida. (2004). Functional analysis of a rice putative voltage-dependent Ca2+ channel, OsTPC1, expressed in yeast cells lacking its homologous gene CCH1. Plant Cell Physiol. 45: 496-500. 15111725
He, C., S. Altshuler-Keylin, D. Daniel, N.D. L''Etoile, and D. O''Halloran. (2016). The cyclic nucleotide gated channel subunit CNG-1 instructs behavioral outputs in Caenorhabditis elegans by coincidence detection of nutritional status and olfactory input. Neurosci Lett 632: 71-78. [Epub: Ahead of Print] 27561605
Hellmer, J. and C. Zeilinger. (2003). MjK1, a K+ channel from M. jannaschii, mediates K+ uptake and K+ sensitivity in E. coli. FEBS Lett. 547: 165-169. 12860407
Hemara-Wahanui A., S. Berjukow, C.I. Hope, P.K. Dearden, S.B. Wu, J. Wilson-Wheeler, D.M. Sharp, P. Lundon-Treweek, G.M. Clover, J.C. Hoda, J. Striessnig, R. Marksteiner, S. Hering, M.A. Maw. (2005). A CACNA1F mutation identified in an X-linked retinal disorder shifts the voltage dependence of Cav1.4 channel activation. Proc. Natl. Acad. Sci. U.S.A. 102: 7553-7558. 15897456
Henrion, U., S. Zumhagen, K. Steinke, N. Strutz-Seebohm, B. Stallmeyer, F. Lang, E. Schulze-Bahr, and G. Seebohm. (2012). Overlapping Cardiac Phenotype Associated with a Familial Mutation in the Voltage Sensor of the KCNQ1 Channel. Cell Physiol Biochem 29: 809-818. 22613981
Hertel, B., S. Tayefeh, T. Kloss, J. Hewing, M. Gebhardt, D. Baumeister, A. Moroni, G. Thiel, and S.M. Kast. (2010). Salt bridges in the miniature viral channel Kcv are important for function. Eur Biophys. J. 39: 1057-1068. 19390850
Hille, B. (1992). Chapter 9: Structure of channel proteins; Chapter 20: Evolution and diversity. In: Ionic Channels of Excitable Membranes, 2nd Ed., Sinaur Assoc. Inc., Pubs., Sunderland, Massachusetts.
Hirano, M., Y. Onishi, T. Yanagida, and T. Ide. (2011). Role of the KcsA channel cytoplasmic domain in pH-dependent gating. Biophys. J. 101: 2157-2162. 22067153
Hite, R.K., P. Yuan, Z. Li, Y. Hsuing, T. Walz, and R. MacKinnon. (2015). Cryo-electron microscopy structure of the Slo2.2 Na+-activated K+ channel. Nature 527: 198-203. 26436452
Hoffgaard F., Kast SM., Moroni A., Thiel G. and Hamacher K. (2015). Tectonics of a K(+) channel: The importance of the N-terminus for channel gating. Biochim Biophys Acta. 1848(12):3197-204. 26403836
Holland, K.D., J.A. Kearney, T.A. Glauser, G. Buck, M. Keddache, J.R. Blankston, I.W. Glaaser, R.S. Kass, and M.H. Meisler. (2008). Mutation of sodium channel SCN3A in a patient with cryptogenic pediatric partial epilepsy. Neurosci Lett 433(1): 65-70. 18242854
Honsbein A., Sokolovski S., Grefen C., Campanoni P., Pratelli R., Paneque M., Chen Z., Johansson I. and Blatt MR. (2009). A tripartite SNARE-K+ channel complex mediates in channel-dependent K+ nutrition in Arabidopsis. Plant Cell. 21(9):2859-77. 19794113
Hooper, R., D. Churamani, E. Brailoiu, C.W. Taylor, and S. Patel. (2011). Membrane topology of NAADP-sensitive two-pore channels and their regulation by N-linked glycosylation. J. Biol. Chem. 286: 9141-9149. 21173144
Horn, R. (2000). Conversation between voltage sensors and gates of ion channels. Biochemistry 39: 15653-15658. 11123889
Hou, S., R. Xu, S.H. Heinemann, and T. Hoshi. (2008). The RCK1 high-affinity Ca2+ sensor confers carbon monoxide sensitivity to Slo1 BK channels. Proc. Natl. Acad. Sci. USA 105: 4039-4043. 18316727
Huang, D.T., N. Chi, S.C. Chen, T.Y. Lee, and K. Hsu. (2011). Background K(2P) channels KCNK3/9/15 limit the budding of cell membrane-derived vesicles. Cell Biochem Biophys 61: 585-594. 21761257
Hug, L.A., B.J. Baker, K. Anantharaman, C.T. Brown, A.J. Probst, C.J. Castelle, C.N. Butterfield, A.W. Hernsdorf, Y. Amano, K. Ise, Y. Suzuki, N. Dudek, D.A. Relman, K.M. Finstad, R. Amundson, B.C. Thomas, and J.F. Banfield. (2016). A new view of the tree of life. Nat Microbiol 1: 16048. 27572647
Humphries, J., L. Xiong, J. Liu, A. Prindle, F. Yuan, H.A. Arjes, L. Tsimring, and G.M. Süel. (2017). Species-Independent Attraction to Biofilms through Electrical Signaling. Cell 168: 200-209.e12. 28086091
Ikematsu, N., M.L. Dallas, F.A. Ross, R.W. Lewis, J.N. Rafferty, J.A. David, R. Suman, C. Peers, D.G. Hardie, and A.M. Evans. (2011). Phosphorylation of the voltage-gated potassium channel Kv2.1 by AMP-activated protein kinase regulates membrane excitability. Proc. Natl. Acad. Sci. USA 108: 18132-18137. 22006306
Ikrar, T., H. Hanawa, H. Watanabe, S. Okada, Y. Aizawa, M.M. Ramadan, S. Komura, F. Yamashita, M. Chinushi, and Y. Aizawa. (2008). A double-point mutation in the selectivity filter site of the KCNQ1 potassium channel results in a severe phenotype, LQT1, of long QT syndrome. J Cardiovasc Electrophysiol 19: 541-549. 18266681
Ito, M., H. Xu, A.A. Guffanti, Y. Wei, L. Zvi, D.E. Clapham, and T.A. Krulwich. (2004). The voltage-gated Na+ channel NavBP has a role in motility, chemotaxis, and pH homeostasis of the alkaliphilic Bacillus. Proc. Natl. Acad. Sci. USA 101: 10566-10571. 15243157
Iwamoto, M., H. Shimizu, F. Inoue, T. Konno, Y.C. Sasaki, and S. Oiki. (2006). Surface structure and its dynamic rearrangements of the KcsA potassium channel upon gating and tetrabutylammonium blocking. J. Biol. Chem. 281: 28379-28386. 16835240
Jalkanen, R., N.T. Bech-Hansen, R. Tobias, E.M. Sankila, M. Mäntyjärvi, H. Forsius, A. de la Chapelle, and T. Alitalo. (2007). A novel CACNA1F gene mutation causes Aland Island eye disease. Invest Ophthalmol Vis Sci 48: 2498-2502. 17525176
James, Z.M., A.J. Borst, Y. Haitin, B. Frenz, F. DiMaio, W.N. Zagotta, and D. Veesler. (2017). CryoEM structure of a prokaryotic cyclic nucleotide-gated ion channel. Proc. Natl. Acad. Sci. USA 114: 4430-4435. 28396445
Jan, L.Y. and Y.N. Jan. (1997). Cloned potassium channels from eukaryotes and prokaryotes. Annu. Rev. Neurosci. 20: 91-123. 9056709
Jaślan, D., T.D. Mueller, D. Becker, J. Schultz, T. Cuin, I. Marten, I. Dreyer, G. Schönknecht, and R. Hedrich. (2016). Gating of the two-pore cation channel AtTPC1 in the plant vacuole is based on a single voltage-sensing domain. Plant Biol (Stuttg). [Epub: Ahead of Print] 27270880
Jegla, T. and L. Salkoff. (1995). A multigene family of novel K+ channels from Paramecium tetraurelia. Receptors Channels 3: 51-60. 8589993
Jensen H.S., K. Callo, T. Jespersen, B.S. Jensen, S.P. Olesen. (2005). The KCNQ5 potassium channel from mouse: a broadly expressed M-current like potassium channel modulated by zinc, pH, and volume changes. Brain Res. Mol. Brain Res. 139: 52-62. 15963599
Jensen, M.&.#.2.1.6.;., V. Jogini, D.W. Borhani, A.E. Leffler, R.O. Dror, and D.E. Shaw. (2012). Mechanism of voltage gating in potassium channels. Science 336: 229-233. 22499946
Jiang D., Du Y., Nomura Y., Wang X., Wu Y., Zhorov BS. and Dong K. (2015). Mutations in the transmembrane helix S6 of domain IV confer cockroach sodium channel resistance to sodium channel blocker insecticides and local anesthetics. Insect Biochem Mol Biol. 66:88-95. 26407935
Jiang, Y., A. Lee, J. Chen, M. Cadene, B.T. Chait, and R. MacKinnon. (2002). Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417: 515-522. 12037559
Jiang, Y., A. Lee, J. Chen, V. Ruta, M. Cadene, B.T. Chait, and R. MacKinnon. (2003a). X-ray structure of a voltage-dependent K+ channel. Nature 423: 33-41. 12721618
Jiang, Y., V. Ruta, J. Chen, A. Lee, and R. MacKinnon. (2003b). The principle of gating charge movement in a voltage-dependent K+ channel. Nature 423: 42-48. 12721619
Jones, J.M., L. Dionne, J. Dell''Orco, R. Parent, J.N. Krueger, X. Cheng, S.D. Dib-Hajj, R.K. Bunton-Stasyshyn, L.M. Sharkey, J.J. Dowling, G.G. Murphy, V.G. Shakkottai, P. Shrager, and M.H. Meisler. (2016). Single amino acid deletion in transmembrane segment D4S6 of sodium channel Scn8a (Nav1.6) in a mouse mutant with a chronic movement disorder. Neurobiol Dis 89: 36-45. 26807988
Jospin, M., S. Watanabe, D. Joshi, S. Young, K. Hamming, C. Thacker, T.P. Snutch, E.M. Jorgensen, and K. Schuske. (2007). UNC-80 and the NCA ion channels contribute to endocytosis defects in synaptojanin mutants. Curr. Biol. 17: 1595-1600. 17825559
Kanellopoulos, A.H. and A. Matsuyama. (2016). Voltage-gated sodium channels and pain-related disorders. Clin Sci (Lond) 130: 2257-2265. 27815510
Kang, C., C.G. Vanoye, R.C. Welch, W.D. Van Horn, and C.R. Sanders. (2010). Functional delivery of a membrane protein into oocyte membranes using bicelles. Biochemistry 49: 653-655. 20044833
Kanzaki, M., M. Nagasawa, I. Kojima, C. Sato, K. Naruse, M. Sokabe, and H. Iida. (1999). Molecular identification of a eukaryotic, stretch-activated nonselective cation channel. Science 285: 882-886. 10436155
Kapplinger JD., Giudicessi JR., Ye D., Tester DJ., Callis TE., Valdivia CR., Makielski JC., Wilde AA. and Ackerman MJ. (2015). Enhanced Classification of Brugada Syndrome-Associated and Long-QT Syndrome-Associated Genetic Variants in the SCN5A-Encoded Nav1.5 Cardiac Sodium Channel. Circ Cardiovasc Genet. 8(4):582-95. 25904541
Kapplinger, J.D., D.J. Tester, M. Alders, B. Benito, M. Berthet, J. Brugada, P. Brugada, V. Fressart, A. Guerchicoff, C. Harris-Kerr, S. Kamakura, F. Kyndt, T.T. Koopmann, Y. Miyamoto, R. Pfeiffer, G.D. Pollevick, V. Probst, S. Zumhagen, M. Vatta, J.A. Towbin, W. Shimizu, E. Schulze-Bahr, C. Antzelevitch, B.A. Salisbury, P. Guicheney, A.A. Wilde, R. Brugada, J.J. Schott, and M.J. Ackerman. (2010). An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm 7: 33-46. 20129283
Karelina, T.V., Y.D. Stepanenko, P.A. Abushik, D.A. Sibarov, and S.M. Antonov. (2017). Downregulation of Purkinje Cell Activity by Modulators of Small Conductance Calcium-Activated Potassium Channels In Rat Cerebellum. Acta Naturae 8: 91-99. 28050270
Kaupp, U.B. and R. Seifert. (2001). Molecular diversity of pacemaker ion channels. Annu. Rev. Physiol. 63: 235-257. 11181956
Kihira, Y., T.O. Hermanstyne, and H. Misonou. (2010). Formation of heteromeric Kv2 channels in mammalian brain neurons. J. Biol. Chem. 285: 15048-15055. 20202934
Kim, H., J.T. Pierce-Shimomura, H.J. Oh, B.E. Johnson, M.B. Goodman, and S.L. McIntire. (2009). The dystrophin complex controls bk channel localization and muscle activity in Caenorhabditis elegans. PLoS Genet 5: e1000780. 20019812
Kim, H.J., P. Lv, C.R. Sihn, and E.N. Yamoah. (2011). Cellular and molecular mechanisms of autosomal dominant form of progressive hearing loss, DFNA2. J. Biol. Chem. 286: 1517-1527. 20966080
Kim, T., S. Kim, H.M. Yun, K.C. Chung, Y.S. Han, H.S. Shin, and H. Rhim. (2009). Modulation of Ca(v)3.1 T-type Ca2+ channels by the ran binding protein RanBPM. Biochem. Biophys. Res. Commun. 378: 15-20. 18801335
Kintzer, A.F. and R.M. Stroud. (2016). Structure, inhibition and regulation of two-pore channel TPC1 from Arabidopsis thaliana. Nature 531: 258-262. 26961658
Kleopa, K.A. (2011). Autoimmune channelopathies of the nervous system. Curr Neuropharmacol 9: 458-467. 22379460
Koishi, R., H. Xu, D. Ren, B. Navarro, B.W. Spiller, Q. Shi, and D.E. Clapham. (2004). A superfamily of voltage-gated sodium channels in bacteria. J. Biol. Chem. 279: 9532-9538. 14665618
Köpfer, D.A., C. Song, T. Gruene, G.M. Sheldrick, U. Zachariae, and B.L. de Groot. (2014). Ion permeation in K⁺ channels occurs by direct Coulomb knock-on. Science 346: 352-355. 25324389
Kourrich, S., T. Hayashi, J.Y. Chuang, S.Y. Tsai, T.P. Su, and A. Bonci. (2013). Dynamic interaction between sigma-1 receptor and Kv1.2 shapes neuronal and behavioral responses to cocaine. Cell 152: 236-247. 23332758
Kowal, J., M. Chami, P. Baumgartner, M. Arheit, P.L. Chiu, M. Rangl, S. Scheuring, G.F. Schröder, C.M. Nimigean, and H. Stahlberg. (2014). Ligand-induced structural changes in the cyclic nucleotide-modulated potassium channel MloK1. Nat Commun 5: 3106. 24469021
Kratochvil, H.T., J.K. Carr, K. Matulef, A.W. Annen, H. Li, M. Maj, J. Ostmeyer, A.L. Serrano, H. Raghuraman, S.D. Moran, J.L. Skinner, E. Perozo, B. Roux, F.I. Valiyaveetil, and M.T. Zanni. (2016). Instantaneous ion configurations in the K+ ion channel selectivity filter revealed by 2D IR spectroscopy. Science 353: 1040-1044. 27701114
Krishnamoorthy-Natarajan, G. and M. Koide. (2016). BK Channels in the Vascular System. Int Rev Neurobiol 128: 401-438. 27238270
Kuang Q., Purhonen P., Jegerschold C. and Hebert H. (2014). The projection structure of Kch, a putative potassium channel in Escherichia coli, by electron crystallography. Biochim Biophys Acta. 1838(1 Pt B):237-43. 24055821
Kubota, T., A.M. Correa, and F. Bezanilla. (2017). Mechanism of functional interaction between potassium channel Kv1.3 and sodium channel NavBeta1 subunit. Sci Rep 7: 45310. 28349975
Kugler, A., B. Köhler, K. Palme, P. Wolff, and P. Dietrich. (2009). Salt-dependent regulation of a CNG channel subfamily in Arabidopsis. BMC Plant Biol 9: 140. 19943938
Kullmann DM. and Waxman SG. (2010). Neurological channelopathies: new insights into disease mechanisms and ion channel function. J Physiol. 588(Pt 11):1823-7. 20375141
Kumar, P., D. Kumar, S.K. Jha, N.K. Jha, and R.K. Ambasta. (2016). Ion Channels in Neurological Disorders. Adv Protein Chem Struct Biol 103: 97-136. 26920688
Kunkel, M.T., D.B. Johnstone, J.H. Thomas, and L. Salkoff. (2000). Mutants of a temperature-sensitive two-P domain potassium channel. J. Neurosci. 20: 7517-7524. 11027209
Kuo, M.M., Y. Saimi, C. Kung, and S. Choe. (2007). Patch clamp and phenotypic analyses of a prokaryotic cyclic nucleotide-gated K+ channel using Escherichia coli as a host. J. Biol. Chem. 282: 24294-24301. 17588940
Kuo, M.M.-C., Y. Saimi, and C. Kung. (2003). Gain-of-function mutations indicate that Escherichia coli Kch forms a functional K+ conduit in vivo. EMBO J. 22: 4049-4058. 12912904
Kurusu, T., T. Yagala, A. Miyao, H. Hirochika, and K. Kuchitsu. (2005). Identification of a putative voltage-gated Ca2+ channel as a key regulator of elicitor-induced hypersensitive cell death and mitogen-activated protein kinase activation in rice. Plant J. 42: 798-809. 15941394
Kurusu, T., Y. Sakurai, A. Miyao, H. Hirochika, and K. Kuchitsu. (2004). Identification of a putative voltage-gated Ca2+ -permeable channel (OsTPC1) involved in Ca2+ influx and regulation of growth and development in rice. Plant Cell Physiol. 45: 693-702. 15215504
Kuum, M., V. Veksler, J. Liiv, R. Ventura-Clapier, and A. Kaasik. (2012). Endoplasmic reticulum potassium-hydrogen exchanger and small conductance calcium-activated potassium channel activities are essential for ER calcium uptake in neurons and cardiomyocytes. J Cell Sci 125: 625-633. 22331352
Labro, A.J., I.R. Boulet, F.S. Choveau, E. Mayeur, T. Bruyns, G. Loussouarn, A.L. Raes, and D.J. Snyders. (2011). The S4-S5 linker of KCNQ1 channels forms a structural scaffold with the S6 segment controlling gate closure. J. Biol. Chem. 286: 717-725. 21059661
Lampert, A., S.D. Dib-Hajj, L. Tyrrell, and S.G. Waxman. (2006). Size matters: Erythromelalgia mutation S241T in Nav1.7 alters channel gating. J. Biol. Chem. 281: 36029-36035. 17008310
Latorre, R., K. Castillo, W. Carrasquel-Ursulaez, R.V. Sepulveda, F. Gonzalez-Nilo, C. Gonzalez, and O. Alvarez. (2017). Molecular Determinants of BK Channel Functional Diversity and Functioning. Physiol. Rev. 97: 39-87. 27807200
Latz, A., D. Becker, M. Hekman, T. Müller, D. Beyhl, I. Marten, C. Eing, A. Fischer, M. Dunkel, A. Bertl, U.R. Rapp, and R. Hedrich. (2007). TPK1, a Ca2+-regulated Arabidopsis vacuole two-pore K+ channel is activated by 14-3-3 proteins. Plant J. 52: 449-459. 17764516
Lazniewska, J. and N. Weiss. (2017). Glycosylation of voltage-gated calcium channels in health and disease. Biochim. Biophys. Acta. 1859: 662-668. [Epub: Ahead of Print] 28109749
Lebaudy, A., F. Pascaud, A.A. Véry, C. Alcon, I. Dreyer, J.B. Thibaud, and B. Lacombe. (2010). Preferential KAT1-KAT2 heteromerization determines inward K+ current properties in Arabidopsis guard cells. J. Biol. Chem. 285: 6265-6274. 20040603
Lee H., Lin MC., Kornblum HI., Papazian DM. and Nelson SF. (2014). Exome sequencing identifies de novo gain of function missense mutation in KCND2 in identical twins with autism and seizures that slows potassium channel inactivation. Hum Mol Genet. 23(13):3481-9. 24501278
Lee, J.H., B.H. Lee, S.H. Choi, I.S. Yoon, T.J. Shin, M.K. Pyo, S.M. Lee, H.C. Kim, and S.Y. Nah. (2008). Involvement of batrachotoxin binding sites in ginsenoside-mediated voltage-gated Na+ channel regulation. Brain Res 1203: 61-67. 18321475
Lee, U.S., J. Shi, and J. Cui. (2010). Modulation of BK channel gating by the ß2 subunit involves both membrane-spanning and cytoplasmic domains of Slo1. J. Neurosci. 30: 16170-16179. 21123563
Leipold, E., F. Ullrich, M. Thiele, A.A. Tietze, H. Terlau, D. Imhof, and S.H. Heinemann. (2016). Subtype-specific block of voltage-gated K+ channels by μ-conopeptides. Biochem. Biophys. Res. Commun. [Epub: Ahead of Print] 27916464
Leng Q., R.W. Mercier, B.G. Hua, H. Fromm, G.A. Berkowitz. (2002). Electrophysiological analysis of cloned cyclic nucleotide-gated ion channels. Plant Physiol. 128: 400-410. 11842144
Li, H., X. Ding, H. Guan, and C. Xiong. (2009). Inhibition of human sperm function and mouse fertilization in vitro by an antibody against cation channel of sperm 1: the contraceptive potential of its transmembrane domains and pore region. Fertil Steril 92: 1141-1146. 18976756
Li, L., K. Liu, Y. Hu, D. Li, and S. Luan. (2008). Single mutations convert an outward K+ channel into an inward K+ channel. Proc. Natl. Acad. Sci. USA 105: 2871-2876. 18287042
Li, M., X. Zhou, S. Wang, I. Michailidis, Y. Gong, D. Su, H. Li, X. Li, and J. Yang. (2017). Structure of a eukaryotic cyclic-nucleotide-gated channel. Nature. [Epub: Ahead of Print] 28099415
Li, P., H. Liu, C. Lai, P. Sun, W. Zeng, F. Wu, L. Zhang, S. Wang, C. Tian, and J. Ding. (2014). Differential Modulations of KCNQ1 by Auxiliary Proteins KCNE1 and KCNE2. Sci Rep 4: 4973. 24827085
Li, Q., S. Wanderling, P. Sompornpisut, and E. Perozo. (2014). Structural basis of lipid-driven conformational transitions in the KvAP voltage-sensing domain. Nat Struct Mol Biol 21: 160-166. 24413055
Li, Q., X. Guan, K. Yen, J. Zhang, and J. Yan. (2016). The single transmembrane segment determines the modulatory function of the BK channel auxiliary γ subunit. J Gen Physiol 147: 337-351. 27022192
Li, W. and R.W. Aldrich. (2011). Electrostatic influences of charged inner pore residues on the conductance and gating of small conductance Ca2+ activated K+ channels. Proc. Natl. Acad. Sci. USA 108: 5946-5953. 21422289
Lim, H.H., B.J. Park, H.S. Choi, C.S. Park, S.H. Eom, and J. Ahnn. (1999). Identification and characterization of a putative C. elegans potassium channel gene (Ce-slo-2) distantly related to Ca2+-activated K+ channels. Gene 240: 35-43. 10564810
Ling, K.Y., B. Vaillant, W.J. Haynes, Y. Saimi, and C. Kung. (1998). A comparison of internal eliminated sequences in the genes that encode two K+-channel isoforms in Paramecium tetraurelia. J Eukaryot Microbiol 45: 459-465. 9703683
Liu J., J. Xia, K.H. Cho, D.E. Clapham, D. Ren. (2007). CatSperβ, a novel transmembrane protein in the CatSper channel complex. J. Biol. Chem. 282: 18945-18952. 17478420
Liu, J., A. Prindle, J. Humphries, M. Gabalda-Sagarra, M. Asally, D.Y. Lee, S. Ly, J. Garcia-Ojalvo, and G.M. Süel. (2015). Metabolic co-dependence gives rise to collective oscillations within biofilms. Nature 523: 550-554. 26200335
Liu, M. and A. Gelli. (2008). Elongation factor 3, EF3, associates with the calcium channel Cch1 and targets Cch1 to the plasma membrane in Cryptococcus neoformans. Eukaryot. Cell. 7: 1118-1126. 18503003
Liu, P., B. Chen, and Z.W. Wang. (2014). SLO-2 potassium channel is an important regulator of neurotransmitter release in Caenorhabditis elegans. Nat Commun 5: 5155. 25300429
Liu, P., Q. Ge, B. Chen, L. Salkoff, M.I. Kotlikoff, and Z.W. Wang. (2011). Genetic dissection of ion currents underlying all-or-none action potentials in C. elegans body-wall muscle cells. J. Physiol. 589: 101-117. 21059759
Liu, X., Y. Wu, and Y. Zhou. (2010). Intracellular linkers are involved in Mg2+-dependent modulation of the Eag potassium channel. Channels (Austin) 4: 311-318. 20855938
Locke E.G., M. Bonilla, L. Liang, Y. Takita, K.W. Cunningham. (2000). A homolog of voltage-gated Ca2+ channels stimulated by depletion of secretory Ca2+ in yeast. Mol. Cell Biol. 20: 6686-6694 10958666
Lolicato, M., P.M. Riegelhaupt, C. Arrigoni, K.A. Clark, and D.L. Minor, Jr. (2014). Transmembrane helix straightening and buckling underlies activation of mechanosensitive and thermosensitive K(2P) channels. Neuron. 84: 1198-1212. 25500157
Long, S.B., X. Tao, E.B. Campbell, and R. MacKinnon. (2007). Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450: 376-382. 18004376
Lopez-Cayuqueo KI., Pena-Munzenmayer G., Niemeyer MI., Sepulveda FV. and Cid LP. (2015). TASK-2 K(2)p K(+) channel: thoughts about gating and its fitness to physiological function. Pflugers Arch. 467(5):1043-53. 25315981
Lorincz, A. and Z. Nusser. (2010). Molecular identity of dendritic voltage-gated sodium channels. Science 328: 906-909. 20466935
Lörinczi, &.#.2.0.1.;., J.C. Gómez-Posada, P. de la Peña, A.P. Tomczak, J. Fernández-Trillo, U. Leipscher, W. Stühmer, F. Barros, and L.A. Pardo. (2015). Voltage-dependent gating of KCNH potassium channels lacking a covalent link between voltage-sensing and pore domains. Nat Commun 6: 6672. 25818916
Lowe, J.S., O. Palygin, N. Bhasin, T.J. Hund, P.A. Boyden, E. Shibata, M.E. Anderson, and P.J. Mohler. (2008). Voltage-gated Nav channel targeting in the heart requires an ankyrin-G dependent cellular pathway. J. Cell. Biol. 180: 173-186. 18180363
Lu, B., Y. Su, S. Das, J. Liu, J. Xia, and D. Ren. (2007). The neuronal channel NALCN contributes resting sodium permeability and is required for normal respiratory rhythm. Cell 129: 371-383. 17448995
Lu, S., S. Ma, Y. Wang, T. Huang, Z. Zhu, and G. Zhao. (2017). Mus musculus-microRNA-449a ameliorates neuropathic pain by decreasing the level of KCNMA1 and TRPA1, and increasing the level of TPTE. Mol Med Rep. [Epub: Ahead of Print] 28498403
Lundberg, M.E., E.C. Becker, and S. Choe. (2013). MstX and a putative potassium channel facilitate biofilm formation in Bacillus subtilis. PLoS One 8: e60993. 23737939
Lyashchenko, A.K., and G.R. Tibbs. (2008). Ion binding in the open HCN pacemaker channel pore: fast mechanisms to shape "slow" channels. J. Gen. Physiol. 131: 227-243. 18270171
Lyashchenko, A.K., K.J. Redd, P.A. Goldstein, and G.R. Tibbs. (2014). cAMP control of HCN2 channel Mg2+ block reveals loose coupling between the cyclic nucleotide-gating ring and the pore. PLoS One 9: e101236. 24983358
Männikkö, R., F. Elinder, and H.P. Larsson. (2002). Voltage-sensing mechanism is conserved among ion channels gated by opposite voltages. Nature 419: 837-841. 12397358
Ma, Y., R. Sugiura, A. Koike, H. Ebina, S.O. Sio, and T. Kuno. (2011). Transient receptor potential (TRP) and Cch1-Yam8 channels play key roles in the regulation of cytoplasmic Ca2+ in fission yeast. PLoS One 6: e22421. 21811607
MacKinnon, R. (1995). Pore loops: an emerging theme in ion channel structure. Neuron 14: 889-892. 7538310
Maingret, F., A.J. Patel, F. Lesage, M. Lazdunski, and E. Honoré. (1999). Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J. Biol. Chem. 274: 26691-26696. 10480871
Maity, S., M. Mazzolini, M. Arcangeletti, A. Valbuena, P. Fabris, M. Lazzarino, and V. Torre. (2015). Conformational rearrangements in the transmembrane domain of CNGA1 channels revealed by single-molecule force spectroscopy. Nat Commun 6: 7093. 25963832
Maljevic, S., S. Vejzovic, M.K. Bernhard, A. Bertsche, S. Weise, M. Döcker, H. Lerche, J.R. Lemke, A. Merkenschlager, and S. Syrbe. (2016). Novel KCNQ3 Mutation in a Large Family with Benign Familial Neonatal Epilepsy: A Rare Cause of Neonatal Seizures. Mol Syndromol 7: 189-196. 27781029
Mallmann, R.T., T. Wilmes, L. Lichvarova, A. Bührer, B. Lohmüller, J. Castonguay, L. Lacinova, and N. Klugbauer. (2013). Tetraspanin-13 modulates voltage-gated CaV2.2 Ca2+ channels. Sci Rep 3: 1777. 23648579
Marcel D., Muller T., Hedrich R. and Geiger D. (2010). K+ transport characteristics of the plasma membrane tandem-pore channel TPK4 and pore chimeras with its vacuolar homologs. FEBS Lett. 584(11):2433-9. 20412800
Marchesi A., Mazzolini M. and Torre V. (2012). A ring of threonines in the inner vestibule of the pore of CNGA1 channels constitutes a binding site for permeating ions. J Physiol. 590(Pt 20):5075-90. 22869010
Marchesi, A., M. Arcangeletti, M. Mazzolini, and V. Torre. (2015). Proton transfer unlocks inactivation in cyclic nucleotide-gated A1 channels. J. Physiol. 593: 857-870. 25480799
Mari, S.A., J. Pessoa, S. Altieri, U. Hensen, L. Thomas, J.H. Morais-Cabral, and D.J. Müller. (2011). Gating of the MlotiK1 potassium channel involves large rearrangements of the cyclic nucleotide-binding domains. Proc. Natl. Acad. Sci. USA 108: 20802-20807. 22135457
Marino, J., N. Bordag, S. Keller, and O. Zerbe. (2015). Mistic''s membrane association and its assistance in overexpression of a human GPCR are independent processes. Protein. Sci. 24: 38-48. 25297828
Martin, D.C., H. Kim, N.A. Mackin, L. Maldonado-Báez, C.C. Evangelista, Jr, V.G. Beaudry, D.D. Dudgeon, D.Q. Naiman, S.E. Erdman, and K.W. Cunningham. (2011). New regulators of a high affinity Ca2+ influx system revealed through a genome-wide screen in yeast. J. Biol. Chem. 286: 10744-10754. 21252230
Mashanov, G.I., M. Nobles, S.C. Harmer, J.E. Molloy, and A. Tinker. (2010). Direct observation of individual KCNQ1 potassium channels reveals their distinctive diffusive behavior. J. Biol. Chem. 285: 3664-3675. 19940153
Mazzone, A., P.R. Strege, D.J. Tester, C.E. Bernard, G. Faulkner, R. De Giorgio, J.C. Makielski, V. Stanghellini, S.J. Gibbons, M.J. Ackerman, and G. Farrugia. (2008). A mutation in telethonin alters nav1.5 function. J. Biol. Chem. 283: 16537-16544. 18408010
McBride CM., Smith AM., Smith JL., Reloj AR., Velasco EJ., Powell J., Elayi CS., Bartos DC., Burgess DE. and Delisle BP. (2013). Mechanistic basis for type 2 long QT syndrome caused by KCNH2 mutations that disrupt conserved arginine residues in the voltage sensor. J Membr Biol. 246(5):355-64. 23546015
McCoy JG., Rusinova R., Kim DM., Kowal J., Banerjee S., Jaramillo Cartagena A., Thompson AN., Kolmakova-Partensky L., Stahlberg H., Andersen OS. and Nimigean CM. (2014). A KcsA/MloK1 chimeric ion channel has lipid-dependent ligand-binding energetics. J Biol Chem. 289(14):9535-46. 24515111
McCusker, E.C., C. Bagnéris, C.E. Naylor, A.R. Cole, N. D'Avanzo, C.G. Nichols, and B.A. Wallace. (2012). Structure of a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing. Nat Commun 3: 1102. 23033078
McCusker, E.C., N. D'Avanzo, C.G. Nichols, and B.A. Wallace. (2011). Simplified bacterial "pore" channel provides insight into the assembly, stability, and structure of sodium channels. J. Biol. Chem. 286: 16386-16391. 21454659
McNair, W.P., G. Sinagra, M.R. Taylor, A. Di Lenarda, D.A. Ferguson, E.E. Salcedo, D. Slavov, X. Zhu, J.H. Caldwell, L. Mestroni, and. (2011). SCN5A mutations associate with arrhythmic dilated cardiomyopathy and commonly localize to the voltage-sensing mechanism. J Am Coll Cardiol 57: 2160-2168. 21596231
Medovoy, D., E. Perozo, and B. Roux. (2016). Multi-ion free energy landscapes underscore the microscopic mechanism of ion selectivity in the KcsA channel. Biochim. Biophys. Acta. [Epub: Ahead of Print] 26896693
Mezghrani, A., A. Monteil, K. Watschinger, M.J. Sinnegger-Brauns, C. Barrère, E. Bourinet, J. Nargeot, J. Striessnig, and P. Lory. (2008). A destructive interaction mechanism accounts for dominant-negative effects of misfolded mutants of voltage-gated calcium channels. J. Neurosci. 28: 4501-4511. 18434528
Miceli, F., M.V. Soldovieri, P. Ambrosino, M. De Maria, L. Manocchio, A. Medoro, and M. Taglialatela. (2015). Molecular pathophysiology and pharmacology of the voltage-sensing module of neuronal ion channels. Front Cell Neurosci 9: 259. 26236192
Michalakis, S., J. Reisert, H. Geiger, C. Wetzel, X. Zong, J. Bradley, M. Spehr, S. Hüttl, A. Gerstner, A. Pfeifer, H. Hatt, K.W. Yau, and M. Biel. (2006). Loss of CNGB1 protein leads to olfactory dysfunction and subciliary cyclic nucleotide-gated channel trapping. J. Biol. Chem. 281: 35156-35166. 16980309
Miller, A.N. and S.B. Long. (2012). Crystal structure of the human two-pore domain potassium channel K2P1. Science 335: 432-436. 22282804
Miller, W.C., A.J. Miles, and B.A. Wallace. (2016). Structure of the C-terminal domain of the prokaryotic sodium channel orthologue NsvBa. Eur Biophys. J. [Epub: Ahead of Print] 27106836
Miloshevsky, G.V., and P.C. Jordan. (2007). Open-state conformation of the KcsA K+ channel: Monte Carlo normal mode following simulations. Structure 15: 1654-1662. 18073114
Minor, D.L., Jr and F. Findeisen. (2010). Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation. Channels (Austin) 4: 459-474. 21139419
Mio, K., M. Mio, F. Arisaka, M. Sato, and C. Sato. (2010). The C-terminal coiled-coil of the bacterial voltage-gated sodium channel NaChBac is not essential for tetramer formation, but stabilizes subunit-to-subunit interactions. Prog Biophys Mol Biol 103: 111-121. 20678983
Mio, K., T. Ogura, and C. Sato. (2008). Structure of six-transmembrane cation channels revealed by single-particle analysis from electron microscopic images. J Synchrotron Radiat 15: 211-214. 18421141
Mishima, E., Y. Sato, K. Nanatani, N. Hoshi, J.K. Lee, N. Schiller, G. von Heijne, M. Sakaguchi, and N. Uozumi. (2016). The topogenic function of S4 promotes membrane insertion of the voltage-sensor domain in the KvAP channel. Biochem. J. [Epub: Ahead of Print] 27694387
Moran, Y. and H.H. Zakon. (2014). The evolution of the four subunits of voltage-gated calcium channels: ancient roots, increasing complexity, and multiple losses. Genome Biol Evol 6: 2210-2217. 25146647
Moran, Y., M.G. Barzilai, B.J. Liebeskind, and H.H. Zakon. (2015). Evolution of voltage-gated ion channels at the emergence of Metazoa. J Exp Biol 218: 515-525. 25696815
Moreau, A., P. Gosselin-Badaroudine, and M. Chahine. (2014). Biophysics, pathophysiology, and pharmacology of ion channel gating pores. Front Pharmacol 5: 53. 24772081
Moreau, A., P. Gosselin-Badaroudine, M. Boutjdir, and M. Chahine. (2015). Mutations in the Voltage Sensors of Domains I and II of Nav1.5 that are Associated with Arrhythmias and Dilated Cardiomyopathy Generate Gating Pore Currents. Front Pharmacol 6: 301. 26733869
Morera FJ., Alioua A., Kundu P., Salazar M., Gonzalez C., Martinez AD., Stefani E., Toro L. and Latorre R. (2012). The first transmembrane domain (TM1) of beta2-subunit binds to the transmembrane domain S1 of alpha-subunit in BK potassium channels. FEBS Lett. 586(16):2287-93. 22710124
Morrill, J.A. and R. MacKinnon. (1999). Isolation of a single carboxyl proton binding site in the pore of a cyclic nucleotide-gated channel. J. Genet. Physiol. 114: 71-83. 10398693
Mouline K., A.A. Very, F. Gaymard, J. Boucherez, G. Pilot, M. Devic, D. Bouchez, J.B. Thibaud, H. Sentenac. (2002). Pollen tube development and competitive ability are impaired by disruption of a Shaker K(+) channel in Arabidopsis. Genes Dev. 16:339-350. 11825875
Nakajo, K., M.H. Ulbrich, Y. Kubo, and E.Y. Isacoff. (2010). Stoichiometry of the KCNQ1 - KCNE1 ion channel complex. Proc. Natl. Acad. Sci. USA 107: 18862-18867. 20962273
Nakamura, K., M. Kato, H. Osaka, S. Yamashita, E. Nakagawa, K. Haginoya, J. Tohyama, M. Okuda, T. Wada, S. Shimakawa, K. Imai, S. Takeshita, H. Ishiwata, D. Lev, T. Lerman-Sagie, D.E. Cervantes-Barragán, C.E. Villarroel, M. Ohfu, K. Writzl, B. Gnidovec Strazisar, S. Hirabayashi, D. Chitayat, D. Myles Reid, K. Nishiyama, H. Kodera, M. Nakashima, Y. Tsurusaki, N. Miyake, K. Hayasaka, N. Matsumoto, and H. Saitsu. (2013). Clinical spectrum of SCN2A mutations expanding to Ohtahara syndrome. Neurology 81: 992-998. 23935176
Nakamura, R.L. and R.F. Gaber. (2009). Ion selectivity of the Kat1 K+ channel pore. Mol. Membr. Biol. 26: 293-308. 19742379
Nakao H., Ikeda K., Iwamoto M., Shimizu H., Oiki S., Ishihama Y. and Nakano M. (2015). pH-dependent promotion of phospholipid flip-flop by the KcsA potassium channel. Biochim Biophys Acta. 1848(1 Pt A):145-50. 25312694
Naso, A., I. Dreyer, L. Pedemonte, I. Testa, J.L. Gomez-Porras, C. Usai, B. Mueller-Rueber, A. Diaspro, F. Gambale, and C. Picco. (2009). The role of the C-terminus for functional heteromerization of the plant channel KDC1. Biophys. J. 96: 4063-4074. 19450478
Naula, C.M., F.M. Logan, P.E. Wong, M.P. Barrett, and R.J. Burchmore. (2010). A glucose transporter can mediate ribose uptake: definition of residues that confer substrate specificity in a sugar transporter. J. Biol. Chem. 285: 29721-29728. 20601430
Nelson, R.D., G. Kuan, M.H. Saier, Jr., and M. Montal. (1999). Modular assembly of voltage-gated channel proteins: a sequence analysis and phylogenetic study. J. Mol. Microbiol. Biotechnol. 2: 281-287. 10943557
Neupärtl, M., C. Meyer, I. Woll, F. Frohns, M. Kang, J.L. Van Etten, D. Kramer, B. Hertel, A. Moroni, and G. Thiel. (2008). Chlorella viruses evoke a rapid release of K+ from host cells during the early phase of infection. Virology 372(2): 340-348. 18045641
Nguyen, H.M., C.A. Galea, G. Schmunk, B.J. Smith, R.A. Edwards, R.S. Norton, and K.G. Chandy. (2013). Intracellular Trafficking of the KV1.3 Potassium Channel Is Regulated by the Prodomain of a Matrix Metalloprotease. J. Biol. Chem. 288: 6451-6464. 23300077
Niemeyer, M.I., L.P. Cid, L.F. Barros, and F.V. Sepúlveda. (2001). Modulation of the two-pore domain acid-sensitive K+ channel TASK-2 (KCNK5) by changes in cell volume. J. Biol. Chem. 276: 43166-43174. 11560934
Nieves-Cordones, M. and I. Gaillard. (2014). Involvement of the S4-S5 linker and the C-linker domain regions to voltage-gating in plant Shaker channels: comparison with animal HCN and Kv channels. Plant Signal Behav 9: e972892. 25482770
Nieves-Cordones, M., A. Chavanieu, L. Jeanguenin, C. Alcon, W. Szponarski, S. Estaran, I. Chérel, S. Zimmermann, H. Sentenac, and I. Gaillard. (2014). Distinct amino acids in the C-linker domain of the Arabidopsis K+ channel KAT2 determine its subcellular localization and activity at the plasma membrane. Plant Physiol. 164: 1415-1429. 24406792
Nieves-Cordones, M., F. Alemán, V. Martínez, and F. Rubio. (2014). K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms. J Plant Physiol. 171: 688-695. 24810767
Nurani, G., M. Radford, K. Charalambous, A.O. O'Reilly, N.B. Cronin, S. Haque, and B.A. Wallace. (2008). Tetrameric bacterial sodium channels: characterization of structure, stability, and drug binding. Biochemistry 47: 8114-8121. 18620425
O'Brien, J.E. and M.H. Meisler. (2013). Sodium channel SCN8A (Nav1.6): properties and de novo mutations in epileptic encephalopathy and intellectual disability. Front Genet 4: 213. 24194747
O'Brien, J.E., L.M. Sharkey, C.N. Vallianatos, C. Han, J.C. Blossom, T. Yu, S.G. Waxman, S.D. Dib-Hajj, and M.H. Meisler. (2012). Interaction of Voltage-gated Sodium Channel Nav1.6 (SCN8A) with Microtubule-associated Protein Map1b. J. Biol. Chem. 287: 18459-18466. 22474336
Ooi, L., S. Gigout, L. Pettinger, and N. Gamper. (2013). Triple Cysteine Module within M-Type K+ Channels Mediates Reciprocal Channel Modulation by Nitric Oxide and Reactive Oxygen Species. J. Neurosci. 33: 6041-6046. 23554485
Osterbur ML., Zheng R., Marion R., Walsh C. and McDonald TV. (2015). An Interdomain KCNH2 Mutation Produces an Intermediate Long QT Syndrome. Hum Mutat. 36(8):764-73. 25914329
Ouyang, Q., M. Goeritz, and R.M. Harris-Warrick. (2007). Panulirus interruptus Ih-channel gene PIIH: modification of channel properties by alternative splicing and role in rhythmic activity. J Neurophysiol 97: 3880-3892. 17409170
Paidhungat, M., and S. Garrett. (1997). A homolog of mammalian, voltage-gated calcium channels mediates yeast pheromone-stimulated Ca2+ uptake and exacerbates the cdc1(Ts) growth defect. Mol. Cell Biol. 17: 6339-6347. 9343395
Paldi, T. and M. Gurevitz. (2010). Coupling between residues on S4 and S1 defines the voltage-sensor resting conformation in NaChBac. Biophys. J. 99: 456-463. 20643063
Pandey, A., J. P, S. Tripathi, and C. Gopi Mohan. (2012). Harnessing Human N-type Ca2+ Channel Receptor by Identifying the Atomic Hotspot Regions for Its Structure-Based Blocker Design. Mol Inform 31: 643-657. 27477815
Parfenova, L.V., Crane, B.M., and Rothberg, B.S. (2006). Modulation of MthK potassium channel activity at the intracellular entrance to the pore. J. Biol. Chem. 281: 21131-21138. 16728395
Parfenova, L.V., K. Abarca-Heidemann, B.M. Crane, and B.S. Rothberg. (2007). Molecular architecture and divalent cation activation of TvoK, a prokaryotic potassium channel. J. Biol. Chem. 282: 24302-24309. 17588939
Park, C.Y., A. Shcheglovitov, and R. Dolmetsch. (2010). The CRAC channel activator STIM1 binds and inhibits L-type voltage-gated calcium channels. Science 330: 101-105. 20929812
Patel A.J., F. Maingret, V. Magnone, M. Fosset, M. Lazdunski, E. Honoré. (2000). TWIK-2, an inactivating 2P domain K+ channel. J Biol Chem. 275:28722-30. 10887187
Pau, V.P., F.J. Smith, A.B. Taylor, L.V. Parfenova, E. Samakai, M.M. Callaghan, K. Abarca-Heidemann, P.J. Hart, and B.S. Rothberg. (2011). Structure and function of multiple Ca2+-binding sites in a K+ channel regulator of K+ conductance (RCK) domain. Proc. Natl. Acad. Sci. USA 108: 17684-17689. 21997217
Pau, V.P., Y. Zhu, Z. Yuchi, Q.Q. Hoang, and D.S. Yang. (2007). Characterization of the C-terminal domain of a potassium channel from Streptomyces lividans (KcsA). J. Biol. Chem. 282: 29163-29169. 17693406
Payandeh, J., T. Scheuer, N. Zheng, and W.A. Catterall. (2011). The crystal structure of a voltage-gated sodium channel. Nature 475: 353-358. 21743477
Pearlstein, R.A., C.J. Dickson, and V. Hornak. (2016). Contributions of the membrane dipole potential to the function of voltage-gated cation channels and modulation by small molecule potentiators. Biochim. Biophys. Acta. 1859: 177-194. [Epub: Ahead of Print] 27836643
Pedarzani, P., J.E. McCutcheon, G. Rogge, B.S. Jensen, P. Christophersen, C. Hougaard, D. Strobaek, and M. Stocker. (2005). Specific enhancement of SK channel activity selectively potentiates the afterhyperpolarizing current IAHP and modulates the firing properties of hippocampal pyrimidal neurons. 16239218
Peiter, E., M. Fischer, K. Sidaway, S.K. Roberts, and D. Sanders. (2005). The Saccharomyces cerevisiae Ca2+ channel Cch1pMid1p is essential for tolerance to cold stress and iron toxicity. FEBS Lett. 579: 5697-5703. 16223494
Peloquin, J.B., R. Rehak, C.J. Doering, and J.E. McRory. (2007). Functional analysis of congenital stationary night blindness type-2 CACNA1F mutations F742C, G1007R, and R1049W. Neuroscience. 150(2):335-345. 17949918
Peretz, A., L. Pell, Y. Gofman, Y. Haitin, L. Shamgar, E. Patrich, P. Kornilov, O. Gourgy-Hacohen, N. Ben-Tal, and B. Attali. (2010). Targeting the voltage sensor of Kv7.2 voltage-gated K+ channels with a new gating-modifier. Proc. Natl. Acad. Sci. USA 107: 15637-15642. 20713704
Pérez-Verdaguer, M., J. Capera, R. Martínez-Mármol, M. Camps, N. Comes, M.M. Tamkun, and A. Felipe. (2016). Caveolin interaction governs Kv1.3 lipid raft targeting. Sci Rep 6: 22453. 26931497
Peroz, D., N. Rodriguez, F. Choveau, I. Baró, J. Mérot, and G. Loussouarn. (2008). Kv7.1 (KCNQ1) properties and channelopathies. J. Physiol. 586(7): 1785-1789. 18174212
Perry, M.D., S. Wong, C.A. Ng, and J.I. Vandenberg. (2013). Hydrophobic interactions between the voltage sensor and pore mediate inactivation in Kv11.1 channels. J Gen Physiol 142: 275-288. 23980196
Peters, C.J., M. Vaid, A.J. Horne, D. Fedida, and E.A. Accili. (2009). The molecular basis for the actions of KVbeta1.2 on the opening and closing of the KV1.2 delayed rectifier channel. Channels (Austin) 3: 314-322. 19713757
Phan, K., C.A. Ng, E. David, D. Shishmarev, P.W. Kuchel, J.I. Vandenberg, and M.D. Perry. (2017). The S1 Helix Critically Regulates the Finely-tuned Gating of Kv11.1 Channels. J. Biol. Chem. [Epub: Ahead of Print] 28280240
Phartiyal, P., E.M. Jones, and G.A. Robertson. (2007). Heteromeric assembly of human ether-à-go-go-related gene (hERG) 1a/1b channels occurs cotranslationally via N-terminal interactions. J. Biol. Chem. 282: 9874-9882. 17272276
Philippar, K., K. Büchsenschütz, M. Abshagen, I. Fuchs, D. Geiger, B. Lacombe, and R. Hedrich. (2003). The K+ channel KZM1 mediates potassium uptake into the phloem and guard cells of the C4 grass Zea mays. J. Biol. Chem. 278: 16973-16981. 12611901
Plugge, B., S. Gazzarrini, M. Nelson, R. Cerana, J.L. Van Etten, C. Derst, D. DiFrancesco, A. Moroni, and G. Thiel. (2000). A potassium channel protein encoded by Chlorella virus PBCV-1. Science 287: 1641. 10698737
Powl, A.M., A.J. Miles, and B.A. Wallace. (2012). Transmembrane and extramembrane contributions to membrane protein thermal stability: studies with the NaChBac sodium channel. Biochim. Biophys. Acta. 1818: 889-895. 22226848
Prindle, A., J. Liu, M. Asally, S. Ly, J. Garcia-Ojalvo, and G.M. Süel. (2015). Ion channels enable electrical communication in bacterial communities. Nature 527: 59-63. 26503040
Pyo, Y.J., M. Gierth, J.I. Schroeder, and M.H. Cho. (2010). High-affinity K+ transport in Arabidopsis: AtHAK5 and AKT1 are vital for seedling establishment and postgermination growth under low-potassium conditions. Plant Physiol. 153: 863-875. 20413648
Qureshi, S.F., A. Ali, P. John, A.P. Jadhav, A. Venkateshwari, H. Rao, M.P. Jayakrishnan, C. Narasimhan, J. Shenthar, K. Thangaraj, and P. Nallari. (2015). Mutational analysis of SCN5A gene in long QT syndrome. Meta Gene 6: 26-35. 26401487
Qureshi, S.F., A. Ali, V. Ananthapur, M.P. Jayakrishnan, N. Calambur, K. Thangaraj, and P. Nallari. (2013). Novel mutations of KCNQ1 in Long QT syndrome. Indian Heart J 65: 552-560. 24206879
Radhakrishnan, K., M.A. Kamp, S.A. Siapich, J. Hescheler, M. Lüke, and T. Schneider. (2011). Ca(v)2.3 Ca2+ channel interacts with the G1-subunit of V-ATPase. Cell Physiol Biochem 27: 421-432. 21691059
Radicke, S., T. Riedel, D. Cotella, K. Turnow, U. Ravens, M. Schaefer, and E. Wettwer. (2013). Accessory subunits alter the temperature sensitivity of Kv4.3 channel complexes. J Mol. Cell Cardiol 56: 8-18. 23291429
Raja, M., N.K. Olrichs, E. Vales, and H. Schrempf. (2012). Transferring knowledge towards understanding the pore stabilizing variations in K+ channels: pore stability in K+ channels. J. Bioenerg. Biomembr. 44: 199-205. 22350010
Ramos Gomes F., Romaniello V., Sanchez A., Weber C., Narayanan P., Psol M. and Pardo LA. (2015). Alternatively Spliced Isoforms of KV10.1 Potassium Channels Modulate Channel Properties and Can Activate Cyclin-dependent Kinase in Xenopus Oocytes. J Biol Chem. 290(51):30351-65. 26518875
Randich, A.M., L.G. Cuello, S.S. Wanderling, and E. Perozo. (2014). Biochemical and structural analysis of the hyperpolarization-activated K+ channel MVP. Biochemistry 53: 1627-1636. 24490868
Rash, J.E., K.G. Vanderpool, T. Yasumura, J. Hickman, J.T. Beatty, and J.I. Nagy. (2016). KV1 channels identified in rodent myelinated axons, linked to Cx29 in innermost myelin: support for electrically active myelin in mammalian saltatory conduction. J Neurophysiol 115: 1836-1859. 26763782
Rasmussen, T. (2016). How do mechanosensitive channels sense membrane tension? Biochem Soc Trans 44: 1019-1025. 27528747
Rauh, O., M. Urban, L.M. Henkes, T. Winterstein, T. Greiner, J.L. Van Etten, A. Moroni, S.M. Kast, G. Thiel, and I. Schroeder. (2017). Identification of Intrahelical Bifurcated H-Bonds as a New Type of Gate in K+ Channels. J. Am. Chem. Soc. [Epub: Ahead of Print] 28499087
Raybaud, A., Y. Dodier, P. Bissonnette, M. Simoes, D.G. Bichet, R. Sauvé, and L. Parent. (2006). The role of the GX9GX3G motif in the gating of high voltage-activated Ca2+ channels. J. Biol. Chem. 281: 39424-39436. 17038321
Reed, A.P., G. Bucci, F. Abd-Wahab, and S.J. Tucker. (2016). Dominant-Negative Effect of a Missense Variant in the TASK-2 (KCNK5) K+ Channel Associated with Balkan Endemic Nephropathy. PLoS One 11: e0156456. 27228168
Rehak, R., T.M. Bartoletti, J.D. Engbers, G. Berecki, R.W. Turner, and G.W. Zamponi. (2013). Low Voltage Activation of KCa1.1 Current by Cav3-KCa1.1 Complexes. PLoS One 8: e61844. 23626738
Reher, T.A., Z. Wang, C.H. Hsueh, P.C. Chang, Z. Pan, M. Kumar, J. Patel, J. Tan, C. Shen, Z. Chen, M.C. Fishbein, M. Rubart, P. Boyden, and P.S. Chen. (2017). Small-Conductance Calcium-Activated Potassium Current in Normal Rabbit Cardiac Purkinje Cells. J Am Heart Assoc 6:. 28550095
Reinson, K., E. Õiglane-Shlik, I. Talvik, U. Vaher, A. Õunapuu, M. Ennok, R. Teek, S. Pajusalu, &.#.2.2.0.;. Murumets, T. Tomberg, S. Puusepp, A. Piirsoo, T. Reimand, and K. Õunap. (2016). Biallelic CACNA1A mutations cause early onset epileptic encephalopathy with progressive cerebral, cerebellar, and optic nerve atrophy. Am J Med Genet A. [Epub: Ahead of Print] 27250579
Ren, D., B. Navarro, H. Xu, L. Yue, Q. Shi, and D.E. Clapham. (2001). A prokaryotic voltage-gated sodium channel. Science 294: 2372-2375. 11743207
Renart, M.L., F.N. Barrera, M.L. Molina, J.A. Encinar, J.A. Poveda, A.M. Fernandez, J. Gomez, and J.M. Gonzalez-Ros. (2006). Effects of conducting and blocking ions on the structure and stability of the potassium channel KcsA. J. Biol . Chem. 281: 29905-29915. 16815844
Rocheleau, J.M., and W.R. Kobertz. (2007). KCNE Peptides Differently Affect Voltage Sensor Equilibrium and Equilibration Rates in KCNQ1 K+ Channels. J. Gen. Physiol. 131: 59-68. 18079560
Roller, A., G. Natura, H. Bihler, C.L. Slayman, and A. Bertl. (2008). Functional consequences of leucine and tyrosine mutations in the dual pore motifs of the yeast K+ channel, Tok1p. Pflugers Arch 456: 883-896. 18421473
Romanenko, V., T. Nakamoto, A. Srivastava, J.E. Melvin, and T. Begenisich. (2006). Molecular identification and physiological roles of parotid acinar cell maxi-K channels. J. Biol. Chem. 281: 27964-27972. 16873365
Roosild, T.P., J. Greenwald, M. Vega, S. Castronovo, R. Riek, and S. Choe. (2005). NMR structure of Mistic, a membrane-integrating protein for membrane protein expression. Science 307: 1317-1321. 15731457
Roux, B. and R. MacKinnon. (1999). The cavity and pore helices in the KcsA K+ channel: electrostatic stabilization of monovalent cations. Science 285: 100-102. 10390357
Rowe, A.H., Y. Xiao, M.P. Rowe, T.R. Cummins, and H.H. Zakon. (2013). Voltage-gated sodium channel in grasshopper mice defends against bark scorpion toxin. Science 342: 441-446. 24159039
Rusconi, R., P. Scalmani, R.R. Cassulini, G. Giunti, A. Gambardella, S. Franceschetti, G. Annesi, E. Wanke, and M. Mantegazza. (2007). Modulatory Proteins Can Rescue a Trafficking Defective Epileptogenic Nav1.1 Na+ Channel Mutant. J. Neurosci. 27(41):11037-11036.
Ruta, V., J. Chen, and R. MacKinnon. (2005). Calibrated measurement of gating-charge arginine displacement in the KvAP voltage-dependent K+ channel. Cell 123: 463-475. 16269337
Ruta, V., Y. Jiang, A. Lee, J. Chan, and R. MacKinnon. (2003). Functional analysis of an archaebacterial voltage-dependent K+ channel. Nature 422: 180-185. 12629550
Saavedra-Rodriguez, K., L. Urdaneta-Marquez, S. Rajatileka, M. Moulton, A.E. Flores, I. Fernandez-Salas, J. Bisset, M. Rodriguez, P.J. McCall, M.J. Donnelly, H. Ranson, J. Hemingway, and W.C. Black, 4th. (2007). A mutation in the voltage-gated sodium channel gene associated with pyrethroid resistance in Latin American Aedes aegypti. Insect Mol Biol 16: 785-798. 18093007
Sahoo, N., R. Schönherr, T. Hoshi, and S.H. Heinemann. (2012). Cysteines control the N- and C-linker-dependent gating of KCNH1 potassium channels. Biochim. Biophys. Acta. 1818: 1187-1195. 22310694
Sakurai, Y., A.A. Kolokoltsov, C.C. Chen, M.W. Tidwell, W.E. Bauta, N. Klugbauer, C. Grimm, C. Wahl-Schott, M. Biel, and R.A. Davey. (2015). Ebola virus. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment. Science 347: 995-998. 25722412
Salkoff, L. and T. Jegla. (1995). Surfing the DNA databases for K+ channels nets yet more diversity. Neuron 15: 489-492. 7546728
Sánchez-Solano, A., A.A. Islas, T. Scior, B. Paiz-Candia, L. Millan-PerezPeña, and E.M. Salinas-Stefanon. (2016). Characterization of specific allosteric effects of the Na+ channel β1 subunit on the Nav1.4 isoform. Eur Biophys. J. [Epub: Ahead of Print] 28012039
Sansom, M.S. (1998). Ion channels: a first view of K+ channels in atomic glory. Curr. Biol. 8: R450-452. 9651671
Santi, C.M., A. Yuan, G. Fawcett, Z.W. Wang, A. Butler, M.L. Nonet, A. Wei, P. Rojas, and L. Salkoff. (2003). Dissection of K+ currents in Caenorhabditis elegans muscle cells by genetics and RNA interference. Proc. Natl. Acad. Sci. USA 100: 14391-14396. 14612577
Santos, J.S., S.M. Grigoriev, and M. Montal. (2008). Molecular template for a voltage sensor in a novel K+ channel. III. Functional reconstitution of a sensorless pore module from a prokaryotic Kv channel. J Gen Physiol 132: 651-666. 19029373
Savalli N., Pantazis A., Yusifov T., Sigg D. and Olcese R. (2012). The contribution of RCK domains to human BK channel allosteric activation. J Biol Chem. 287(26):21741-50. 22556415
Scherer, S., M. Arheit, J. Kowal, X. Zeng, and H. Stahlberg. (2014). Single particle 3D reconstruction for 2D crystal images of membrane proteins. J Struct Biol 185: 267-277. 24382495
Schmidt, D., Q.X. Jiang, and R. MacKinnon. (2006). Phospholipids and the origin of cationic gating charges in voltage sensors. Nature 444: 775-779. 17136096
Schroeder, J.I. (2003). Knockout of the guard cell K+ out channel and stomatal movements. Proc. Natl. Acad. Sci. USA 100: 4976-4977. 12704226
Schünke, S., M. Stoldt, J. Lecher, U.B. Kaupp, and D. Willbold. (2011). Structural insights into conformational changes of a cyclic nucleotide-binding domain in solution from Mesorhizobium loti K1 channel. Proc. Natl. Acad. Sci. USA 108: 6121-6126. 21430265
Schwarzer, S., L. Kolacna, H. Lichtenberg-Fraté, H. Sychrova, and J. Ludwig. (2008). Functional expression of the voltage-gated neuronal mammalian potassium channel rat ether à go-go1 in yeast. FEMS Yeast Res 8(3): 405-413. 18248412
Schwenk, J., G. Zolles, N.G. Kandias, I. Neubauer, H. Kalbacher, M. Covarrubias, B. Fakler, and D. Bentrop. (2008). NMR analysis of KChIP4a reveals structural basis for control of surface expression of Kv4 channel complexes. J. Biol. Chem. 283: 18937-18946. 18458082
Scicchitano, P., S. Carbonara, G. Ricci, C. Mandurino, M. Locorotondo, G. Bulzis, M. Gesualdo, A. Zito, R. Carbonara, I. Dentamaro, G. Riccioni, and M.M. Ciccone. (2012). HCN Channels and Heart Rate. Molecules 17: 4225-4235. 22481543
Seeger, H.M., L. Aldrovandi, A. Alessandrini, and P. Facci. (2010). Changes in single K+ channel behavior induced by a lipid phase transition. Biophys. J. 99: 3675-3683. 21112292
Seikel, E. and J.S. Trimmer. (2009). Convergent modulation of Kv4.2 channel alpha subunits by structurally distinct DPPX and KChIP auxiliary subunits. Biochemistry 48: 5721-5730. 19441798
Selvakumar, D., M.J. Drescher, J.R. Dowdall, K.M. Khan, J.S. Hatfield, N.A. Ramakrishnan, and D.G. Drescher. (2012). CNGA3 is expressed in inner ear hair cells and binds to an intracellular C-terminus domain of EMILIN1. Biochem. J. 443: 463-476. 22248097
Senatore A. and Spafford JD. (2013). A uniquely adaptable pore is consistent with NALCN being an ion sensor. Channels (Austin). 7(2):60-8. 23442378
Shakkottai, V.G., I. Regaya, H. Wulff, Z. Fajloun, H. Tomita, M. Fathallah, M.D. Cahalan, J.J. Gargus, J.-M. Sabatier, and K.G. Chandy. (2001). Design and characterization of a highly selective peptide inhibitor of the small conductance calcium-activated K+ channel, SkCa2. J. Biol. Chem. 276: 43145-43151. 11527975
Sharmin, N. and W.J. Gallin. (2016). Intramolecular interactions that control voltage sensitivity in the jShak1 potassium channel from Polyorchis penicillatus. J Exp Biol. [Epub: Ahead of Print] 27872215
Shaya, D., M. Kreir, R.A. Robbins, S. Wong, J. Hammon, A. Brüggemann, and D.L. Minor, Jr. (2011). Voltage-gated sodium channel (NaV) protein dissection creates a set of functional pore-only proteins. Proc. Natl. Acad. Sci. USA 108: 12313-12318. 21746903
Sheikh, A.S. and K. Ranjan. (2014). Brugada syndrome: a review of the literature. Clin Med 14: 482-489. 25301907
Shen, H., Q. Zhou, X. Pan, Z. Li, J. Wu, and N. Yan. (2017). Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution. Science 355:. 28183995
Shepard A.R., Rae J.L.. (1999). Electrically silent potassium channel subunits from human lens epithelium. Am. J. Physiol. 277: C412-424 10484328
Shi W., R.S. Wymore, H.S. Wang, Z. Pan, I.S. Cohen, D. McKinnon, J.E. Dixon. (1997). Identification of two nervous system-specific members of the erg potassium channel gene family. J. Neurosci. 17: 9423-9432 9390998
Shi, J., G. Krishnamoorthy, Y. Yang, L. Hu, N. Chaturvedi, D. Harilal, J. Qin, and J. Cui. (2002). Mechanism of magnesium activation of calcium-activated potassium channels. Nature 418: 876-880. 12192410
Shi, N., S. Ye, A. Alam, L. Chen, and Y. Jiang. (2006). Atomic structure of a Na+- and K+-conducting channel. Nature 440: 570-574. 16467789
Shimizu, H., M. Iwamoto, T. Konno, A. Nihei, Y.C. Sasaki, and S. Oiki. (2008). Global twisting motion of single molecular KcsA potassium channel upon gating. Cell 132: 67-78. 18191221
Shimomura, T., K. Irie, H. Nagura, T. Imai, and Y. Fujiyoshi. (2011). Arrangement and mobility of the voltage sensor domain in prokaryotic voltage-gated sodium channels. J. Biol. Chem. 286: 7409-7417. 21177850
Sigworth, F.J. (1993). Voltage gating of ion channels. Quart. Rev. Biophys. 27: 1-40. 7520590
Silverman, W.R., and L. Heginbotham. (2007). The MlotiK1 channel transports ions along the canonical conduction pore. FEBS Lett. 581: 5024-5028. 17935718
Siotto, F., C. Martin, O. Rauh, J.L. Van Etten, I. Schroeder, A. Moroni, and G. Thiel. (2014). Viruses infecting marine picoplancton encode functional potassium ion channels. Virology 466-467: 103-111. 25441713
Skerritt, M.R. and D.L. Campbell. (2007). Role of S4 positively charged residues in the regulation of Kv4.3 inactivation and recovery. Am. J. Physiol. Cell Physiol. 293: C906-914. 17581856
Sklodowski, K., J. Riedelsberger, N. Raddatz, G. Riadi, J. Caballero, I. Chérel, W. Schulze, A. Graf, and I. Dreyer. (2017). The receptor-like pseudokinase MRH1 interacts with the voltage-gated potassium channel AKT2. Sci Rep 7: 44611. 28300158
Smith, J.J., T.R. Cummins, S. Alphy, and K.M. Blumenthal. (2007). Molecular interactions of the gating modifier toxin ProTx-II with NaV 1.5: implied existence of a novel toxin binding site coupled to activation. J. Biol. Chem. 282: 12687-12697. 17339321
Soh, H. and S.A. Goldstein. (2008). I SA channel complexes include four subunits each of DPP6 and Kv4.2. J. Biol. Chem. 283: 15072-15077. 18364354
Sokolov, S., T. Scheuer, and W.A. Catterall. (2007). Gating pore current in an inherited ion channelopathy. Nature 446: 76-78. 17330043
Sokolov, S., T. Scheuer, and W.A. Catterall. (2010). Ion permeation and block of the gating pore in the voltage sensor of NaV1.4 channels with hypokalemic periodic paralysis mutations. J Gen Physiol 136: 225-236. 20660662
Soldovieri, M.V., Castaldo, P., Iodice, L., Miceli, F., Barrese, V., Bellini, G., Miraglia del Giudice, E., Pascotto, A., Bonatti, S., Annunziato, L., and Taglialatela M. (2006). Decreased subunit stability as a novel mechanism for potassium current impairment by a KCNQ2 C terminus mutation causing benign familial neonatal convulsions. J. Biol. Chem. 281: 418-428. 16260777
Sonkusare, S.K., A.D. Bonev, J. Ledoux, W. Liedtke, M.I. Kotlikoff, T.J. Heppner, D.C. Hill-Eubanks, and M.T. Nelson. (2012). Elementary Ca2+ signals through endothelial TRPV4 channels regulate vascular function. Science 336: 597-601. 22556255
Sottocornola, B., S. Visconti, S. Orsi, S. Gazzarrini, S. Giacometti, C. Olivari, L. Camoni, P. Aducci, M. Marra, A. Abenavoli, G. Thiel, and A. Moroni. (2006). The potassium channel KAT1 is activated by plant and animal 14-3-3 proteins. J. Biol. Chem. 281: 35735-35741. 16990282
Splawski, I., Yoo, D.S., Stotz, S.C., Cherry, A., Clapham, D.E., and Keating, M.T. (2006). CACNA1H mutations in autism spectrum disorders. J. Biol. Chem. 281: 22085-22091. 16754686
Spork, S., J.A. Hiss, K. Mandel, M. Sommer, T.W. Kooij, T. Chu, G. Schneider, U.G. Maier, and J.M. Przyborski. (2009). An unusual ERAD-like complex is targeted to the apicoplast of Plasmodium falciparum. Eukaryot. Cell. 8: 1134-1145. 19502583
Stingl, K., S. Brandt, E.M. Uhlemann, R. Schmid, K. Altendorf, C. Zeilinger, C. Ecobichon, A. Labigne, E.P. Bakker, and H. de Reuse. (2007). Channel-mediated potassium uptake in Helicobacter pylori is essential for gastric colonization. EMBO. J. 26: 232-241. 17159901
Struyk, A.F. and S.C. Cannon. (2007). A Na+ channel mutation linked to hypokalemic periodic paralysis exposes a proton-selective gating pore. J Gen Physiol 130: 11-20. 17591984
Suh, B.C., K. Leal, and B. Hille. (2010). Modulation of high-voltage activated Ca2+ channels by membrane phosphatidylinositol 4,5-bisphosphate. Neuron. 67: 224-238. 20670831
Suzuki, T., A. Hansen, and M.C. Sanguinetti. (2016). Hydrophobic interactions between the S5 segment and the pore helix stabilizes the closed state of Slo2.1 potassium channels. Biochim. Biophys. Acta. 1858: 783-792. 26724206
Swayne, L.A., A. Mezghrani, P. Lory, J. Nargeot, and A. Monteil. (2010). The NALCN ion channel is a new actor in pancreatic β-cell physiology. Islets 2: 54-56. 21099296
Sweet, T.B. and D.H. Cox. (2008). Measurements of the BKCa channel's high-affinity Ca2+ binding constants: effects of membrane voltage. J Gen Physiol 132: 491-505. 18955592
Szabó, G., V. Farkas, M. Grunnet, A. Mohácsi, and P.P. Nánási. (2011). Enhanced repolarization capacity: new potential antiarrhythmic strategy based on HERG channel activation. Curr. Med. Chem. 18: 3607-3621. 21774764
Szabò, I., J. Bock, A. Jekle, M. Soddemann, C. Adams, F. Lang, M. Zoratti, and E. Gulbins. (2005). A novel potassium channel in lymphocyte mitochondria. J. Biol. Chem. 280: 12790-12798. 15632141
Tao, X., A. Lee, W. Limapichat, D.A. Dougherty, and R. MacKinnon. (2010). A gating charge transfer center in voltage sensors. Science 328: 67-73. 20360102
Taylor, K.C. and C.R. Sanders. (2016). Regulation of KCNQ/Kv7 family voltage-gated K+ channels by lipids. Biochim. Biophys. Acta. [Epub: Ahead of Print] 27818172
Telezhkin V., Thomas AM., Harmer SC., Tinker A. and Brown DA. (2013). A basic residue in the proximal C-terminus is necessary for efficient activation of the M-channel subunit Kv7.2 by PI(4,5)P(2). Pflugers Arch. 465(7):945-53. 23291709
Terlau, H. and W. Stühmer. (1998). Structure and function of voltage-gated ion channels. Naturwissenschaften 85: 437-444. 9802045
Thiel G., Baumeister D., Schroeder I., Kast SM., Van Etten JL. and Moroni A. (2011). Minimal art: or why small viral K(+) channels are good tools for understanding basic structure and function relations. Biochim Biophys Acta. 1808(2):580-8. 20417613
Thomas, D., L.D. Plant, C.M. Wilkens, Z.A. McCrossan, and S.A. Goldstein. (2008). Alternative translation initiation in rat brain yields K2P2.1 potassium channels permeable to sodium. Neuron. 58: 859-870. 18579077
Thomson, A.S. and B.S. Rothberg. (2010). Voltage-dependent inactivation gating at the selectivity filter of the MthK K+ channel. J Gen Physiol 136: 569-579. 20937694
Tian, L., H. McClafferty, L. Chen, and M.J. Shipston. (2008). Reversible tyrosine protein phosphorylation regulates large conductance voltage- and calcium-activated potassium channels via cortactin. J. Biol. Chem. 283: 3067-3076. 18039661
Tian, L., O. Jeffries, H. McClafferty, A. Molyvdas, I.C. Rowe, F. Saleem, L. Chen, J. Greaves, L.H. Chamberlain, H.G. Knaus, P. Ruth, and M.J. Shipston. (2008). Palmitoylation gates phosphorylation-dependent regulation of BK potassium channels. Proc. Natl. Acad. Sci. USA 105: 21006-21011. 19098106
Tipparaju, S.M., X.P. Li, P.J. Kilfoil, B. Xue, V.N. Uversky, A. Bhatnagar, and O.A. Barski. (2012). Interactions between the C-terminus of Kv1.5 and Kvβ regulate pyridine nucleotide-dependent changes in channel gating. Pflugers Arch 463: 799-818. 22426702
Tippens, A.L. and A. Lee. (2007). Caldendrin, a neuron-specific modulator of Cav1.2 (L-type) Ca2+ channels. J. Biol. Chem. 282: 8464-8473. 17224447
Tombola, F., M.M. Pathak, P. Gorostiza, and E.Y. Isacoff. (2007). The twisted ion-permeation pathway of a resting voltage-sensing domain. Nature 445: 546-549. 17187057
Tomczak, A.P., J. Fernández-Trillo, S. Bharill, F. Papp, G. Panyi, W. Stühmer, E.Y. Isacoff, and L.A. Pardo. (2017). A new mechanism of voltage-dependent gating exposed by KV10.1 channels interrupted between voltage sensor and pore. J Gen Physiol. [Epub: Ahead of Print] 28360219
Toro L., Li M., Zhang Z., Singh H., Wu Y. and Stefani E. (2014). MaxiK channel and cell signalling. Pflugers Arch. 466(5):875-86. 24077696
Triano, I., F.N. Barrera, M.L. Renart, M.L. Molina, G. Fernández-Ballester, J.A. Poveda, A.M. Fernández, J.A. Encinar, A.V. Ferrer-Montiel, D. Otzen, and J.M. González-Ros. (2010). Occupancy of nonannular lipid binding sites on KcsA greatly increases the stability of the tetrameric protein. Biochemistry 49: 5397-5404. 20481584
Tsai, C.J., K. Tani, K. Irie, Y. Hiroaki, T. Shimomura, D.G. McMillan, G.M. Cook, G.F. Schertler, Y. Fujiyoshi, and X.D. Li. (2013). Two alternative conformations of a voltage-gated sodium channel. J. Mol. Biol. 425: 4074-4088. 23831224
Tu, L. and C. Deutsch. (2017). Determinants of Helix Formation for a Kv1.3 Transmembrane Segment inside the Ribosome Exit Tunnel. J. Mol. Biol. [Epub: Ahead of Print] 28478285
Tuluc, P., B. Benedetti, P. Coste de Bagneaux, M. Grabner, and B.E. Flucher. (2016). Two distinct voltage-sensing domains control voltage sensitivity and kinetics of current activation in CaV1.1 calcium channels. J Gen Physiol 147: 437-449. 27185857
Turner, R.W., H. Asmara, J.D. Engbers, J. Miclat, A.P. Rizwan, G. Sahu, and G.W. Zamponi. (2016). Assessing the role of IKCa channels in generating the sAHP of CA1 hippocampal pyramidal cells. Channels (Austin) 0. [Epub: Ahead of Print] 26950800
Twiner, M.J., G.J. Doucette, A. Rasky, X.P. Huang, B.L. Roth, and M.C. Sanguinetti. (2012). Marine algal toxin azaspiracid is an open-state blocker of HERG potassium channels. Chem Res Toxicol 25: 1975-1984. 22856456
Uehara, A., Y. Nakamura, T. Shioya, S. Hirose, M. Yasukochi, and K. Uehara. (2008). Altered KCNQ3 Potassium Channel Function Caused by the W309R Pore-Helix Mutation Found in Human Epilepsy. J. Membr Biol. 222: 55-63. 18425618
Ulmschneider, M.B., C. Bagnéris, E.C. McCusker, P.G. Decaen, M. Delling, D.E. Clapham, J.P. Ulmschneider, and B.A. Wallace. (2013). Molecular dynamics of ion transport through the open conformation of a bacterial voltage-gated sodium channel. Proc. Natl. Acad. Sci. USA 110: 6364-6369. 23542377
Ungar, D., A. Barth, W. Haase, A. Kaunzinger, E. Lewitzki, T. Ruiz, H. Reiländer, and H. Michel. (2001). Analysis of a putative voltage-gated prokaryotic potassium channel. Eur. J. Biochem. 268: 5386-5396. 11606201
Verma, R., C. Malik, S. Azmi, S. Srivastava, S. Ghosh, and J.K. Ghosh. (2011). A synthetic S6 segment derived from KvAP channel self-assembles, permeabilizes lipid vesicles, and exhibits ion channel activity in bilayer lipid membrane. J. Biol. Chem. 286: 24828-24841. 21592970
Vicente, R., A. Escalada, N. Villalonga, L. Texido, M. Roura-Ferrer, M. Martin-Satue, C. Lopez-Iglesias, C. Soler, C. Solsona, M.M. Tamkun, and A. Felipe. (2006). Association of Kv1.5 and Kv1.3 contributes to the major voltage-dependent K+ channel in macrophages. J. Biol. Chem. 281: 37675-37685. 17038323
Vicente-Carrillo, A., M. Álvarez-Rodríguez, and H. Rodríguez-Martínez. (2017). The CatSper channel modulates boar sperm motility during capacitation. Reprod Biol. [Epub: Ahead of Print] 28077244
Vinekar, R.S. and R. Sowdhamini. (2016). Three-dimensional modelling of the voltage-gated sodium ion channel from Anopheles gambiae reveals spatial clustering of evolutionarily conserved acidic residues at the extracellular sites. Curr Neuropharmacol. [Epub: Ahead of Print] 27919210
Wang, A.W., R. Yang, and H.T. Kurata. (2016). Sequence determinants of subtype-specific actions of KCNQ channel openers. J. Physiol. [Epub: Ahead of Print] 27506413
Wang, C., Y.F. Chen, X.Q. Quan, H. Wang, R. Zhang, J.H. Xiao, J.L. Wang, C.T. Zhang, J.Z. Xiang, and Q. Tang. (2015). Effects of neferine on Kv4.3 channels expressed in HEK293 cells and ex vivo electrophysiology of rabbit hearts. Acta Pharmacol Sin 36: 1451-1461. 26592512
Wang, H., Y. Yan, Q. Liu, Y. Huang, Y. Shen, L. Chen, Y. Chen, Q. Yang, Q. Hao, K. Wang, and J. Chai. (2007). Structural basis for modulation of Kv4 K+ channels by auxiliary KChIP subunits. Nat Neurosci 10: 32-39. 17187064
Wang, L., X. Meng, Z. Yuchi, Z. Zhao, D. Xu, D. Fedida, Z. Wang, and C. Huang. (2015). De Novo Mutation in the SCN5A Gene Associated with Brugada Syndrome. Cell Physiol Biochem 36: 2250-2262. 26279430
Wang, X., X. Zhang, X.P. Dong, M. Samie, X. Li, X. Cheng, A. Goschka, D. Shen, Y. Zhou, J. Harlow, M.X. Zhu, D.E. Clapham, D. Ren, and H. Xu. (2012). TPC Proteins Are Phosphoinositide- Activated Sodium-Selective Ion Channels in Endosomes and Lysosomes. Cell 151: 372-383. 23063126
Wang, Y. and F. Sesti. (2007). Molecular mechanisms underlying KVS-1-MPS-1 complex assembly. Biophys. J. 93: 3083-3091. 17604313
Wheeler, G.L. and C. Brownlee. (2008). Ca2+ signalling in plants and green algae--changing channels. Trends Plant Sci. 13: 506-514. 18703378
Whicher, J.R. and R. MacKinnon. (2016). Structure of the voltage-gated K⁺ channel Eag1 reveals an alternative voltage sensing mechanism. Science 353: 664-669. 27516594
Williams, B.S., J.P. Felix, B.T. Priest, R.M. Brochu, K. Dai, S.B. Hoyt, C. London, Y.S. Tang, J.L. Duffy, W.H. Parsons, G.J. Kaczorowski, and M.L. Garcia. (2007). Characterization of a new class of potent inhibitors of the voltage-gated sodium channel Nav1.7. Biochemistry. 46: 14693-14703. 18027973
Williams, S.E., S.P. Brazier, N. Baban, V. Telezhkin, C.T. Müller, D. Riccardi, and P.J. Kemp. (2008). A structural motif in the C-terminal tail of slo1 confers carbon monoxide sensitivity to human BK(Ca) channels. Pflugers Arch 456(3): 561-572. 18180950
Wojtovich, A.P., T.A. Sherman, S.M. Nadtochiy, W.R. Urciuoli, P.S. Brookes, and K. Nehrke. (2011). SLO-2 is cytoprotective and contributes to mitochondrial potassium transport. PLoS One 6: e28287. 22145034
Wojtyniak, M., A.G. Brear, D.M. O'Halloran, and P. Sengupta. (2013). Cell- and subunit-specific mechanisms of CNG channel ciliary trafficking and localization in C. elegans. J Cell Sci 126: 4381-4395. 23886944
Wolters, M., M. Madeja, A.M. Farrell, and O. Pongs. (1999). Bacillus stearothermophilus lctB gene gives rise to functional K+ channels in Escherichia coli and in Xenopus oocytes. Receptors Channels 6: 477-491. 10635064
Woo, D.H., K.S. Han, J.W. Shim, B.E. Yoon, E. Kim, J.Y. Bae, S.J. Oh, E.M. Hwang, A.D. Marmorstein, Y.C. Bae, J.Y. Park, and C.J. Lee. (2012). TREK-1 and Best1 channels mediate fast and slow glutamate release in astrocytes upon GPCR activation. Cell 151: 25-40. 23021213
Wright, P.D., G. Weir, J. Cartland, D. Tickle, C. Kettleborough, M.Z. Cader, and J. Jerman. (2013). Cloxyquin (5-chloroquinolin-8-ol) is an activator of the two-pore domain potassium channel TRESK. Biochem. Biophys. Res. Commun. 441: 463-468. 24383077
Wu, L., S.L. Yong, C. Fan, Y. Ni, S. Yoo, T. Zhang, X. Zhang, C.A. Obejero-Paz, H.J. Rho, T. Ke, P. Szafranski, S.W. Jones, Q. Chen, and Q.K. Wang. (2008). Identification of a new co-factor, MOG1, required for the full function of cardiac sodium channel Nav 1.5. J. Biol. Chem. 283(11): 6968-6978. 18184654
Wu, R.S., G. Liu, S.I. Zakharov, N. Chudasama, H. Motoike, A. Karlin, and S.O. Marx. (2013). Positions of β2 and β3 subunits in the large-conductance calcium- and voltage-activated BK potassium channel. J Gen Physiol 141: 105-117. 23277477
Wu, Y., Y. Yang, S. Ye, and Y. Jiang. (2010). Structure of the gating ring from the human large-conductance Ca2+-gated K+ channel. Nature 466: 393-397. 20574420
Xia, J., N. Yamaji, T. Kasai, and J.F. Ma. (2010). Plasma membrane-localized transporter for aluminum in rice. Proc. Natl. Acad. Sci. USA 107: 18381-18385. 20937890
Xia, X.-M., X. Zeng, and C.J. Lingle. (2002). Multiple regulatory sites in large-conductance calcium-activated potassium channels. Nature 418: 880-884. 12192411
Xia, Z., X. Huang, K. Chen, H. Wang, J. Xiao, K. He, R. Huang, X. Duan, H. Liu, J. Zhang, and G. Xiang. (2016). Proapoptotic Role of Potassium Ions in Liver Cells. Biomed Res Int 2016: 1729135. 27069917
Xicluna, J., B. Lacombe, I. Dreyer, C. Alcon, L. Jeanguenin, H. Sentenac, J.B. Thibaud, and I. Cherel. (2007). Increased functional diversity of plant K+ channels by preferential heteromerization of the shaker-like subunits AKT2 and KAT2. J. Biol. Chem. 282: 486-494. 17085433
Xie, L., S. Dolai, Y. Kang, T. Liang, H. Xie, T. Qin, L. Yang, L. Chen, and H.Y. Gaisano. (2016). Syntaxin-3 Binds and Regulates Both R- and L-Type Calcium Channels in Insulin-Secreting INS-1 832/13 Cells. PLoS One 11: e0147862. 26848587
Xu H., Abuhatzira L., Carmona GN., Vadrevu S., Satin LS. and Notkins AL. (2015). The Ia-2beta intronic miRNA, miR-153, is a negative regulator of insulin and dopamine secretion through its effect on the Cacna1c gene in mice. Diabetologia. 58(10):2298-306. 26141787
Xu Y., Ramu Y., Shin HG., Yamakaze J. and Lu Z. (2013). Energetic role of the paddle motif in voltage gating of Shaker K(+) channels. Nat Struct Mol Biol. 20(5):574-81. 23542156
Xu, F., X. Wu, L.H. Jiang, H. Zhao, and J. Pan. (2016). An organelle K+ channel is required for osmoregulation in Chlamydomonas reinhardtii. J Cell Sci. [Epub: Ahead of Print] 27311484
Xu, T., L. Nie, Y. Zhang, J. Mo, W. Feng, D. Wei, E. Petrov, L.E. Calisto, B. Kachar, K.W. Beisel, A.E. Vazquez, and E.N. Yamoah. (2007). Roles of alternative splicing in the functional properties of inner ear-specific KCNQ4 channels. J. Biol. Chem. 282: 23899-23909. 17561493
Yamagata, K., T. Senokuchi, M. Lu, M. Takemoto, M. Fazlul Karim, C. Go, Y. Sato, M. Hatta, T. Yoshizawa, E. Araki, J. Miyazaki, and W.J. Song. (2011). Voltage-gated K+ channel KCNQ1 regulates insulin secretion in MIN6 β-cell line. Biochem. Biophys. Res. Commun. 407: 620-625. 21426901
Yang, H., L. Hu, J. Shi, K. Delaloye, F.T. Horrigan, and J. Cui. (2007). Mg2+ mediates interaction between the voltage sensor and cytosolic domain to activate BK channels. Proc. Natl. Acad. Sci. U.S.A. 104: 18270-18275. 17984060
Yang, J., G. Krishnamoorthy, A. Saxena, G. Zhang, J. Shi, H. Yang, K. Delaloye, D. Sept, and J. Cui. (2010). An epilepsy/dyskinesia-associated mutation enhances BK channel activation by potentiating Ca2+ sensing. Neuron. 66: 871-883. 20620873
Yang, L., A. Katchman, J.P. Morrow, D. Doshi, and S.O. Marx. (2011). Cardiac L-type calcium channel (Cav1.2) associates with gamma subunits. FASEB J. 25: 928-936. 21127204
Ye, B. and J.M. Nerbonne. (2009). Proteolytic processing of HCN2 and co-assembly with HCN4 in the generation of cardiac pacemaker channels. J. Biol. Chem. 284: 25553-25559. 19574228
Yellen, G. (2002). The voltage-gated potassium channels and their relatives. Nature 419: 35-42. 12214225
Yellen, G. (1998). The moving parts of voltage-gated ion channels. Quat. Rev. Biophys. 31: 239-295. 10384687
Yuan, A., C.M. Santi, A. Wei, Z.W. Wang, K. Pollak, M. Nonet, L. Kaczmarek, C.M. Crowder, and L. Salkoff. (2003). The sodium-activated potassium channel is encoded by a member of the Slo gene family. Neuron. 37: 765-773. 12628167
Yuan, A., M. Dourado, A. Butler, N. Walton, A. Wei, and L. Salkoff. (2000). SLO-2, a K+ channel with an unusual Cl- dependence. Nat Neurosci 3: 771-779. 10903569
Yuan, P., M.D. Leonetti, Y. Hsiung, and R. MacKinnon. (2012). Open structure of the Ca2+ gating ring in the high-conductance Ca2+-activated K+ channel. Nature 481: 94-97. 22139424
Yuchi, Z., V.P. Pau, and D.S. Yang. (2008). GCN4 enhances the stability of the pore domain of potassium channel KcsA. FEBS J. 275: 6228-6236. 19016844
Yusifov, T., N. Savalli, C.S. Gandhi, M. Ottolia, and R. Olcese. (2008). The RCK2 domain of the human BKCa channel is a calcium sensor. Proc. Natl. Acad. Sci. U.S.A. 105: 376-381. 18162557
Zaydman MA., Silva JR., Delaloye K., Li Y., Liang H., Larsson HP., Shi J. and Cui J. (2013). Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening. Proc Natl Acad Sci U S A. 110(32):13180-5. 23861489
Zelman, A.K., A. Dawe, C. Gehring, and G.A. Berkowitz. (2012). Evolutionary and structural perspectives of plant cyclic nucleotide-gated cation channels. Front Plant Sci 3: 95. 22661976
Zhan, H., R. Stanciauskas, C. Stigloher, K.K. Dizon, M. Jospin, J.L. Bessereau, and F. Pinaud. (2014). In vivo single-molecule imaging identifies altered dynamics of calcium channels in dystrophin-mutant C. elegans. Nat Commun 5: 4974. 25232639
Zhang, G., S.Y. Huang, J. Yang, J. Shi, X. Yang, A. Moller, X. Zou, and J. Cui. (2010). Ion sensing in the RCK1 domain of BK channels. Proc. Natl. Acad. Sci. USA 107: 18700-18705. 20937866
Zhang, Y., Z. Wang, L. Zhang, Y. Cao, D. Huang, and K. Tang. (2006). Molecular cloning and stress-dependent regulation of potassium channel gene in Chinese cabbage (Brassica rapa ssp. Pekinensis). J Plant Physiol. 163: 968-978. 16949960
Zhang, Z., H.A. Ledford, S. Park, W. Wang, S. Rafizadeh, H.J. Kim, W. Xu, L. Lu, V.C. Lau, A.A. Knowlton, X.D. Zhang, E.N. Yamoah, and N. Chiamvimonvat. (2016). Distinct subcellular mechanisms for the enhancement of the surface membrane expression of SK2 channel by its interacting proteins, α-actinin2 and filamin A. J. Physiol. [Epub: Ahead of Print] 27779751
Zhao, G., Z.P. Neeb, M.D. Leo, J. Pachuau, A. Adebiyi, K. Ouyang, J. Chen, and J.H. Jaggar. (2010). Type 1 IP3 receptors activate BKCa channels via local molecular coupling in arterial smooth muscle cells. J Gen Physiol 136: 283-291. 20713546
Zhao, J. and R. Blunck. (2016). The isolated voltage sensing domain of the Shaker potassium channel forms a voltage-gated cation channel. Elife 5:. [Epub: Ahead of Print] 27710769
Zhao, Y., T. Scheuer, and W.A. Catterall. (2004). Reversed voltage-dependent gating of a bacterial sodium channel with proline substitutions in the S6 transmembrane segment. Proc. Natl. Acad. Sci. USA 101: 17873-17878. 15583130
Zhong, H., L.L. Molday, R.S. Molday, and K.-W. Yau. (2002). The heteromeric cyclic nucleotide-gated channel adopts a 3A:1B stoichiometry. Nature 420: 193-198. 12432397
Zhu, L., K. Ploessl, and H.F. Kung. (2013). Chemistry. Expanding the scope of fluorine tags for PET imaging. Science 342: 429-430. 24159034
Zhuo, R.G., P. Peng, X.Y. Liu, H.T. Yan, J.P. Xu, J.Q. Zheng, X.L. Wei, and X.Y. Ma. (2016). Allosteric coupling between proximal C-terminus and selectivity filter is facilitated by the movement of transmembrane segment 4 in TREK-2 channel. Sci Rep 6: 21248. 26879043
Zimmermann, K., A. Leffler, A. Babes, C.M. Cendan, R.W. Carr, J. Kobayashi, C. Nau, J.N. Wood, and P.W. Reeh. (2007). Sensory neuron sodium channel Nav1.8 is essential for pain at low temperatures. Nature. 447: 855-888. 17568746


Aguilar-Bryan, L., J.P. Clement IV, G. Gonzalez, K. Kunjilwar, A. Babenko, and J. Bryan. (1998). Toward understanding the assembly and structure of KATP channels. Physiol. Rev. 78: 227-245. 9457174
Alvin, Z.V., R.M. Millis, W. Hajj-Mousssa, and G.E. Haddad. (2011). ATP-Sensitive Potassium Channel Currents in Eccentrically Hypertrophied Cardiac Myocytes of Volume-Overloaded Rats. Int J. Cell Biol. 2011: 838951. 21845191
Ashen, M.D., B. O’Rourke, K.A. Kluge, D.C. Johns, and G.F. Tomaselli. (1995). Inward rectifier K+ channel from human heart and brain: cloning and stable expression in a human cell line. Am. J. Physiol. 268: H506-H511. 7840300
Babenko, A.P., G. Gonzalez, and J. Bryan. (1999). Two regions of sulfonylurea receptor specify the spontaneous bursting and ATP inhibition of KATP channel isoforms. J. Biol. Chem. 274: 11587-11592. 10206966
Bendahhou, S., M.R. Donaldson, N.M. Plaster, M. Tristani-Firouzi, Y.-H. Fu, and L.J. Ptácek. (2003). Defective potassium channel Kir2.1 trafficking underlies Andersen-Tawil Syndrome. J. Biol. Chem. 278: 51779-51785. 14522976
Bensassi F., Gallerne C., Sharaf El Dein O., Hajlaoui MR., Bacha H. and Lemaire C. (2012). Cell death induced by the Alternaria mycotoxin Alternariol. Toxicol In Vitro. 26(6):915-23. 22542754
Boim, M.A., K. Ho, M.E. Shuck, M.J. Bienkowski, J.H. Block, J.L. Slightom, Y. Yang, B.M. Brenner, and S.C. Hebert. (1995). ROMK inwardly rectifying ATP-sensitive K+ channel. II. Cloning and distribution of alternative forms. Am. J. Physiol. 268: F1132-1140. 7611454
Bonfanti DH., Alcazar LP., Arakaki PA., Martins LT., Agustini BC., de Moraes Rego FG. and Frigeri HR. (2015). ATP-dependent potassium channels and type 2 diabetes mellitus. Clin Biochem. 48(7-8):476-82. 25583094
Bukiya, A.N., S. Durdagi, S. Noskov, and A. Rosenhouse-Dantsker. (2017). Cholesterol Up-regulates G Protein-Gated Inwardly Rectifying Potassium (GIRK) Channel Activity in the Hippocampus. J. Biol. Chem. [Epub: Ahead of Print] 28213520
Bushman, J.D., Q. Zhou, and S.L. Shyng. (2013). A Kir6.2 Pore Mutation Causes Inactivation of ATP-Sensitive Potassium Channels by Disrupting PIP2-Dependent Gating. PLoS One 8: e63733. 23700433
Caballero, R., P. Dolz-Gaitón, R. Gómez, I. Amorós, A. Barana, M. González de la Fuente, L. Osuna, J. Duarte, A. López-Izquierdo, I. Moraleda, E. Gálvez, J.A. Sánchez-Chapula, J. Tamargo, and E. Delpón. (2010). Flecainide increases Kir2.1 currents by interacting with cysteine 311, decreasing the polyamine-induced rectification. Proc. Natl. Acad. Sci. USA 107: 15631-15636. 20713726
Cheng, W.W., D. Enkvetchakul, and C.G. Nichols. (2009). KirBac1.1: it's an inward rectifying potassium channel. J Gen Physiol 133: 295-305. 19204189
Choi, S.B., J.U. Kim, H. Joo, and C.K. Min. (2010). Identification and characterization of a novel bacterial ATP-sensitive K+ channel. J Microbiol 48: 325-330. 20571950
Clement, J.P., IV, K. Kunjilwar, G. Gonzalez, M. Schwanstecher, U. Panten, L. Aguilar-Bryan, and J. Bryan. (1997). Association and stoichiometry of KATP channel subunits. Neuron 18: 827-838. 9182806
Coulson, E.J., L.M. May, S.L. Osborne, K. Reid, C.K. Underwood, F.A. Meunier, P.F. Bartlett, and P. Sah. (2008). p75 neurotrophin receptor mediates neuronal cell death by activating GIRK channels through phosphatidylinositol 4,5-bisphosphate. J. Neurosci. 28: 315-324. 18171948
Doupnik, C.A. (2008). GPCR-Kir channel signaling complexes: defining rules of engagement. J Recept Signal Transduct Res 28: 83-91. 18437632
Enkvetchakul, D., J. Bhattacharyya, I. Jeliazkova, D.K. Groesbeck, C.A. Cukras, and C.G. Nichols. (2004). Functional characterization of a prokaryotic Kir channel. J. Biol. Chem. 279: 47076-47080. 15448150
Epshtein, Y., A.P. Chopra, A. Rosenhouse-Dantsker, G.B. Kowalsky, D.E. Logothetis, and I. Levitan. (2009). Identification of a C-terminus domain critical for the sensitivity of Kir2.1 to cholesterol. Proc. Natl. Acad. Sci. USA 106: 8055-8060. 19416905
Fürst, O., C.G. Nichols, G. Lamoureux, and N. D''Avanzo. (2014). Identification of a cholesterol-binding pocket in inward rectifier K+ (Kir) channels. Biophys. J. 107: 2786-2796. 25517146
Garcia ML., Priest BT., Alonso-Galicia M., Zhou X., Felix JP., Brochu RM., Bailey T., Thomas-Fowlkes B., Liu J., Swensen A., Pai LY., Xiao J., Hernandez M., Hoagland K., Owens K., Tang H., de Jesus RK., Roy S., Kaczorowski GJ. and Pasternak A. (2014). Pharmacologic inhibition of the renal outer medullary potassium channel causes diuresis and natriuresis in the absence of kaliuresis. J Pharmacol Exp Ther. 348(1):153-64. 24142912
Glaaser, I.W. and P.A. Slesinger. (2015). Structural Insights into GIRK Channel Function. Int Rev Neurobiol 123: 117-160. 26422984
Haider, S., A.I. Tarasov, T.J. Craig, M.S. Sansom, and F.M. Ashcroft. (2007). Identification of the PIP2-binding site on Kir6.2 by molecular modelling and functional analysis. EMBO. J. 26: 3749-3759. 17673911
Hansen, S.B., X. Tao, and R. MacKinnon. (2011). Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature 477: 495-498. 21874019
Hill, C.E., M.M. Briggs, J. Liu, and L. Magtanong. (2002). Cloning, expression, and localization of a rat hepatocyte inwardly rectifying potassium channel. Am. J. Physiol. Gastrointest. Liver Physiol. 282: G233-G240. 11804844
Hille, B. (1992). Ionic Channels of Excitable Membranes, 2nd ed. Sinaur Associates, Inc., Sunderland, MA.
Ho, I.H.M. and R.D. Murrell-Lagnado. (1999). Molecular determinants for sodium-dependent activation of G protein-gated K+ channels. J. Biol. Chem. 274: 8639-8648. 10085101
Huang, C.W. and C.C. Kuo. (2016). A synergistic blocking effect of Mg2+ and spermine on the inward rectifier K+ (Kir2.1) channel pore. Sci Rep 6: 21493. 26869275
Inanobe, A., A. Nakagawa, and Y. Kurachi. (2011). Interactions of cations with the cytoplasmic pores of inward rectifier K+ channels in the closed state. J. Biol. Chem. 286: 41801-41811. 21982822
Ishihara, K., T. Yamamoto, and Y. Kubo. (2009). Heteromeric assembly of inward rectifier channel subunit Kir2.1 with Kir3.1 and with Kir3.4. Biochem. Biophys. Res. Commun. 380: 832-837. 19338762
Jaroslawski, S., B. Zadek, F. Ashcroft, C. Venien-Bryan, and S. Scheuring. (2007). Direct visualization of KirBac3.1 potassium channel gating by atomic force microscopy. J. Mol. Biol. 374(2):500-505. 17936299
Kuo, A., J.M. Gulbis, J.F. Antcliff, T. Rahman, E.D. Lowe, J. Zimmer, J. Cuthbertson, F.M. Ashcroft, T. Ezaki, and D.A. Doyle. (2003). Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300: 1922-1926. 12738871
Kurata, H.T., M. Rapedius, M.J. Kleinman, T. Baukrowitz, and C.G. Nichols. (2010). Voltage-dependent gating in a "voltage sensor-less" ion channel. PLoS Biol 8: e1000315. 20208975
Leal-Pinto, E., Y. Gómez-Llorente, S. Sundaram, Q.Y. Tang, T. Ivanova-Nikolova, R. Mahajan, L. Baki, Z. Zhang, J. Chavez, I. Ubarretxena-Belandia, and D.E. Logothetis. (2010). Gating of a G protein-sensitive mammalian Kir3.1 prokaryotic Kir channel chimera in planar lipid bilayers. J. Biol. Chem. 285: 39790-39800. 20937804
Li, J., C.F. Kline, T.J. Hund, M.E. Anderson, and P.J. Mohler. (2010). Ankyrin-B regulates Kir6.2 membrane expression and function in heart. J. Biol. Chem. 285: 28723-28730. 20610380
Lin, Y.W., J.D. Bushman, F.F. Yan, S. Haidar, C. Macmullen, A. Ganguly, C.A. Stanley, and S.L. Shyng. (2008). Destabilization of ATP-sensitive potassium channel activity by novel KCNJ11 mutations identified in congenital hyperinsulinism. J. Biol. Chem. 283: 9146-9156. 18250167
Ma, D., X.D. Tang, T.B. Rogers, and P.A. Welling. (2007). An Andersen-Tawil syndrome mutation in Kir2.1 (V302M) alters the G-loop cytoplasmic K+ conduction pathway. J. Biol. Chem. 282: 5781-5789. 17166852
Marmolejo-Murillo, L.G., I.A. Aréchiga-Figueroa, E.G. Moreno-Galindo, R.A. Navarro-Polanco, A.A. Rodríguez-Menchaca, M. Cui, J.A. Sánchez-Chapula, and T. Ferrer. (2017). Chloroquine blocks the Kir4.1 channels by an open-pore blocking mechanism. Eur J Pharmacol 800: 40-47. 28216048
Martin, G.M., C. Yoshioka, E.A. Rex, J.F. Fay, Q. Xie, M.R. Whorton, J.Z. Chen, and S.L. Shyng. (2017). Cryo-EM structure of the ATP-sensitive potassium channel illuminates mechanisms of assembly and gating. Elife 6:. [Epub: Ahead of Print] 28092267
Meng, X.Y., H.X. Zhang, D.E. Logothetis, and M. Cui. (2012). The molecular mechanism by which PIP(2) opens the intracellular G-loop gate of a Kir3.1 channel. Biophys. J. 102: 2049-2059. 22824268
Meng, X.Y., S. Liu, M. Cui, R. Zhou, and D.E. Logothetis. (2016). The Molecular Mechanism of Opening the Helix Bundle Crossing (HBC) Gate of a Kir Channel. Sci Rep 6: 29399. 27439597
Minor, D.L., Jr., S.J. Masseling, Y.N. Jan, and L.Y. Jan. (1999). Transmembrane structure of an inwardly rectifying potassium channel. Cell 96: 879-891. 10102275
Ortiz, D. and J. Bryan. (2015). Neonatal Diabetes and Congenital Hyperinsulinism Caused by Mutations in ABCC8/SUR1 are Associated with Altered and Opposite Affinities for ATP and ADP. Front Endocrinol (Lausanne) 6: 48. 25926814
Partridge, C.J., D.J. Beech, and A. Sivaprasadarao. (2001). Identification and pharmacological correction of a membrane trafficking defect associated with a mutation in the sulfonylurea receptor causing familial hyperinsulinism. J. Biol. Chem. 276: 35947-35952. 11457841
Pratt, E.B. and S.L. Shyng. (2011). ATP activates ATP-sensitive potassium channels composed of mutant sulfonylurea receptor 1 and Kir6.2 with diminished PIP2 sensitivity. Channels (Austin) 5: 314-319. 21654216
Principalli, M.A., J.P. Dupuis, C.J. Moreau, M. Vivaudou, and J. Revilloud. (2015). Kir6.2 activation by sulfonylurea receptors: a different mechanism of action for SUR1 and SUR2A subunits via the same residues. Physiol Rep 3:. 26416970
Raphemot R., Estevez-Lao TY., Rouhier MF., Piermarini PM., Denton JS. and Hillyer JF. (2014). Molecular and functional characterization of Anopheles gambiae inward rectifier potassium (Kir1) channels: a novel role in egg production. Insect Biochem Mol Biol. 51:10-9. 24855023
Rodríguez-Menchaca, A.A., R.A. Navarro-Polanco, T. Ferrer-Villada, J. Rupp, F.B. Sachse, M. Tristani-Firouzi, and J.A. Sánchez-Chapula. (2008). The molecular basis of chloroquine block of the inward rectifier Kir2.1 channel. Proc. Natl. Acad. Sci. U.S.A. 105: 1364-1368. 18216262
Rodríguez-Menchaca, A.A., I.A. Aréchiga-Figueroa, and J.A. Sánchez-Chapula. (2016). The molecular basis of chloroethylclonidine block of inward rectifier (Kir2.1 and Kir4.1) K+ channels. Pharmacol Rep 68: 383-389. 26922543
Rufino, A.T., S.C. Rosa, F. Judas, A. Mobasheri, M.C. Lopes, and A.F. Mendes. (2013). Expression and function of K(ATP) channels in normal and osteoarthritic human chondrocytes: Possible role in glucose sensing. J. Cell. Biochem. 114: 1879-1889. 23494827
Ruknudin, A., D.H. Schulze, S.K. Sullivan, W.J. Lederer, and P.A. Welling. (1998). Novel subunit composition of a renal epithelial KATP channel. J. Biol. Chem. 273: 14165-14171. 9603917
Salkoff, L. and T. Jegla. (1995). Surfing the DNA databases for K+ channels nets yet more diversity. Neuron 15: 489-492. 7546728
Seino, S. (1999). ATP-sensitive potassium channels: a model of heteromultimeric potassium channel-receptor assemblies. Annu. Rev. Physiol. 61: 337-362. 10099692
Shuck, M.E., J.H. Bock, C.W. Benjamin, T.D. Tsai, K.S. Lee, J.L. Slightom, and M.J. Bienkowski. (1994). Cloning and characterization of multiple forms of the human kidney ROM-K potassium channel. J. Biol. Chem. 269: 24261-24270. 7929082
Suzuki, Y., M. Itakura, M. Kashiwagi, N. Nakamura, T. Matsuki, H. Sakuta, N. Naito, K. Takano, T. Fujita, and S. Hirose. (1999). Identification by differential display of a hypertonicity-inducible inward rectifier potassium channel highly expressed in chloride cells. J. Biol. Chem. 274: 11376-11382. 10196230
Tammaro, P. and F.M. Ashcroft. (2007). A mutation in the ATP-binding site of the Kir6.2 subunit of the KATP channel alters coupling with the SUR2A subunit. J. Physiol. 584: 743-753. 17855752
Tao, X., J.L. Avalos, J. Chen, and R. MacKinnon. (2009). Crystal structure of the eukaryotic strong inward-rectifier K+ channel Kir2.2 at 3.1 Å resolution. Science 326: 1668-1674. 20019282
Töpert, C., F. Döring, E. Wischmeyer, C. Karschin, J. Brockhaus, K. Ballanyi, C. Derst, and A. Karschin. (1998). Kir2.4: a novel K+ inward rectifier channel associated with motoneurons of cranial nerve nuclei. J. Neurosci. 18: 4096-4105. 9592090
Tselnicker, I. and N. Dascal. (2010). Further characterization of regulation of Ca(V)2.2 by stargazin. Channels (Austin) 4: 351-354. 21139418
Wang S., Makhina EN., Masia R., Hyrc KL., Formanack ML. and Nichols CG. (2013). Domain organization of the ATP-sensitive potassium channel complex examined by fluorescence resonance energy transfer. J Biol Chem. 288(6):4378-88. 23223337
Yan, F.F., Y.W. Lin, C. MacMullen, A. Ganguly, C.A. Stanley, and S.L. Shyng. (2007). Congenital hyperinsulinism associated ABCC8 mutations that cause defective trafficking of ATP-sensitive K+ channels: identification and rescue. Diabetes 56: 2339-2348. 17575084
Yang, Y., W. Shi, X. Chen, N. Cui, A.S. Konduru, Y. Shi, T.C. Trower, S. Zhang, and C. Jiang. (2011). Molecular basis and structural insight of vascular K(ATP) channel gating by S-glutathionylation. J. Biol. Chem. 286: 9298-9307. 21216949
Yokogawa, M., M. Osawa, K. Takeuchi, Y. Mase, and I. Shimada. (2011). NMR analyses of the Gbetagamma binding and conformational rearrangements of the cytoplasmic pore of G protein-activated inwardly rectifying potassium channel 1 (GIRK1). J. Biol. Chem. 286: 2215-2223. 21075842
Zeng, W.-Z., X.-J. Li, D.W. Hilgemann, and C.-L. Huang. (2003). Protein kinase C inhibits ROMK1 channel activity via a phosphatidylinositol 4,5-bisphosphate-dependent mechanism. J. Biol. Chem. 278: 16852-16856. 12615924
Zhang, C., T. Miki, T. Shibasaki, M. Yokokura, A. Saraya, and S. Seino. (2005). Identification and characterization of a novel member of the ATP-sensitive K+ channel subunit family, Kir6.3, in zebrafish. Physiol Genomics. 24: 290-297. 16317080
Zhou, Q., E.B. Pratt, and S.L. Shyng. (2013). Engineered Kir6.2 mutations that correct the trafficking defect of K(ATP) channels caused by specific SUR1 mutations. Channels (Austin) 7: 313-317. 23695995


and Plattner H. (2015). Molecular aspects of calcium signalling at the crossroads of unikont and bikont eukaryote evolution--the ciliated protozoan Paramecium in focus. Cell Calcium. 57(3):174-85. 25601027
Baylis, H.A. and R.P. Vázquez-Manrique. (2012). Genetic analysis of IP3 and calcium signalling pathways in C. elegans. Biochim. Biophys. Acta. 1820: 1253-1268. 22146231
Beutner, G., V.K. Sharma, D.R. Giovannucci, D.I. Yule and S.-S. Sheu (2001). Identification of a ryanodine receptor in rat heart mitochondria. J. Biol. Chem. 276: 21482-21488. 11297554
Bosanac, I., J.-R. Alattia, T.K. Mal, J. Chan, S. Talarico, F.K. Tong, K.I. Tong, F. Yoshikawa, T. Furuichi, M. Iwai, T. Michikawa, K. Mikoshiba, and M. Ikura. (2002). Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand. Nature 420: 696-700. 12442173
Chelu, M.G., and X.H. Wehrens. (2007). Sarcoplasmic reticulum calcium leak and cardiac arrhythmias. Biochem. Soc. Trans. 35: 952-956. 17956253
Dal Santo, P., M.A. Logan, A.D. Chisholm, and E.M. Jorgensen. (1999). The inositol trisphosphate receptor regulates a 50-second behavioral rhythm in C. elegans. Cell 98: 757-767. 10499793
des Georges, A., O.B. Clarke, R. Zalk, Q. Yuan, K.J. Condon, R.A. Grassucci, W.A. Hendrickson, A.R. Marks, and J. Frank. (2016). Structural Basis for Gating and Activation of RyR1. Cell 167: 145-157.e17. 27662087
Docampo R., Moreno SN. and Plattner H. (2014). Intracellular calcium channels in protozoa. Eur J Pharmacol. 739:4-18. 24291099
Du, G.G., B. Sandhu, B.K. Khanna, Z.H. Guo, and D.H. MacLennan. (2002). Topology of the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum (RyR1). Proc. Natl. Acad. Sci. USA 99: 16725-16730. 12486242
Efremov, R.G., A. Leitner, R. Aebersold, and S. Raunser. (2015). Architecture and conformational switch mechanism of the ryanodine receptor. Nature 517: 39-43. 25470059
Fukuda, M., T. Yamamoto, S. Nishimura, T. Kato, W. Murakami, A. Hino, M. Ono, H. Tateishi, T. Oda, S. Okuda, S. Kobayashi, N. Koseki, H. Kyushiki, and M. Yano. (2014). Enhanced binding of calmodulin to RyR2 corrects arrhythmogenic channel disorder in CPVT-associated myocytes. Biochem. Biophys. Res. Commun. 448: 1-7. 24755079
Gaburjakova, M., J. Gaburjakova, S. Reiken, F. Huang, S.O. Marx, N. Rosemblit and A.R. Marks (2001). FKBP12 binding modulates ryanodine receptor channel gating. J. Biol. Chem. 276: 16931-16935. 11279144
Gao, S., D.J. Sandstrom, H.E. Smith, B. High, J.W. Marsh, and H.A. Nash. (2013). Drosophila ryanodine receptors mediate general anesthesia by halothane. Anesthesiology 118: 587-601. 23254148
Gomez, A.C., T.W. Holford, and N. Yamaguchi. (2016). Malignant Hyperthermia-Associated Mutations in S2-S3 Cytoplasmic Loop of Type 1 Ryanodine Receptor Calcium Channel Impair Calcium-Dependent Inactivation. Am. J. Physiol. Cell Physiol. ajpcell.00134.2016. [Epub: Ahead of Print] 27558158
Gower, N.J., D.S. Walker, and H.A. Baylis. (2005). Inositol 1,4,5-trisphosphate signaling regulates mating behavior in Caenorhabditis elegans males. Mol. Biol. Cell 16: 3978-3986. 15958491
Hamada, T., Y. Sakube, J. Ahnn, D.H. Kim, and H. Kagawa. (2002). Molecular dissection, tissue localization and Ca2+ binding of the ryanodine receptor of Caenorhabditis elegans. J. Mol. Biol. 324: 123-135. 12421563
Hasan, G. and M. Rosbash. (1992). Drosophila homologues of two mammalian Ca2+-release channels: identification and expression patterns of the inositol 1,4,5-triphosphate and the ryanodine receptor genes. Development 116: 967-975. 1338312
Jones, P.P., X. Meng, B. Xiao, S. Cai, J. Bolstad, T. Wagenknecht, Z. Liu, and S.R. Chen. (2008). Localization of PKA phosphorylation site, Ser(2030), in the three-dimensional structure of cardiac ryanodine receptor. Biochem. J. 410: 261-270. 17967164
Kato, K., S. Kiyonaka, Y. Sawaguchi, M. Tohnishi, T. Masaki, N. Yasokawa, Y. Mizuno, E. Mori, K. Inoue, I. Hamachi, H. Takeshima, and Y. Mori. (2009). Molecular characterization of flubendiamide sensitivity in the lepidopterous ryanodine receptor Ca2+ release channel. Biochemistry 48: 10342-10352. 19807072
Ladenburger, E.M. and H. Plattner. (2011). Calcium-release channels in paramecium. Genomic expansion, differential positioning and partial transcriptional elimination. PLoS One 6: e27111. 22102876
Ladenburger, E.M., I. Korn, N. Kasielke, T. Wassmer, and H. Plattner. (2006). An Ins(1,4,5)P3 receptor in Paramecium is associated with the osmoregulatory system. J Cell Sci 119: 3705-3717. 16912081
Ladenburger, E.M., I.M. Sehring, I. Korn, and H. Plattner. (2009). Novel types of Ca2+ release channels participate in the secretory cycle of Paramecium cells. Mol. Cell Biol. 29: 3605-3622. 19380481
Laver, D.R., T. Hamada, J.D. Fessenden, and N. Ikemoto. (2007). The ryanodine receptor pore blocker neomycin also inhibits channel activity via a previously undescribed high-affinity Ca2+ binding site. J. Membr. Biol. 220: 11-20. 17879109
Lee, A.G. (1996). The ryanodine receptor. In: Biomembranes, Vol. 6, Transmembrane Receptors and Channels (A.G. Lee, ed.), JAI Press, Denver, CO., pp. 291-326.
Lur, G., M.W. Sherwood, E. Ebisui, L. Haynes, S. Feske, R. Sutton, R.D. Burgoyne, K. Mikoshiba, O.H. Petersen, and A.V. Tepikin. (2011). InsP₃receptors and Orai channels in pancreatic acinar cells: co-localization and its consequences. Biochem. J. 436: 231-239. 21568942
Meng, X., G. Wang, C. Viero, Q. Wang, W. Mi, X.D. Su, T. Wagenknecht, A.J. Williams, Z. Liu, and C.C. Yin. (2009). CLIC2-RyR1 interaction and structural characterization by cryo-electron microscopy. J. Mol. Biol. 387: 320-334. 19356589
Michikawa, T., H. Hamanake, H. Otsu, A. Yamamoto, A. Miyawaki, T. Furuichi, Y. Tashiro and K. Mikoshiba (1994). Transmembrane topology and sites of N-glycosylation of inositol 1,4,5-triphosphate receptor. J. Biol. Chem. 269: 9184-9189. 8132655
Mikoshiba, K. (2012). The Discovery and Structural Investigation of the IP(3) Receptor and the Associated IRBIT Protein. Adv Exp Med Biol 740: 281-304. 22453947
Mikoshiba, K., T. Furuichi, and A. Miyawaki (1996). IP3-sensitive calcium channel. J. Biochem. Biomem. 6: 273-289.
Mio, K., T. Ogura, and C. Sato. (2008). Structure of six-transmembrane cation channels revealed by single-particle analysis from electron microscopic images. J Synchrotron Radiat 15: 211-214. 18421141
Peng, W., H. Shen, J. Wu, W. Guo, X. Pan, R. Wang, S.R. Chen, and N. Yan. (2016). Structural basis for the gating mechanism of the type 2 ryanodine receptor RyR2. Science. [Epub: Ahead of Print] 27708056
Plattner, H., I.M. Sehring, I.K. Mohamed, K. Miranda, W. De Souza, R. Billington, A. Genazzani, and E.M. Ladenburger. (2012). Calcium signaling in closely related protozoan groups (Alveolata): non-parasitic ciliates (Paramecium, Tetrahymena) vs. parasitic Apicomplexa (Plasmodium, Toxoplasma). Cell Calcium 51: 351-382. 22387010
Reilly-O''Donnell, B., G.B. Robertson, A. Karumbi, C. McIntyre, W. Bal, M. Nishi, H. Takeshima, A.J. Stewart, and S.J. Pitt. (2017). Dysregulated Zn2+ homeostasis impairs cardiac type-2 ryanodine receptor and mitsugumin 23 functions, leading to sarcoplasmic reticulum Ca2+ leakage. J. Biol. Chem. [Epub: Ahead of Print] 28630041
Saier, M.H., Jr., B.H. Eng, S. Fard, J. Garg, D.A. Haggerty, W.J. Hutchinson, D.L. Jack, E.C. Lai, H.J. Liu, D.P. Nusinew, A.M. Omar, S.S. Pao, I.T. Paulsen, J.A. Quan, M. Sliwinski, T.-T. Tseng, S. Wachi and G.B. Young (1999). Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochem. Biophys. Acta 1422: 1-56. 10082980
Samsó, M. (2016). A Guide to the 3D Structure of the Ryanodine Receptor Type 1 by cryoEM. Protein. Sci. [Epub: Ahead of Print] 27671094
Schug, Z.T., P.C. da Fonseca, C.D. Bhanumathy, L. Wagner, 2nd, X. Zhang, B. Bailey, E.P. Morris, D.I. Yule, and S.K. Joseph. (2008). Molecular characterization of the inositol 1,4,5-trisphosphate receptor pore-forming segment. J. Biol. Chem. 283: 2939-2948. 18025085
Seo, M.D., S. Velamakanni, N. Ishiyama, P.B. Stathopulos, A.M. Rossi, S.A. Khan, P. Dale, C. Li, J.B. Ames, M. Ikura, and C.W. Taylor. (2012). Structural and functional conservation of key domains in InsP3 and ryanodine receptors. Nature 483: 108-112. 22286060
Shi, J.L., L. Fu, and W.D. Wang. (2015). High expression of inositol 1,4,5-trisphosphate receptor, type 2 (ITPR2) as a novel biomarker for worse prognosis in cytogenetically normal acute myeloid leukemia. Oncotarget 6: 5299-5309. 25779662
Shirvanyants, D., S. Ramachandran, Y. Mei, L. Xu, G. Meissner, and N.V. Dokholyan. (2014). Pore dynamics and conductance of RyR1 transmembrane domain. Biophys. J. 106: 2375-2384. 24896116
Subedi, K.P., T.D. Singh, J.C. Kim, and S.H. Woo. (2012). Cloning and expression of a new inositol 1,4,5-trisphosphate receptor type 1 splice variant in adult rat atrial myocytes. Cell Mol Biol Lett 17: 124-135. 22207335
Subramanian, M., S. Jayakumar, S. Richhariya, and G. Hasan. (2013). Loss of IP3 receptor function in neuropeptide secreting neurons leads to obesity in adult Drosophila. BMC Neurosci 14: 157. 24350669
Sun, L., J. Shay, M. McLoed, K. Roodhouse, S.H. Chung, C.M. Clark, J.K. Pirri, M.J. Alkema, and C.V. Gabel. (2014). regeneration in C. elegans requires subcellular calcium release by ryanodine receptor channels and can be enhanced by optogenetic stimulation. J. Neurosci. 34: 15947-15956. 25429136
Sun, Q.A., D.T. Hess, L. Nogueira, S. Yong, D.E. Bowles, J. Eu, K.R. Laurita, G. Meissner, and J.S. Stamler. (2011). Oxygen-coupled redox regulation of the skeletal muscle ryanodine receptor-Ca2+ release channel by NADPH oxidase 4. Proc. Natl. Acad. Sci. USA 108: 16098-16103. 21896730
Tao, Y., S. Gutteridge, E.A. Benner, L. Wu, D.F. Rhoades, M.D. Sacher, M.A. Rivera, J. Desaeger, and D. Cordova. (2013). Identification of a critical region in the Drosophila ryanodine receptor that confers sensitivity to diamide insecticides. Insect Biochem Mol Biol 43: 820-828. 23806522
Thomas, N.L., C.H. George, A.J. Williams, and F.A. Lai. (2007). Ryanodine receptor mutations in arrhythmias: advances in understanding the mechanisms of channel dysfunction. Biochem. Soc. Trans. 35:946-951. 17956252
Thomas-Virnig, C.L., P.A. Sims, J.S. Simske, and J. Hardin. (2004). The inositol 1,4,5-trisphosphate receptor regulates epidermal cell migration in Caenorhabditis elegans. Curr. Biol. 14: 1882-1887. 15498499
Troczka, B.J., A.J. Williams, C. Bass, M.S. Williamson, L.M. Field, and T.G. Davies. (2015). Molecular cloning, characterisation and mRNA expression of the ryanodine receptor from the peach-potato aphid, Myzus persicae. Gene 556: 106-112. 25447916
Tunwell, R.E.A., C. Wickenden, B.M.A. Bertrand, V.I. Shevchenko, M.B. Walsh, P.D. Allen and F.A. Lai (1996). The human cardiac muscle ryanodine receptor-calcium release channel: identification, primary structure and topological analysis. Biochem. J. 318: 477-487. 8809036
Van Petegem, F. (2012). Ryanodine receptors: structure and function. J. Biol. Chem. 287: 31624-31632. 22822064
Walker, D.S., N.J. Gower, S. Ly, G.L. Bradley, and H.A. Baylis. (2002). Regulated disruption of inositol 1,4,5-trisphosphate signaling in Caenorhabditis elegans reveals new functions in feeding and embryogenesis. Mol. Biol. Cell 13: 1329-1337. 11950942
Walker, D.S., R.P. Vázquez-Manrique, N.J. Gower, E. Gregory, W.R. Schafer, and H.A. Baylis. (2009). Inositol 1,4,5-trisphosphate signalling regulates the avoidance response to nose touch in Caenorhabditis elegans. PLoS Genet 5: e1000636. 19730689
Walker, M.A., T. Kohl, S.E. Lehnart, J.L. Greenstein, W.J. Lederer, and R.L. Winslow. (2015). On the Adjacency Matrix of RyR2 Cluster Structures. PLoS Comput Biol 11: e1004521. 26545234
Wang, K.Y., X.Z. Jiang, G.R. Yuan, F. Shang, and J.J. Wang. (2015). Molecular Characterization, mRNA Expression and Alternative Splicing of Ryanodine Receptor Gene in the Brown Citrus Aphid, Toxoptera citricida (Kirkaldy). Int J Mol Sci 16: 15220-15234. 26154764
Wei, R., X. Wang, Y. Zhang, S. Mukherjee, L. Zhang, Q. Chen, X. Huang, S. Jing, C. Liu, S. Li, G. Wang, Y. Xu, S. Zhu, A.J. Williams, F. Sun, and C.C. Yin. (2016). Structural insights into Ca2+-activated long-range allosteric channel gating of RyR1. Cell Res 26: 977-994. 27573175
Wheeler, G.L. and C. Brownlee. (2008). Ca2+ signalling in plants and green algae--changing channels. Trends Plant Sci. 13: 506-514. 18703378
Wu, S., F. Wang, J. Huang, Q. Fang, Z. Shen, and G. Ye. (2013). Molecular and cellular analyses of a ryanodine receptor from hemocytes of Pieris rapae. Dev Comp Immunol 41: 1-10. 23603125
Xia, R., T. Stangler and J.J. Abramson (2000). Skeletal muscle ryanodine receptor is a redox sensor with a well defined redox potential that is sensitive to channel modulators. J. Biol. Chem. 275: 36556-36561. 10952995
Xu, L., Y. Wang, N. Yamaguchi, D.A. Pasek, and G. Meissner. (2008). Single channel properties of heterotetrameric mutant RyR1 ion channels linked to core myopathies. J. Biol. Chem. 283: 6321-6329. 18171678
Yuan, G.R., W.Z. Shi, W.J. Yang, X.Z. Jiang, W. Dou, and J.J. Wang. (2014). Molecular characteristics, mRNA expression, and alternative splicing of a ryanodine receptor gene in the oriental fruit fly, Bactrocera dorsalis (Hendel). PLoS One 9: e95199. 24740254
Zalk, R. and A.R. Marks. (2017). Ca2+ Release Channels Join the ''Resolution Revolution''. Trends. Biochem. Sci. [Epub: Ahead of Print] 28499500
Zalk, R., O.B. Clarke, A. des Georges, R.A. Grassucci, S. Reiken, F. Mancia, W.A. Hendrickson, J. Frank, and A.R. Marks. (2015). Structure of a mammalian ryanodine receptor. Nature 517: 44-49. 25470061
Zhao, M., P. Li, X. Li, L. Zhang, R.J. Winkfein and S.R.W. Chen (1999). Molecular identification of the ryanodine receptor pore-forming segment. J. Biol. Chem. 274: 25971-25974. 10473538


Hu H, Bandell M, Grandl J, Petrus M. (2012) 0
Agosto, M.A., Z. Zhang, F. He, I.A. Anastassov, S.J. Wright, J. McGehee, and T.G. Wensel. (2014). Oligomeric State of Purified Transient Receptor Potential Melastatin-1 (TRPM1), a Protein Essential for Dim Light Vision. J. Biol. Chem. 289: 27019-27033. 25112866
Amantini, C., M. Mosca, M. Nabissi, R. Lucciarini, S. Caprodossi, A. Arcella, F. Giangaspero, and G. Santoni. (2007). Capsaicin-induced apoptosis of glioma cells is mediated by TRPV1 vanilloid receptor and requires p38 MAPK activation. J Neurochem 102: 977-990. 17442041
Arias-Darraz, L., D. Cabezas, C.K. Colenso, M. Alegría-Arcos, F. Bravo-Moraga, I. Varas-Concha, D.E. Almonacid, R. Madrid, and S. Brauchi. (2015). A transient receptor potential ion channel in Chlamydomonas shares key features with sensory transduction-associated TRP channels in mammals. Plant Cell 27: 177-188. 25595824
Baez, D., N. Raddatz, G. Ferreira, C. Gonzalez, and R. Latorre. (2014). Gating of thermally activated channels. Curr Top Membr 74: 51-87. 25366233
Barritt, G. and G. Rychkov. (2005). TRPs as mechanosensitive channels. Nat. Cell Biol. 7: 105-107. 15689975
Bautista D.M., J. Siemens, J.M. Glazer, P.R. Tsuruda, A.I. Basbaum, C.L. Stucky, S.E. Jordt, D. Julius. (2007). The menthol receptor TRPM8 is the principal detector of environmental cold. Nature. 448: 204-208. 17538622
Benemei, S., R. Patacchini, M. Trevisani, and P. Geppetti. (2015). TRP channels. Curr Opin Pharmacol 22: 18-23. 25725213
Bidaux, G., A.S. Borowiec, C. Dubois, P. Delcourt, C. Schulz, F.V. Abeele, G. Lepage, E. Desruelles, A. Bokhobza, E. Dewailly, C. Slomianny, M. Roudbaraki, L. Héliot, J.L. Bonnal, B. Mauroy, P. Mariot, L. Lemonnier, and N. Prevarskaya. (2016). Targeting of short TRPM8 isoforms induces 4TM-TRPM8-dependent apoptosis in prostate cancer cells. Oncotarget. [Epub: Ahead of Print] 27074561
Bidaux, G., M. Sgobba, L. Lemonnier, A.S. Borowiec, L. Noyer, S. Jovanovic, A.V. Zholos, and S. Haider. (2015). Functional and Modeling Studies of the Transmembrane Region of the TRPM8 Channel. Biophys. J. 109: 1840-1851. 26536261
BINET, L. (1960). [A rural center of medical biology]. Biol Med (Paris) 49: 165-177. 13800762
Binshtok, A.M., B.P. Bean, and C.J. Woolf. (2007). Inhibition of nociceptors by TRPV1-mediated entry of impermeant sodium channel blockers. Nature. 449(7162):607-610. 17914397
Bohlen, C.J., A. Priel, S. Zhou, D. King, J. Siemens, and D. Julius. (2010). A bivalent tarantula toxin activates the capsaicin receptor, TRPV1, by targeting the outer pore domain. Cell 141: 834-845. 20510930
Brauchi, S. and P. Orio. (2011). Voltage sensing in thermo-TRP channels. Adv Exp Med Biol 704: 517-530. 21290314
Cabezas-Bratesco D., Brauchi S., Gonzalez-Teuber V., Steinberg X., Valencia I. and Colenso C. (201). The Different Roles of The Channel-Kinases TRPM6 and TRPM7. Curr Med Chem. 22(25):2943-53. 26179995
Caffrey M., Li D. and Dukkipati A. (2012). Membrane protein structure determination using crystallography and lipidic mesophases: recent advances and successes. Biochemistry. 51(32):6266-88. 22783824
Cai X., Srivastava S., Surindran S., Li Z. and Skolnik EY. (2014). Regulation of the epithelial Ca(2)(+) channel TRPV5 by reversible histidine phosphorylation mediated by NDPK-B and PHPT1. Mol Biol Cell. 25(8):1244-50. 24523290
Callera, G.E., Y. He, A. Yogi, A.C. Montezano, T. Paravicini, G. Yao, and R.M. Touyz. (2009). Regulation of the novel Mg2+ transporter transient receptor potential melastatin 7 (TRPM7) cation channel by bradykinin in vascular smooth muscle cells. J Hypertens 27: 155-166. 19145781
Camacho Londoño, J.E., Q. Tian, K. Hammer, L. Schröder, J. Camacho Londoño, J.C. Reil, T. He, M. Oberhofer, S. Mannebach, I. Mathar, S.E. Philipp, W. Tabellion, F. Schweda, A. Dietrich, L. Kaestner, U. Laufs, L. Birnbaumer, V. Flockerzi, M. Freichel, and P. Lipp. (2015). A background Ca2+ entry pathway mediated by TRPC1/TRPC4 is critical for development of pathological cardiac remodelling. Eur Heart J 36: 2257-2266. 26069213
Cao, E., M. Liao, Y. Cheng, and D. Julius. (2013). TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504: 113-118. 24305161
Caterina, M.J., M.A. Schumacher, M. Tominaga, T.A. Rosen, J. D. Levine, and D. Julius. (1997). The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389: 816-824. 9349813
Chandel, A., K.K. Das, and A.K. Bachhawat. (2016). Glutathione depletion activates the yeast vacuolar TRP channel, Yvc1p by reversible glutathionylation of specific cysteines. Mol. Biol. Cell. [Epub: Ahead of Print] 27708136
Chang Y., Schlenstedt G., Flockerzi V. and Beck A. (2010). Properties of the intracellular transient receptor potential (TRP) channel in yeast, Yvc1. FEBS Lett. 584(10):2028-32. 20035756
Chen, J., X.F. Zhang, M.E. Kort, J.R. Huth, C. Sun, L.J. Miesbauer, S.C. Cassar, T. Neelands, V.E. Scott, R.B. Moreland, R.M. Reilly, P.J. Hajduk, P.R. Kym, C.W. Hutchins, and C.R. Faltynek. (2008). Molecular determinants of species-specific activation or blockade of TRPA1 channels. J. Neurosci. 28: 5063-5071. 18463259
Cheng Y., Nash H.A. (2007). Drosophila TRP channels require a protein with a distinctive motif encoded by the inaF locus. Proc. Natl. Acad. Sci. U.S.A. 104: 17730-17734. 17968007
Cheng, K.T., X. Liu, H.L. Ong, and I.S. Ambudkar. (2008). Functional requirement for Orai1 in store-operated TRPC1-STIM1 channels. J. Biol. Chem. 283: 12935-12940. 18326500
Chubanov, V., K.P. Schlingmann, J. Waring, J. Heinzinger, S. Kaske, S. Waldegger, M.M. Schnitzler, and T. Gudermann. (2007). Hypomagnesemia with secondary hypocalcemia due to a missense mutation in the putative pore-forming region of TRPM6. J. Biol. Chem. 282: 7656-7667. 17197439
Chubanov, V., S. Waldegger, M.M. y Schnitzler, H. Vitzthum, M.C. Sassen, H.W. Seyberth, M. Konrad, and T. Gudermann. (2004). Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc. Natl. Acad. Sci. USA 101: 2894-2899. 14976260
Clapham D.E. (2007). SnapShot: mammalian TRP channels. Cell. 129: 220. 17418797
Clapham, D.E. (1996). TRP is cracked, but is CRAC TRP? Neuron 16: 1069-1072. 8663982
Clapham, D.E. (2003). TRP channels as cellular sensors. Nature 426: 517-524. 14654832
Csanády, L. and B. Törocsik. (2009). Four Ca2+ ions activate TRPM2 channels by binding in deep crevices near the pore but intracellularly of the gate. J Gen Physiol 133: 189-203. 19171771
D'hoedt, D., G. Owsianik, J. Prenen, M.P. Cuajungco, C. Grimm, S. Heller, T. Voets, and B. Nilius. (2008). Stimulus-specific modulation of the cation channel TRPV4 by PACSIN 3. J. Biol. Chem. 283(10): 6272-6280. 18174177
Dodier, Y., U. Banderali, H. Klein, O. Topalak, O. Dafi, M. Simoes, G. Bernatchez, R. Sauvé, and L. Parent. (2004). Outer pore topology of the ECaC-TRPV5 channel by cysteine scan mutagenesis. J. Biol. Chem. 279: 6853-6862. 14630907
Dohke, Y., Y.S. Oh, I.S. Ambudkar, and R.J. Turner. (2004). Biogenesis and topology of the transient receptor potential Ca2+ channel TRPC1. J. Biol. Chem. 279: 12242-12248. 14707123
Donate-Macian P., Bano-Polo M., Vazquez-Ibar JL., Mingarro I. and Peralvarez-Marin A. (2015). Molecular and topological membrane folding determinants of transient receptor potential vanilloid 2 channel. Biochem Biophys Res Commun. 462(3):221-6. 25956061
Du, E.J., T.J. Ahn, I. Kwon, J.H. Lee, J.H. Park, S.H. Park, T.M. Kang, H. Cho, T.J. Kim, H.W. Kim, Y. Jun, H.J. Lee, Y.S. Lee, J.Y. Kwon, and K. Kang. (2016). TrpA1 Regulates Defecation of Food-Borne Pathogens under the Control of the Duox Pathway. PLoS Genet 12: e1005773. 26726767
Feng, Z., W. Li, A. Ward, B.J. Piggott, E.R. Larkspur, P.W. Sternberg, and X.Z. Xu. (2006). A C. elegans model of nicotine-dependent behavior: regulation by TRP-family channels. Cell 127: 621-633. 17081982
García-Martínez, C., C. Morenilla-Palao, R. Planells-Cases, J.M. Merino, and A. Ferrer-Montiel. (2000). Identification of an aspartic residue in the P-loop of the vanilloid receptor that modulates pore properties. J. Biol. Chem. 275: 32552-32558. 10931826
García-Sanz, N., P. Valente, A. Gomis, A. Fernández-Carvajal, G. Fernández-Ballester, F. Viana, C. Belmonte, and A. Ferrer-Montiel. (2007). A role of the transient receptor potential domain of vanilloid receptor I in channel gating. J. Neurosci. 27: 11641-11650. 17959807
Gevaert, T., J. Vriens, A. Segal, W. Everaerts, T. Roskams, K. Talavera, G. Owsianik, W. Liedtke, D. Daelemans, I. Dewachter, F. van Leuven, T. Voets, D. de Ridder, and B. Nilius. (2007). Deletion of the transient receptor potential cation channel TRPV4 (Trp12) impairs murine bladder voiding. J. Clin. Invest. 117(11): 3453-3462.
Ghata, J. and B.D. Cowley, Jr. (2017). Polycystic Kidney Disease. Compr Physiol 7: 945-975. 28640449
Gopal, S., P. Søgaard, H.A. Multhaupt, C. Pataki, E. Okina, X. Xian, M.E. Pedersen, T. Stevens, O. Griesbeck, P.W. Park, R. Pocock, and J.R. Couchman. (2015). Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels. J. Cell Biol. 210: 1199-1211. 26391658
Groppi, S., F. Belotti, R.L. Brandão, E. Martegani, and R. Tisi. (2011). Glucose-induced calcium influx in budding yeast involves a novel calcium transport system and can activate calcineurin. Cell Calcium 49: 376-386. 21511333
Haladyna, J.N., T. Pastuer, S.S. Riedel, A.L. Perraud, and K.M. Bernt. (2016). Transient potential receptor melastatin-2 (Trpm2) does not influence murine MLL-AF9-driven AML leukemogenesis or in vitro response to chemotherapy. Exp Hematol. [Epub: Ahead of Print] 27033163
Hardie, R.C. and B. Minke. (1993). Novel Ca2+ channels underlying transduction in Drosophila photoreceptors: implications for phosphoinositide-mediated Ca2+ mobilization. Trends Neurosci 16: 371-376. 7694408
Hoenderop, J.G., A.W. van der Kemp, A. Hartog, S.F. van de Graaf, C.H. van Os, P.H. Willems, and R.J. Bindels. (1999). Molecular identification of the apical Ca2+ channel in 1, 25-dihydroxyvitamin D3-responsive epithelia. J. Biol. Chem. 274: 8375-8378. 10085067
Hoenderop, J.G.J., T. Voets, S. Hoefs, F. Weidema, J. Prenen, B. Nilius, and R.J.M. Bindels. (2003). Homo- and heterotetrameric architecture of the epithelial Ca2+ channels TRPV5 and TRPV6. EMBO J. 22: 776-785. 12574114
Hofmann, L., H. Wang, A. Beck, U. Wissenbach, and V. Flockerzi. (2016). A conserved gating element in TRPV6 channels. Cell Calcium. [Epub: Ahead of Print] 28029385
Hofmann, L., H. Wang, W. Zheng, S.E. Philipp, P. Hidalgo, A. Cavalié, X.Z. Chen, A. Beck, and V. Flockerzi. (2017). The S4---S5 linker - gearbox of TRP channel gating. Cell Calcium. [Epub: Ahead of Print] 28416203
Inoue, K., D. Branigan, and Z.G. Xiong. (2010). Zinc-induced neurotoxicity mediated by transient receptor potential melastatin 7 channels. J. Biol. Chem. 285: 7430-7439. 20048154
Jirku, M., Z. Lansky, L. Bednarova, M. Sulc, L. Monincova, P. Majer, L. Vyklicky, J. Vondrasek, J. Teisinger, and K. Bousova. (2016). The characterization of a novel S100A1 binding site in the N-terminus of TRPM1. Int J Biochem. Cell Biol. [Epub: Ahead of Print] 27435061
Jo, A.O., M. Lakk, A.M. Frye, T.T. Phuong, S.N. Redmon, R. Roberts, B.A. Berkowitz, O. Yarishkin, and D. Križaj. (2016). Differential volume regulation and calcium signaling in two ciliary body cell types is subserved by TRPV4 channels. Proc. Natl. Acad. Sci. USA 113: 3885-3890. 27006502
John Haynes, W., X.L. Zhou, Z.W. Su, S.H. Loukin, Y. Saimi, and C. Kung. (2008). Indole and other aromatic compounds activate the yeast TRPY1 channel. FEBS Lett. 582: 1514-1518. 18396169
Jordt, S.-E. and D. Julius. (2002). Molecular basis for species-specific sensitivity to "hot" chili peppers. Cell 108: 421-430. 11853675
Jordt, S.E., D.M. Bautista, H.H. Chuang, D.D. McKemy, P.M. Zygmunt, E.D. Hogestatt, I.D. Meng, and D. Julius. (2004). Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427: 260-265. 14712238
Kang, L., J. Gao, W.R. Schafer, Z. Xie, and X.Z. Xu. (2010). C. elegans TRP family protein TRP-4 is a pore-forming subunit of a native mechanotransduction channel. Neuron. 67: 381-391. 20696377
Katz, B., T. Oberacker, D. Richter, H. Tzadok, M. Peters, B. Minke, and A. Huber. (2013). Drosophila TRP and TRPL are assembled as homomultimeric channels in vivo. J Cell Sci 126: 3121-3133. 23687378
Kedei, N., T. Szabo, J.D. Lile, J.J. Treanor, Z. Olah, M.J. Iadarola, and P.M. Blumberg. (2001). Analysis of the native quaternary structure of vanilloid receptor 1. J. Biol. Chem. 276: 28613-28619. 11358970
Kemp, B.J., D.L. Church, J. Hatzold, B. Conradt, and E.J. Lambie. (2009). Gem-1 encodes an SLC16 monocarboxylate transporter-related protein that functions in parallel to the gon-2 TRPM channel during gonad development in Caenorhabditis elegans. Genetics 181: 581-591. 19087963
Kim, J., Y.D. Chung, D. Park, S. Choi, D.W. Shin, H. Soh, H.W. Lee, W. Son, J. Yim, C.-S. Park, M.J. Kernan, and C. Kim. (2003). A TRPV family ion channel required for hearing in Drosophila. Nature 424: 81-82. 12819662
Kim, S.J., G.H. Park, D. Kim, J. Lee, H. Min, E. Wall, C.J. Lee, M.I. Simon, S.J. Lee, and S.K. Han. (2011). Analysis of cellular and behavioral responses to imiquimod reveals a unique itch pathway in transient receptor potential vanilloid 1 (TRPV1)-expressing neurons. Proc. Natl. Acad. Sci. USA 108: 3371-3376. 21300878
Kim, S.J., Y.S. Kim, J.P. Yuan, R.S. Petralia, P.F. Worley, and D.J. Linden. (2003). Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluR1. Nature 426: 285-291. 14614461
Kiselyov, K., X. Xu, G. Mozhayeva, T. Kuo, I. Pessah, G. Mignery, X. Zhu, L. Birnbaumer, and S. Muallem. (1998). Functional interaction between InsP3 receptors and store-operated Htrp3 channels. Nature 396: 478-482. 9853757
Knowles, H., J.W. Heizer, Y. Li, K. Chapman, C.A. Ogden, K. Andreasen, E. Shapland, G. Kucera, J. Mogan, J. Humann, L.L. Lenz, A.D. Morrison, and A.L. Perraud. (2011). Transient Receptor Potential Melastatin 2 (TRPM2) ion channel is required for innate immunity against Listeria monocytogenes. Proc. Natl. Acad. Sci. USA 108: 11578-11583. 21709234
Ko, K.D., G. Bhardwaj, Y. Hong, G.S. Chang, K. Kiselyov, D.B. van Rossum, and R.L. Patterson. (2009). Phylogenetic profiles reveal structural/functional determinants of TRPC3 signal-sensing antennae. Commun Integr Biol 2: 133-137. 19704910
Krapivinsky, G., L. Krapivinsky, Y. Manasian, and D.E. Clapham. (2014). The TRPM7 Chanzyme Is Cleaved to Release a Chromatin-Modifying Kinase. Cell 157: 1061-1072. 24855944
Kremeyer, B., F. Lopera, J.J. Cox, A. Momin, F. Rugiero, S. Marsh, C.G. Woods, N.G. Jones, K.J. Paterson, F.R. Fricker, A. Villegas, N. Acosta, N.G. Pineda-Trujillo, J.D. Ramírez, J. Zea, M.W. Burley, G. Bedoya, D.L. Bennett, J.N. Wood, and A. Ruiz-Linares. (2010). A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron. 66: 671-680. 20547126
Kühn, F.J., G. Knop, and A. Lückhoff. (2007). The transmembrane segment S6 determines cation versus anion selectivity of TRPM2 and TRPM8. J. Biol. Chem. 282: 27598-27609. 17604279
Kurganov, E., S. Saito, C.T. Saito, and M. Tominaga. (2017). Requirement of extracellular Ca2+ binding to specific amino acids for heat-evoked activation of TRPA1. J. Physiol. [Epub: Ahead of Print] 28194754
Latorre, R., C. Zaelzer, and S. Brauchi. (2009). Structure-functional intimacies of transient receptor potential channels. Q. Rev. Biophys. 42: 201-246. 20025796
Launay, P., A. Fleig, A.-L. Perraud, A.M. Scharenberg, R. Penner, and J.-P. Kinet. (2002). TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 109: 397-407. 12015988
Laursen, W.J., E.O. Anderson, L.J. Hoffstaetter, S.N. Bagriantsev, and E.O. Gracheva. (2015). Species-specific temperature sensitivity of TRPA1. Temperature (Austin) 2: 214-226. 27227025
Laursen, W.J., S.N. Bagriantsev, and E.O. Gracheva. (2014). TRPA1 channels: chemical and temperature sensitivity. Curr Top Membr 74: 89-112. 25366234
Lee, Y., Y. Lee, J. Lee, S. Bang, S. Hyun, J. Kang, S.T. Hong, E. Bae, B.K. Kaang, and J. Kim. (2005). Pyrexia is a new thermal transient receptor potential channel endowing tolerance to high temperatures in Drosophila melanogaster. Nat. Genet. 37: 305-310. 15731759
Leffler, A., A. Lattrell, S. Kronewald, F. Niedermirtl, and C. Nau. (2011). Activation of TRPA1 by membrane permeable local anesthetics. Mol Pain 7: 62. 21861907
Leffler, A., M.J. Fischer, D. Rehner, S. Kienel, K. Kistner, S.K. Sauer, N.R. Gavva, P.W. Reeh, and C. Nau (2008). The vanilloid receptor TRPV1 is activated and sensitized by local anesthetics in rodent sensory neurons. J Cl- in Invest 118: 763-776. 18172555
Li, M., J. Du, J. Jiang, W. Ratzan, L.T. Su, L.W. Runnels, and L. Yue. (2007). Molecular Determinants of Mg2+ and Ca2+ Permeability and pH Sensitivity in TRPM6 and TRPM7. J. Biol. Chem. 282(35):25817-25830. 17599911
Liao, B.K., A.N. Deng, S.C. Chen, M.Y. Chou, and P.P. Hwang. (2007). Expression and water calcium dependence of calcium transporter isoforms in zebrafish gill mitochondrion-rich cells. BMC Genomics. 8: 354. 17915033
Liao, M., E. Cao, D. Julius, and Y. Cheng. (2013). Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504: 107-112. 24305160
Lichtenegger, M., T. Stockner, M. Poteser, H. Schleifer, D. Platzer, C. Romanin, and K. Groschner. (2013). A novel homology model of TRPC3 reveals allosteric coupling between gate and selectivity filter. Cell Calcium 54: 175-185. 23800762
Liedtke, W., Y. Choe, M.A. Martí-Renom, A.M. Bell, C.S. Denis, A. Sali, A.J. Hudspeth, J.M. Friedman and S. Heller (2000). Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103: 525-535. 11081638
Liu X., K.T. Cheng, B.C. Bandyopadhyay, B. Pani, A. Dietrich, B.C. Paria, W.D. Swaim, D. Beech, E. Yildrim, B.B. Singh, L. Birnbaumer, I.S. Ambudkar. (2007a). Attenuation of store-operated Ca2+ current impairs salivary gland fluid secretion in TRPC1(-/-) mice. Proc Natl Acad Sci U S A. 104: 17542-17547. 17956991
Liu, L., Y. Li, R. Wang, C. Yin, Q. Dong, H. Hing, C. Kim, and M.J. Welsh. (2007). Drosophila hygrosensation requires the TRP channels water witch and nanchung. Nature 450: 294-298. 17994098
Liu, S., C. Guo, Z. Dang, and X. Liang. (2016). Comparative proteomics reveal the mechanism of Tween80 enhanced phenanthrene biodegradation by Sphingomonas sp. GY2B. Ecotoxicol Environ Saf 137: 256-264. [Epub: Ahead of Print] 27984820
Liu, X., B.B. Singh, and I.S. Ambudkar. (2003). TRPC1 is required for functional store-operated Ca2+ channels. Role of acidic amino acid residues in the S5-S6 region. J. Biol. Chem. 278: 11337-11343. 12536150
Liu, X., B.C. Bandyopadhyay, B.B. Singh, K. Groschner, and I.S. Ambudkar. (2005). Molecular analysis of a store-operated and 2-acetyl-sn-glycerol-sensitive non-selective cation channel. Heteromeric assembly of TRPC1-TRPC3. J. Biol. Chem. 280: 21600-21606. 15834157
Loukin, S., Z. Su, X. Zhou, and C. Kung. (2010). Forward genetic analysis reveals multiple gating mechanisms of TRPV4. J. Biol. Chem. 285: 19884-19890. 20424166
Luo, J. and H. Hu. (2014). Thermally activated TRPV3 channels. Curr Top Membr 74: 325-364. 25366242
Ma, H.T., Z. Peng, T. Hiragun, S. Iwaki, A.M. Gilfillan, and M.A. Beaven. (2008). Canonical transient receptor potential 5 channel in conjunction with Orai1 and STIM1 allows Sr2+ entry, optimal influx of Ca2+, and degranulation in a rat mast cell line. J. Immunol. 180: 2233-2239. 18250430
Ma, Y., R. Sugiura, A. Koike, H. Ebina, S.O. Sio, and T. Kuno. (2011). Transient receptor potential (TRP) and Cch1-Yam8 channels play key roles in the regulation of cytoplasmic Ca2+ in fission yeast. PLoS One 6: e22421. 21811607
Mack, K. and M.J.M. Fischer. (2017). Disrupting sensitization of TRPV4. Neuroscience 352: 1-8. [Epub: Ahead of Print] 28372987
Macpherson, L.J., A.E. Dubin, M.J. Evans, F. Marr, P.G. Schultz, B.F. Cravatt, and A. Patapoutian. (2007). Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445: 541-545. 17237762
Maruyama, Y., T. Ogura, K. Mio, S. Kiyonaka, K. Kato, Y. Mori, and C. Sato. (2007). Three-dimensional Reconstruction Using Transmission Electron Microscopy Reveals a Swollen, Bell-shaped Structure of Transient Receptor Potential Melastatin Type 2 Cation Channel. J. Biol. Chem. 282: 36961-36970. 17940282
Matta, J.A. and G.P. Ahern. (2007). Voltage is a partial activator of rat thermosensitive TRP channels. J. Physiol. 585(Pt 2):469-482. 17932142
Matta, J.A., P.M. Cornett, R.L. Miyares, K. Abe, N. Sahibzada, and G.P. Ahern. (2008). General anesthetics activate a nociceptive ion channel to enhance pain and inflammation. Proc. Natl. Acad. Sci. USA 105: 8784-8789. 18574153
McCleskey E.W. and M.S. Gold. (1999). Ion channels of nociception. Annu. Rev. Physiol. 61: 835-856. 10099712
Mederos y Schnitzler, M., J. Wäring, T. Gudermann, and V. Chubanov. (2008). Evolutionary determinants of divergent calcium selectivity of TRPM channels. FASEB J. 22(5): 1540-1551. 18073331
Mercado, J., A. Gordon-Shaag, W.N. Zagotta, and S.E. Gordon. (2010). Ca2+-dependent desensitization of TRPV2 channels is mediated by hydrolysis of phosphatidylinositol 4,5-bisphosphate. J. Neurosci. 30: 13338-13347. 20926660
Minke, B. and B. Cook. (2002). TRP channel proteins and signal transduction. Physiol. Rev. 82: 429-472. 11917094
Mio, K., T. Ogura, and C. Sato. (2008). Structure of six-transmembrane cation channels revealed by single-particle analysis from electron microscopic images. J Synchrotron Radiat 15: 211-214. 18421141
Mio, K., T. Ogura, S. Kiyonaka, Y. Hiroaki, Y. Tanimura, Y. Fujiyoshi, Y. Mori, and C. Sato. (2007). The TRPC3 channel has a large internal chamber surrounded by signal sensing antennas. J. Mol. Biol. 367: 373-383. 17258231
Moiseenkova-Bell, V.Y., L.A. Stanciu, I.I. Serysheva, B.J. Tobe, and T.G. Wensel. (2008). Structure of TRPV1 channel revealed by electron cryomicroscopy. Proc. Natl. Acad. Sci. USA 105: 7451-7455. 18490661
Montell, C. (2005). The TRP superfamily of cation channels. Science STKE 272: 1-24. 15728426
Montell, C. and G.M. Rubin. (1989). Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2: 1313-1323. 2516726
Montell, C., L. Birnbaumer, and V. Flockerzi. (2002). The TRP channels, a remarkably functional family. Cell 108: 595-598. 11893331
Motter, A.L. and G.P. Ahern. (2012). TRPA1 Is a Polyunsaturated Fatty Acid Sensor in Mammals. PLoS One 7: e38439. 22723860
Moussaieff, A., N. Rimmerman, T. Bregman, A. Straiker, C.C. Felder, S. Shoham, Y. Kashman, S.M. Huang, H. Lee, E. Shohami, K. Mackie, M.J. Caterina, J.M. Walker, E. Fride, and R. Mechoulam. (2008). Incensole acetate, an incense component, elicits psychoactivity by activating TRPV3 channels in the brain. FASEB J. 22: 3024-3034. 18492727
Mukerji, N., T.V. Damodaran, and M.P. Winn. (2007). TRPC6 and FSGS: the latest TRP channelopathy. Biochim. Biophys. Acta. 1772: 859-868. 17459670
Murillo-Rodriguez, E., J.C. Pastrana-Trejo, M. Salas-Crisóstomo, and M. de-la-Cruz. (2017). The endocannabinoid system modulating levels of consciousness, emotions and likely dream contents. CNS Neurol Disord Drug Targets. [Epub: Ahead of Print] 28240187
Nadler, M.J.S., M.C. Hermosura, K. Inabe, A.-L. Perraud, Q. Zhu, A.J. Stokes, T. Kurosaki, J.-P. Kinet, R. Penner, A.M. Scharenberg, and A. Fleig. (2001). LTRPC7 is a Mg·ATP-regulated divalent cation channel required for cell viability. Nature 411: 590-594. 11385574
Nilius, B., R. Vennekens, J. Prenen, J.G. Hoenderop, G. Droogmans, and R.J. Bindels. (2001). The single pore residue Asp542 determines Ca2+ permeation and Mg2+ block of the epithelial Ca2+ channel. J. Biol. Chem. 276: 1020-1025. 11035011
Numata, T. and Y. Okada. (2008). Proton Conductivity through the Human TRPM7 Channel and Its Molecular Determinants. J. Biol. Chem. 283: 15097-15103. 18390554
Ohara, K., T. Fukuda, H. Okada, S. Kitao, Y. Ishida, K. Kato, C. Takahashi, M. Katayama, K. Uchida, and M. Tominaga. (2015). Identification of Significant Amino Acids in Multiple Transmembrane Domains of Human Transient Receptor Potential Ankyrin 1 (TRPA1) for Activation by Eudesmol, an Oxygenized Sesquiterpene in Hop Essential Oil. J. Biol. Chem. 290: 3161-3171. 25525269
Olah, Z., L. Karai, and M.J. Iadarola. (2001). Anandamide activates vanilloid receptor 1 (VR1) at acidic pH in dorsal root ganglia neurons and cells ectopically expressing VR1. J. Biol. Chem. 276: 31163-31170. 11333266
Park, J.Y., E.M. Hwang, O. Yarishkin, J.H. Seo, E. Kim, J. Yoo, G.S. Yi, D.G. Kim, N. Park, C.M. Ha, J.H. La, D. Kang, J. Han, U. Oh, and S.G. Hong. (2008). TRPM4b channel suppresses store-operated Ca2+ entry by a novel protein-protein interaction with the TRPC3 channel. Biochem. Biophys. Res. Commun. 368: 677-683. 18262493
Peier, A.M., A. Moqrich, A.C. Hergarden, A.J. Reeve, D.A. Andersson, G.M. Story, T.J. Earley, I Dragoni, P. McIntyre, S. Bevan, and A. Patapoutian. (2002). A TRP channel that senses cold stimuli and menthol. Cell 108: 705-715. 11893340
Peng, J.B., X.Z. Chen, U.V. Berger, P.M. Vassilev, H. Tsukaguchi, E.M. Brown, and M.A. Hediger. (1999). Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption. J. Biol. Chem. 274: 22739-22746. 10428857
Perraud, A.-L., A. Fleig, C.A. Dunn, L.A. Bagley, P. Launay, C. Schmitz, A.J. Stokes, Q. Zhu, M.J. Bessman, R. Penner, J.-P. Kinet, and A.M. Scharenberg. (2001). ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411: 594-599. 11385575
Phelps, C.B., R.J. Huang, P.V. Lishko, R.R. Wang, and R. Gaudet (2008). Structural analyses of the ankyrin repeat domain of TRPV6 and related TRPV ion channels. Biochemistry 47: 2476-2484. 18232717
Prawitt, D., T. Enklaar, G. Klemm, B. Gärtner, C. Spangenberg, A. Winterpacht, M. Higgins, J. Pelletier, and B. Zabel. (2000). Identification and characterization of MTR1, a novel gene with homology to melastatin (MLSN1) and the trp gene family located in the BWS-WT2 critical region on chromosome 11p15.5 and showing allele-specific expression. Hum Mol Genet 9: 203-216. 10607831
Premkumar, L.S. (2001). Interaction between vanilloid receptors and purinergic metabotropic receptors: pain perception and beyond. Proc. Natl. Acad. Sci. USA 98: 6537-6539. 11390988
Putney, J.W., Jr. and R.R. McKay. (1999). Capacitative calcium entry channels. BioEssays 21: 38-46. 10070252
Ramsey, I.S., M. Delling, and D.E. Clapham. ((2006)). An introduction to TRP channels. Annu. Rev. Physiol. 68: 619–647. 16460286
Riera, C.E., M.O. Huising, P. Follett, M. Leblanc, J. Halloran, R. Van Andel, C.D. de Magalhaes Filho, C. Merkwirth, and A. Dillin. (2014). TRPV1 Pain Receptors Regulate Longevity and Metabolism by Neuropeptide Signaling. Cell 157: 1023-1036. 24855942
Rock, M.J., J. Prenen, V.A. Funari, T.L. Funari, B. Merriman, S.F. Nelson, R.S. Lachman, W.R. Wilcox, S. Reyno, R. Quadrelli, A. Vaglio, G. Owsianik, A. Janssens, T. Voets, S. Ikegawa, T. Nagai, D.L. Rimoin, B. Nilius, and D.H. Cohn. (2008). Gain-of-function mutations in TRPV4 cause autosomal dominant brachyolmia. Nat. Genet. 40: 999-1003. 18587396
Roessingh, S., W. Wolfgang, and R. Stanewsky. (2015). Loss of Drosophila melanogaster TRPA1 Function Affects "Siesta" Behavior but Not Synchronization to Temperature Cycles. J Biol Rhythms 30: 492-505. 26459465
Runnels, L.W., L. Yue, and D.E. Clapham. (2001). TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291: 1043-1046. 11161216
Saotome, K., A.K. Singh, M.V. Yelshanskaya, and A.I. Sobolevsky. (2016). Crystal structure of the epithelial calcium channel TRPV6. Nature. [Epub: Ahead of Print] 27296226
Schindl, R. and C. Romanin. (2007). Assembly domains in TRP channels. Biochem Soc Trans 35: 84-85. 17233607
Schmitz, C., F. Deason, and A.L. Perraud. (2007). Molecular components of vertebrate Mg2+-homeostasis regulation. Magnes. Res. 20: 6-18. 17536484
Schoeber, J.P., C.N. Topala, X. Wang, R.J. Diepens, T.T. Lambers, J.G. Hoenderop, and R.J. Bindels. (2006). RGS2 inhibits the epithelial Ca2+ channel TRPV6. J. Biol. Chem. 281: 29669-29674. 16895908
Sidi, S., R.W. Friedrich, and T. Nicolson. (2003). NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science 301: 96-99. 12805553
Simard C., Hof T., Keddache Z., Launay P. and Guinamard R. (2013). The TRPM4 non-selective cation channel contributes to the mammalian atrial action potential. J Mol Cell Cardiol. 59:11-9. 23416167
Singaravelu, G., I. Chatterjee, S. Rahimi, M.K. Druzhinina, L. Kang, X.Z. Xu, and A. Singson. (2012). The sperm surface localization of the TRP-3/SPE-41 Ca2+ -permeable channel depends on SPE-38 function in Caenorhabditis elegans. Dev Biol 365: 376-383. 22425620
Sonkusare, S.K., A.D. Bonev, J. Ledoux, W. Liedtke, M.I. Kotlikoff, T.J. Heppner, D.C. Hill-Eubanks, and M.T. Nelson. (2012). Elementary Ca2+ signals through endothelial TRPV4 channels regulate vascular function. Science 336: 597-601. 22556255
Starkus, J.G., A. Fleig, and R. Penner. (2010). The calcium-permeable non-selective cation channel TRPM2 is modulated by cellular acidification. J. Physiol. 588: 1227-1240. 20194125
Story, G.M., A.M. Peier, A.J. Reeve, S.R. Eid, J. Mosbacher, T.R. Hricik, T.J. Earley, A.C. Hergarden, D.A. Andersson, S.W. Hwang, P. McIntyre, T. Jegla, S. Bevan, and A. Patapoutian. (2003). ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112: 819-829. 12654248
Studer, M. and P.A. McNaughton. (2010). Modulation of single-channel properties of TRPV1 by phosphorylation. J. Physiol. 588: 3743-3756. 20693293
Stumpf, T., Q. Zhang, D. Hirnet, U. Lewandrowski, A. Sickmann, U. Wissenbach, J. Dörr, C. Lohr, J.W. Deitmer, and C. Fecher-Trost. (2008). The human TRPV6 channel protein is associated with cyclophilin B in human placenta. J. Biol. Chem. 283: 18086-18098. 18445599
Suresh K., Servinsky L., Reyes J., Baksh S., Undem C., Caterina M., Pearse DB. and Shimoda LA. (2015). Hydrogen peroxide-induced calcium influx in lung microvascular endothelial cells involves TRPV4. Am J Physiol Lung Cell Mol Physiol. 309(12):L1467-77. 26453519
Suzuki, M., J. Sato, K. Kutsuwada, G. Ooki, and M. Imai. (1999). Cloning of a stretch-inhibitable nonselective cation channel. J. Biol. Chem. 274: 6330-6335. 10037722
Szabó, T., L. Ambrus, N. Zákány, G. Balla, and T. Bíró. (2015). Regulation of TRPC6 ion channels in podocytes - Implications for focal segmental glomerulosclerosis and acquired forms of proteinuric diseases. Acta Physiol Hung 102: 241-251. 26551740
Thébault, S., G. Cao, H. Venselaar, Q. Xi, R.J. Bindels, and J.G. Hoenderop. (2008). Role of the α-kinase domain in transient receptor potential melastatin 6 channel and regulation by intracellular ATP. J. Biol. Chem. 283: 19999-20007. 18490453
Toft-Bertelsen, T.L., D. Krízaj, and N. MacAulay. (2017). When size matters: transient receptor potential vanilloid 4 channel as a volume-sensor rather than an osmo-sensor. J. Physiol. [Epub: Ahead of Print] 28295351
Ton, H.T., T.X. Phan, A.M. Abramyan, L. Shi, and G.P. Ahern. (2017). Identification of a putative binding site critical for general anesthetic activation of TRPA1. Proc. Natl. Acad. Sci. USA 114: 3762-3767. 28320952
Topala, C.N., W.T. Groenestege, S. Thébault, D. van den Berg, B. Nilius, J.G. Hoenderop, and R.J. Bindels. (2007). Molecular determinants of permeation through the cation channel TRPM6. Cell Calcium 41: 513-523. 17098283
Tóth, B. and L. Csanády. (2012). Pore collapse underlies irreversible inactivation of TRPM2 cation channel currents. Proc. Natl. Acad. Sci. USA 109: 13440-13445. 22847436
van de Graaf, S.F.J., J.G.J. Hoenderop, D. Gkika, D. Lamers, J. Prenen, U. Rescher, V. Gerke, O. Staub, B. Nilius, and R.J.M. Bindels. (2003). Functional expression of the epithelial Ca2+ channels (TRPV5 and TRPV6) requires association of the S100A10-annexin 2 complex. EMBO J. 22: 1478-1487. 12660155
Vanden Abeele, F., A. Zholos, G. Bidaux, Y. Shuba, S. Thebault, B. Beck, M. Flourakis, Y. Panchin, R. Skryma, and N. Prevarskaya. (2006). Ca2+-independent phospholipase A2-dependent gating of TRPM8 by lysophospholipids. J. Biol. Chem. 281: 40174-40182. 17082190
Vennekens, R., A. Menigoz, and B. Nilius. (2012). TRPs in the Brain. Rev Physiol Biochem Pharmacol 163: 27-64. 23184016
Viswanath, V., G.M. Story, A.M. Peier, M.J. Petrus, V.M. Lee, S.W. Hwang, A. Patapoutian, and T. Jegla. (2003). Ion channels: opposite thermosensor in fruitfly and mouse. Nature 423: 822-823. 12815418
Voets, T., B. Nilius, S. Hoefs, A.W.C.M. van der Kemp, G. Droogmans, R.J.M. Bindels, and J.G.J. Hoenderop. (2004). TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J. Biol. Chem. 279: 19-25. 14576148
Wang, Y.Y., R.B. Chang, and E.R. Liman. (2010). TRPA1 is a component of the nociceptive response to CO2. J. Neurosci. 30: 12958-12963. 20881114
Weissgerber, P., U. Kriebs, V. Tsvilovskyy, J. Olausson, O. Kretz, C. Stoerger, S. Mannebach, U. Wissenbach, R. Vennekens, R. Middendorff, V. Flockerzi, and M. Freichel. (2012). Excision of Trpv6 gene leads to severe defects in epididymal Ca2+ absorption and male fertility much like single D541A pore mutation. J. Biol. Chem. 287: 17930-17941. 22427671
Wheeler, G.L. and C. Brownlee. (2008). Ca2+ signalling in plants and green algae--changing channels. Trends Plant Sci. 13: 506-514. 18703378
Wilkinson, J.A., J.L. Scragg, J.P. Boyle, B. Nilius, and C. Peers. (2008). H2O 2-stimulated Ca2+ influx via TRPM2 is not the sole determinant of subsequent cell death. Pflugers Arch 455: 1141-1151. 18043941
Winn, M.P., P.J. Conlon, K.L. Lynn, M.K. Farrington, T. Creazzo, A.F. Hawkins, N. Daskalakis, S.Y. Kwan, S. Ebersviller, J.L. Burchette, M.A. Pericak-Vance, D.N. Howell, J.M. Vance, and P.B. Rosenberg. (2005). A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308: 1801-1804. 15879175
Wong, F., E.L. Schaefer, B.C. Roop, J.N. LaMendola, D. Johnson-Seaton, and D. Shao. (1989). Proper function of the Drosophila trp gene product during pupal development is important for normal visual transduction in the adult. Neuron 3: 81-94. 2482778
Woo SK., Kwon MS., Ivanov A., Geng Z., Gerzanich V. and Simard JM. (2013). Complex N-glycosylation stabilizes surface expression of transient receptor potential melastatin 4b protein. J Biol Chem. 288(51):36409-17. 24214984
Xia, R., Z.Z. Mei, H.J. Mao, W. Yang, L. Dong, H. Bradley, D.J. Beech, and L.H. Jiang. (2008). Identification of pore residues engaged in determining divalent cationic permeation in transient receptor potential melastatin subtype channel 2. J. Biol. Chem. 283: 27426-27432. 18687688
Xiao, B., A.E. Dubin, B. Bursulaya, V. Viswanath, T.J. Jegla, and A. Patapoutian. (2008). Identification of transmembrane domain 5 as a critical molecular determinant of menthol sensitivity in mammalian TRPA1 channels. J. Neurosci. 28: 9640-9651. 18815250
Xiao, R. and X.Z. Xu. (2009). Function and regulation of TRP family channels in C. elegans. Pflugers Arch 458: 851-860. 19421772
Xiao, R., B. Zhang, Y. Dong, J. Gong, T. Xu, J. Liu, and X.Z. Xu. (2013). A genetic program promotes C. elegans longevity at cold temperatures via a thermosensitive TRP channel. Cell 152: 806-817. 23415228
Xu, H., I.S. Ramsey, S.A. Kotecha, M.M. Moran, J.A. Chong, D. Lawson, P. Ge, J. Lilly, I. Silos-Santiago, Y. Xie, P.S. DiStefano, R. Curtis, and D.E. Clapham. (2002). TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418: 181-186. 12077604
Xu, X.Z., and P.W. Sternberg. (2003). A C. elegans sperm TRP protein required for sperm-egg interactions during fertilization. Cell 114: 285-297. 12914694
Yang, F. and J. Zheng. (2017). Understand spiciness: mechanism of TRPV1 channel activation by capsaicin. Protein Cell. [Epub: Ahead of Print] 28044278
Yang, F., Y. Cui, K. Wang, and J. Zheng. (2010). Thermosensitive TRP channel pore turret is part of the temperature activation pathway. Proc. Natl. Acad. Sci. USA 107: 7083-7088. 20351268
Yao, J., B. Liu, and F. Qin. (2011). Modular thermal sensors in temperature-gated transient receptor potential (TRP) channels. Proc. Natl. Acad. Sci. USA 108: 11109-11114. 21690353
Ye, L., S. Kleiner, J. Wu, R. Sah, R.K. Gupta, A.S. Banks, P. Cohen, M.J. Khandekar, P. Boström, R.J. Mepani, D. Laznik, T.M. Kamenecka, X. Song, W. Liedtke, V.K. Mootha, P. Puigserver, P.R. Griffin, D.E. Clapham, and B.M. Spiegelman. (2012). TRPV4 is a regulator of adipose oxidative metabolism, inflammation, and energy homeostasis. Cell 151: 96-110. 23021218
Zakharian, E., C. Cao, and T. Rohacs. (2010). Gating of transient receptor potential melastatin 8 (TRPM8) channels activated by cold and chemical agonists in planar lipid bilayers. J. Neurosci. 30: 12526-12534. 20844147
Zayats V., Samad A., Minofar B., Roelofs KE., Stockner T. and Ettrich R. (2013). Regulation of the transient receptor potential channel TRPA1 by its N-terminal ankyrin repeat domain. J Mol Model. 19(11):4689-700. 22752543
Zhou, X., Z. Su, A. Anishkin, W.J. Haynes, E.M. Friske, S.H. Loukin, C. Kung, and Y. Saimi. (2007). Yeast screens show aromatic residues at the end of the sixth helix anchor transient receptor potential channel gate. Proc. Natl. Acad. Sci. USA. 104: 15555-15559. 17878311
Zimmermann, K., J.K. Lennerz, A. Hein, A.S. Link, J.S. Kaczmarek, M. Delling, S. Uysal, J.D. Pfeifer, A. Riccio, and D.E. Clapham. (2011). Transient receptor potential cation channel, subfamily C, member 5 (TRPC5) is a cold-transducer in the peripheral nervous system. Proc. Natl. Acad. Sci. USA 108: 18114-18119. 22025699
Zubcevic, L., M.A. Herzik, Jr, B.C. Chung, Z. Liu, G.C. Lander, and S.Y. Lee. (2016). Cryo-electron microscopy structure of the TRPV2 ion channel. Nat Struct Mol Biol 23: 180-186. 26779611


Anyatonwu, G.I. and B.E. Ehrlich. (2005). Organic cation permeation through the channel formed by polycystin-2. J. Biol. Chem. 280: 29488-29493. 15961385
Arif Pavel, M., C. Lv, C. Ng, L. Yang, P. Kashyap, C. Lam, V. Valentino, H.Y. Fung, T. Campbell, S.G. Møller, D. Zenisek, N.G. Holtzman, and Y. Yu. (2016). Function and regulation of TRPP2 ion channel revealed by a gain-of-function mutant. Proc. Natl. Acad. Sci. USA 113: E2363-2372. 27071085
Bai, C.X., S. Kim, W.P. Li, A.J. Streets, A.C. Ong, and L. Tsiokas. (2008). Activation of TRPP2 through mDia1-dependent voltage gating. EMBO. J. 27: 1345-1356. 18388856
Bycroft, M., A. Bateman, J. Clarke, S.J. Hamill, R. Sandford, R.L. Thomas, and C. Chothia. (1999). The structure of a PKD domain from polycystin-1. Implications for polycystic kidney disease. EMBO J. 18: 297-305. 9889186
Chen, X.-Z., P.M. Vassilev, N. Basora, J.-B. Peng, H. Nomura, Y. Segal, E.M. Brown, S.T. Reeders, M.A. Hediger, and J. Zhou. (1999). Polycystin-L is a calcium-regulated cation channel permeable to calcium ions. Nature 401: 383-386. 10517637
Cuajungco MP., Basilio LC., Silva J., Hart T., Tringali J., Chen CC., Biel M. and Grimm C. (2014). Cellular zinc levels are modulated by TRPML1-TMEM163 interaction. Traffic. 15(11):1247-65. 25130899
Cuajungco, M.P. and K. Kiselyov. (2017). The mucolipin-1 (TRPML1) ion channel, transmembrane-163 (TMEM163) protein, and lysosomal zinc handling. Front Biosci (Landmark Ed) 22: 1330-1343. 28199205
Cuajungco, M.P. and M.A. Samie. (2008). The varitint-waddler mouse phenotypes and the TRPML3 ion channel mutation: cause and consequence. Pflugers Arch 457: 463-473. 18504603
Cuajungco, M.P., J. Silva, A. Habibi, and J.A. Valadez. (2015). The mucolipin-2 (TRPML2) ion channel: a tissue-specific protein crucial to normal cell function. Pflugers Arch. [Epub: Ahead of Print] 26336837
Dalagiorgou, G., E.K. Basdra, and A.G. Papavassiliou. (2010). Polycystin-1: function as a mechanosensor. Int J Biochem. Cell Biol. 42: 1610-1613. 20601082
Deltas, C.C. (2001). Mutations of the human polycystic kidney disease 2 (PKD2) gene. Hum. Mutat. 18: 13-24. 11438989
Dong, X.P., X. Cheng, E. Mills, M. Delling, F. Wang, T. Kurz, and H. Xu. (2008). The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature 455: 992-996. 18794901
García-Añoveros, J. and T. Wiwatpanit. (2014). TRPML2 and Mucolipin Evolution. Handb Exp Pharmacol 222: 647-658. 24756724
Ghata, J. and B.D. Cowley, Jr. (2017). Polycystic Kidney Disease. Compr Physiol 7: 945-975. 28640449
González-Perrett, S., K. Kim, C. Ibarra, A.E. Damiano, E. Zotta, M. Batelli, P.C. Harris, I.L. Reisin, M.A. Arnaout, and H.F. Cantiello. (2001). Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+-permeable nonselective cation channel. Proc. Natl. Acad. Sci. USA 98: 1182-1187. 11252306
Gonzalez-Perrett, S., M. Batelli, K. Kim, M. Essafi, G. Timpanaro, N. Moltabetti, I.L. Reisin, M.A. Arnaout, and H.F. Cantiello. (2002). Voltage dependence and pH regulation of human polycystin-2-mediated cation channel activity. J. Biol. Chem. 277: 24959-24966. 11991947
Gunaratne, H.J., G.W. Moy, M. Kinukawa, S. Miyata, S.A. Mah, and V.D. Vacquier. (2007). The 10 sea urchin receptor for egg jelly proteins (SpREJ) are members of the polycystic kidney disease-1 (PKD1) family. BMC Genomics 8: 235. 17629917
Hoffmeister, H., A.R. Gallagher, A. Rascle, and R. Witzgall. (2010). The human polycystin-2 protein represents an integral membrane protein with six membrane-spanning domains and intracellular N- and C-termini. Biochem. J. 433: 285-294. 21044049
Hogan, M.C., J.L. Bakeberg, V.G. Gainullin, M.V. Irazabal, A.J. Harmon, J.C. Lieske, M.C. Charlesworth, K.L. Johnson, B.J. Madden, R.M. Zenka, D.J. McCormick, J.L. Sundsbak, C.M. Heyer, V.E. Torres, P.C. Harris, and C.J. Ward. (2015). Identification of Biomarkers for PKD1 Using Urinary Exosomes. J Am Soc Nephrol 26: 1661-1670. 25475747
Hu, M., Y. Liu, J. Wu, and X. Liu. (2015). Influx-Operated Ca2+ Entry via PKD2-L1 and PKD1-L3 Channels Facilitates Sensory Responses to Polymodal Transient Stimuli. Cell Rep 13: 798-811. 26489466
Huang, K., D.R. Diener, A. Mitchell, G.J. Pazour, G.B. Witman, and J.L. Rosenbaum. (2007). Function and dynamics of PKD2 in Chlamydomonas reinhardtii flagella. J. Cell Biol. 179: 501-514. 17984324
Hussein, S., W. Zheng, C. Dyte, Q. Wang, J. Yang, F. Zhang, J. Tang, Y. Cao, and X.Z. Chen. (2015). Acid-induced off-response of PKD2L1 channel in Xenopus oocytes and its regulation by Ca(2.). Sci Rep 5: 15752. 26502994
Ishimaru, Y., H. Inada, M. Kubota, H. Zhuang, M. Tominaga, and H. Matsunami. (2006). Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc. Natl. Acad. Sci. USA 103: 12569-12574. 16891422
Ishimaru, Y., Y. Katano, K. Yamamoto, M. Akiba, T. Misaka, R.W. Roberts, T. Asakura, H. Matsunami, and K. Abe. (2010). Interaction between PKD1L3 and PKD2L1 through their transmembrane domains is required for localization of PKD2L1 at taste pores in taste cells of circumvallate and foliate papillae. FASEB J. 24: 4058-4067. 20538909
Kim H.J., Q. Li, S. Tjon-Kon-Sang, I. So, K. Kiselyov, S. Muallem. (2007). Gain-of-function mutation in TRPML3 causes the mouse Varitint-Waddler phenotype. J Biol Chem. 282: 36138-36142. 17962195
Kim HJ., Yamaguchi S., Li Q., So I. and Muallem S. (2010). Properties of the TRPML3 channel pore and its stable expansion by the Varitint-Waddler-causing mutation. J Biol Chem. 285(22):16513-20. 20378547
Kim, I., Y. Fu, K. Hui, G. Moeckel, W. Mai, C. Li, D. Liang, P. Zhao, J. Ma, X.Z. Chen, A.L. George, R.J. Coffey, Z.P. Feng, and G. Wu (2008). Fibrocystin/polyductin modulates renal tubular formation by regulating polycystin-2 expression and function. J Am Soc Nephrol 19: 455-68. 18235088
Kiselyov, K., J. Chen, Y. Rbaibi, D. Oberdick, S. Tjon-Kon-Sang, N. Shcheynikov, S. Muallem, and A. Soyombo. (2005). TRP-ML1 is a lysosomal monovalent cation channel that undergoes proteolytic cleavage. J. Biol. Chem. 280: 43218-43223. 16257972
Lemos, F.O. and B.E. Ehrlich. (2017). Polycystin and calcium signaling in cell death and survival. Cell Calcium. [Epub: Ahead of Print] 28601384
Lev, S., D.A. Zeevi, A. Frumkin, V. Offen-Glasner, G. Bach, and B. Minke. (2010). Constitutive activity of the human TRPML2 channel induces cell degeneration. J. Biol. Chem. 285: 2771-2782. 19940139
Li, Q., X.Q. Dai, P.Y. Shen, Y. Wu, W. Long, C.X. Chen, Z. Hussain, S. Wang, and X.Z. Chen. (2007). Direct binding of α-actinin enhances TRPP3 channel activity. J Neurochem 103(6): 2391-2400. 17944866
Li, Y., N.G. Santoso, S. Yu, O.M. Woodward, F. Qian, and W.B. Guggino. (2009). Polycystin-1 interacts with inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2+ signaling with implications for polycystic kidney disease. J. Biol. Chem. 284: 36431-36441. 19854836
Liu, Y., Q. Li, M. Tan, Y.-Y. Zhang, E. Karpinski, J. Zhou, and X.-Z. Chen. (2002). Modulation of the human polycystin-L channel by voltage and divalent cations. FEBS Lett. 525: 71-76. 12163164
Luzio, J.P., N.A. Bright, and P.R. Pryor. (2007). The role of calcium and other ions in sorting and delivery in the late endocytic pathway. Biochem. Soc. Trans. 35: 1088-1091. 17956286
Molland, K.L., A. Narayanan, J.W. Burgner, and D.A. Yernool. (2010). Identification of the structural motif responsible for trimeric assembly of the C-terminal regulatory domains of polycystin channels PKD2L1 and PKD2. Biochem. J. 429: 171-183. 20408813
Nims, N.M., D. Vassmer, and R.L. Maser. (2011). Effect of PKD1 gene missense mutations on polycystin-1 membrane topogenesis. Biochemistry 50: 349-355. 21142036
Noben-Trauth, K. (2011). The TRPML3 channel: from gene to function. Adv Exp Med Biol 704: 229-237. 21290299
Oatley, P., A.P. Stewart, R. Sandford, and J.M. Edwardson. (2012). Atomic force microscopy imaging reveals the domain structure of polycystin-1. Biochemistry 51: 2879-2888. 22409330
Salehi-Najafabadi, Z., B. Li, V. Valentino, C. Ng, H. Martin, Y. Yu, Z. Wang, P. Kashyap, and Y. Yu. (2017). Extracellular Loops are Essential For the Assembly and Function of Polycystin Receptor-Ion Channel Complexes. J. Biol. Chem. [Epub: Ahead of Print] 28154010
Shen, P.S., X. Yang, P.G. DeCaen, X. Liu, D. Bulkley, D.E. Clapham, and E. Cao. (2016). The Structure of the Polycystic Kidney Disease Channel PKD2 in Lipid Nanodiscs. Cell 167: 763-773.e11. 27768895
Somlo, S. and B. Ehrlich. (2001). Human disease: calcium signaling in polycystic kidney disease. Curr. Biol. 11: R356-R360. 11369247
Wilson, P.D. (2001). Polycystin: new aspects of structure, function, and regulation. J. Am. Soc. Nephrol. 12: 834-845. 11274246
Wu, G. (2001). Current advances in molecular genetics of autosomal-dominant polycystic kidney disease. Curr. Opin. Nephrol. Hypertens. 10: 23-31. 11195048
Xu, G.M., S. González-Perrett, M. Essafi, G.A. Timpanaro, N. Montalbetti, M.A. Arnaout, and H.F. Cantiello. (2003). Polycystin-1 activates and stabilizes the polycystin-2 channel. J. Biol. Chem. 278: 1457-1462. 12407099
Yu, Y., M.H. Ulbrich, M.H. Li, Z. Buraei, X.Z. Chen, A.C. Ong, L. Tong, E.Y. Isacoff, and J. Yang. (2009). Structural and molecular basis of the assembly of the TRPP2/PKD1 complex. Proc. Natl. Acad. Sci. USA 106: 11558-11563. 19556541
Zhu, J., Y. Yu, M.H. Ulbrich, M.H. Li, E.Y. Isacoff, B. Honig, and J. Yang. (2011). Structural model of the TRPP2/PKD1 C-terminal coiled-coil complex produced by a combined computational and experimental approach. Proc. Natl. Acad. Sci. USA 108: 10133-10138. 21642537


Abi-Antoun, T., S. Shi, L.A. Tolino, T.R. Kleyman, and M.D. Carattino. (2011). Second transmembrane domain modulates epithelial sodium channel gating in response to shear stress. Am. J. Physiol. Renal Physiol 300: F1089-1095. 21307123
Adams, C.M., M.G. Anderson, D.G. Motto, M.P. Price, W.A. Johnson, and M.J. Welsh. (1998). Ripped pocket and pickpocket, novel Drosophila DEG/ENaC subunits expressed in early development and in mechanosensory neurons. J. Cell Biol. 140: 143-152. 9425162
Alvarez de la Rosa, D., C.M. Canessa, G.K. Fyfe, and P. Zhang. (2000). Structure and regulation of amiloride-sensitive sodium channels. Annu. Rev. Physiol. 62: 573-594. 10845103
Arteaga, M.F., T. Coric, C. Straub, and C.M. Canessa. (2008). A brain-specific SGK1 splice isoform regulates expression of ASIC1 in neurons. Proc. Natl. Acad. Sci. U.S.A. 105: 4459-4464. 18334630
Baron, A., L. Schaefer, E. Lingueglia, G. Champigny, and M. Lazdunski. (2001). Zn2+ and H+ are coactivators of acid-sensing ion channels. J. Biol. Chem. 276: 35361-35367. 11457851
Ben-Shahar, Y. (2011). Sensory functions for degenerin/epithelial sodium channels (DEG/ENaC). Adv Genet 76: 1-26. 22099690
Bianchi L. (2007). Mechanotransduction: touch and feel at the molecular level as modeled in Caenorhabditis elegans. Mol Neurobiol. 36: 254-271. 17955200
Canessa, C.M., L. Schild, G. Buell, B. Thorens, I. Gautschi, J.-D. Horisberger, and B.C. Rossier. (1994). Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367: 463-467. 8107805
Carattino, M.D. (2011). Structural mechanisms underlying the function of epithelial sodium channel/acid-sensing ion channel. Curr Opin Nephrol Hypertens 20: 555-560. 21709553
Carattino, M.D. and M.C. Della Vecchia. (2012). Contribution of residues in second transmembrane domain of ASIC1a protein to ion selectivity. J. Biol. Chem. 287: 12927-12934. 22371494
Carnally, S.M., H.S. Dev, A.P. Stewart, N.P. Barrera, M.X. Van Bemmelen, L. Schild, R.M. Henderson, and J.M. Edwardson. (2008). Direct visualization of the trimeric structure of the ASIC1a channel, using AFM imaging. Biochem. Biophys. Res. Commun. 372: 752-755. 18514062
Chai, S., M. Li, D. Branigan, Z.G. Xiong, and R.P. Simon. (2010). Activation of acid-sensing ion channel 1a (ASIC1a) by surface trafficking. J. Biol. Chem. 285: 13002-13011. 20185828
Chelur, D.S., Ernstrom, G.G., M.B. Goodman, C.A. Yao, L. Chen, R. O'Hagan, and M. Chalfie. (2002). The mechanosensory protein MEC-6 is a subunit of the C. elegans touch-cell degenerin channel. Nature 420: 669-673. 12478294
Chen, C.C. and C.W. Wong. (2013). Neurosensory mechanotransduction through acid-sensing ion channels. J Cell Mol Med 17: 337-349. 23490035
Chen, X., G. Polleichtner, I. Kadurin, and S. Gründer. (2007). Zebrafish Acid-sensing Ion Channel (ASIC) 4, Characterization of Homo- and Heteromeric Channels, and Identification of Regions Important for Activation by H+. J. Biol. Chem. 282(42): 30406-30413. 17686779
Coscoy, S., J.R. de Weille, E. Lingueglia, and M. Lazdunski. (1999). The pre-transmembrane 1 domain of acid-sensing ion channels participates in the ion pore. J. Biol. Chem. 274: 10129-10132. 10187795
Darboux, I., E. Lingueglia, G. Champigny, S. Coscoy, and P. Barbry. (1998). dGNaC1, a gonad-specific amiloride-sensitive Na+ channel. J. Biol. Chem. 273: 9424-9429. 9545267
Della Vecchia, M.C., A.C. Rued, and M.D. Carattino. (2013). Gating Transitions in the Palm Domain of ASIC1a. J. Biol. Chem. 288: 5487-5495. 23300086
Deval, E., J. Noël, N. Lay, A. Alloui, S. Diochot, V. Friend, M. Jodar, M. Lazdunski, and E. Lingueglia. (2008). ASIC3, a sensor of acidic and primary inflammatory pain. EMBO. J. 27: 3047-3055. 18923424
Durrnagel S., Kuhn A., Tsiairis CD., Williamson M., Kalbacher H., Grimmelikhuijzen CJ., Holstein TW. and Grunder S. (2010). Three homologous subunits form a high affinity peptide-gated ion channel in Hydra. J Biol Chem. 285(16):11958-65. 20159980
Edelheit, O., R. Ben-Shahar, N. Dascal, A. Hanukoglu, and I. Hanukoglu. (2014). Conserved charged residues at the surface and interface of epithelial sodium channel subunits--roles in cell surface expression and the sodium self-inhibition response. FEBS J. 281: 2097-2111. 24571549
Enuka, Y., I. Hanukoglu, O. Edelheit, H. Vaknine, and A. Hanukoglu. (2012). Epithelial sodium channels (ENaC) are uniformly distributed on motile cilia in the oviduct and the respiratory airways. Histochem Cell Biol 137: 339-353. 22207244
Faria, D., N. Lentze, J. Almaça, S. Luz, L. Alessio, Y. Tian, J.P. Martins, P. Cruz, R. Schreiber, M. Rezwan, C.M. Farinha, D. Auerbach, M.D. Amaral, and K. Kunzelmann. (2012). Regulation of ENaC biogenesis by the stress response protein SERP1. Pflugers Arch 463: 819-827. 22526458
Firsov, D., I. Gautschi, A.-M. Merillat, B.C. Rossier, and L. Schild. (1998). The heterotetrameric architecture of the epithelial sodium channel (ENaC). EMBO J. 17: 344-352. 9430626
Fujimoto, A., Y. Kodani, and Y. Furukawa. (2017). Modulation of the FMRFamide-gated Na+ channel by external Ca(2). Pflugers Arch. [Epub: Ahead of Print] 28674755
García-Añoveros, J., J.A. García, J.D. Liu, and D.P. Corey. (1998). The nematode degenerin UNC-105 forms ion channels that are activated by degeneration- or hypercontraction-causing mutations. Neuron 20: 1231-1241. 9655510
Garty, H. and L.G. Palmer. (1997). Epithelial sodium channels – function, structure, and regulation. Physiol. Rev. 77: 359-396. 9114818
Giraldez, T., P. Rojas, J. Jou, C. Flores, and D. Alvarez de la Rosa. (2012). The epithelial sodium channel δ-subunit: new notes for an old song. Am. J. Physiol. Renal Physiol 303: F328-338. 22573384
Golubovic, A., A. Kuhn, M. Williamson, H. Kalbacher, T.W. Holstein, C.J. Grimmelikhuijzen, and S. Gründer. (2007). A peptide-gated ion channel from the freshwater polyp Hydra. J. Biol. Chem. 282: 35098-35103. 17911098
Gonzales, E.B., T. Kawate, and E. Gouaux. (2009). Pore architecture and ion sites in acid-sensing ion channels and P2X receptors. Nature 460: 599-604. 19641589
Hanukoglu, I. (2016). ASIC and ENaC type sodium channels: Conformational states and the structures of the ion selectivity filters. FEBS J. [Epub: Ahead of Print] 27580245
Hanukoglu, I. and A. Hanukoglu. (2016). Epithelial sodium channel (ENaC) family: Phylogeny, structure-function, tissue distribution, and associated inherited diseases. Gene 579: 95-132. 26772908
Henry, P.C., V. Kanelis, M.C. O'Brien, B. Kim, I. Gautschi, J. Forman-Kay, L. Schild, and D. Rotin. (2003). Affinity and specificity of interactions between Nedd4 isoforms and the epithelial Na+ channel. J. Biol. Chem. 278: 20019-20028. 12654927
Horisberger, J.-D. (1998). Amiloride-sensitive Na channels. Curr. Opin. Struc. Biol. 10: 443-449. 9719863
Jasti, J., H. Furukawa, E.B. Gonzales, and E. Gouaux. (2007). Structure of acid-sensing ion channel 1 at 1.9 Å resolution and low pH. Nature 449: 316-323. 17882215
Kodani Y. and Furukawa Y. (2014). Electrostatic charge at position 552 affects the activation and permeation of FMRFamide-gated Na+ channels. J Physiol Sci. 64(2):141-50. 24415456
Kodani, Y. and Y. Furukawa. (2010). Position 552 in a FMRFamide-gated Na+ channel affects the gating properties and the potency of FMRFamide. Zoolog Sci 27: 440-448. 20443692
Konstas, A.A., L.M. Shearwin-Whyatt, A.B. Fotia, B. Degger, D. Riccardi, D.I. Cook, C. Korbmacher, and S. Kumar. (2002). Regulation of the epithelial sodium channel by N4WBP5A, a novel Nedd4/Nedd4-2-interacting protein. J. Biol. Chem. 277: 29406-29416. 12050153
Krauson, A.J. and M.D. Carattino. (2016). Thumb domain mediates acid-sensing ion channel desensitization. J. Biol. Chem. [Epub: Ahead of Print] 27015804
Kweon, H.J., D.I. Kim, Y. Bae, J.Y. Park, and B.C. Suh. (2016). Acid-Sensing Ion Channel 2a (ASIC2a) Promotes Surface Trafficking of ASIC2b via Heteromeric Assembly. Sci Rep 6: 30684. 27477936
Le, T. and M.H. Saier, Jr. (1996). Phylogenetic characterization of the epithelial Na+ channel (ENaC) family. Mol. Membr. Biol. 13: 149-157. 8905643
Lee, I.H., A. Dinudom, A. Sanchez-Perez, S. Kumar, and D.I. Cook. (2007). Akt Mediates the Effect of Insulin on Epithelial Sodium Channels by Inhibiting Nedd4-2. J. Biol. Chem. 282(41):29866-29873. 17715136
Li, T., Y. Yang, and C.M. Canessa. (2011). Outlines of the pore in open and closed conformations describe the gating mechanism of ASIC1. Nat Commun 2: 399. 21772270
Mano, I. and M. Driscoll. (1999). DEG/ENaC channels: a touchy superfamily that watches its salts. BioEssays 21: 568-578. 10472184
Matalon, S. and H. O’Brodovich. (1999). Sodium channels in alveolar epithelial cells: molecular characterization, biophysical properties, and physiological significance. Annu. Rev. Physiol. 61: 627-661. 10099704
McCleskey, E.W. and M.S. Gold. (1999). Ion channels of nociception. Annu. Rev. Physiol. 61: 835-856. 10099712
Mueller, G.M., A.B. Maarouf, C.L. Kinlough, N. Sheng, O.B. Kashlan, S. Okumura, S. Luthy, T.R. Kleyman, and R.P. Hughey. (2010). Cys palmitoylation of the beta subunit modulates gating of the epithelial sodium channel. J. Biol. Chem. 285: 30453-30462. 20663869
Pao, A.C. (2012). SGK regulation of renal sodium transport. Curr Opin Nephrol Hypertens 21: 534-540. 22691875
Price, M.P., G.R. Lewin, S.L. McIlwrath, C. Cheng, J. Xie, P.A. Heppenstall, C.L. Stucky, A.G. Mannsfeldt, T.J. Brennan, H.A. Drummond, J. Qiao, C.J. Benson, D.E. Tarr, R.F. Hrstka, B. Yang, R.A. Williamson, and M.J. Welsh. (2000). The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 407: 1007-1010. 11069180
Saxena, S.K., M. Singh, S. Kaur, and C. George. (2006). Distinct domain-dependent effect of syntaxin1A on amiloride-sensitive sodium channel (ENaC) currents in HT-29 colonic epithelial cells. Int J Biol Sci 3: 47-56. 17200691
Schaefer, L., H. Sakai, M. Mattei, M. Lazdunski, and E. Lingueglia. (2000). Molecular cloning, functional expression and chromosomal localization of an amiloride-sensitive Na+ channel from human small intestine. FEBS Lett. 471: 205-210. 10767424
Schmidt, A., D. Löhrer, R.J. Alsop, P. Lenzig, A. Oslender-Bujotzek, M. Wirtz, M.C. Rheinstädter, S. Gründer, and D. Wiemuth. (2016). A cytosolic amphiphilic alpha helix controls the activity of the bile acid-sensitive ion channel BASIC. J. Biol. Chem. [Epub: Ahead of Print] 27679529
Schuhmacher LN., Srivats S. and Smith ES. (2015). Structural domains underlying the activation of acid-sensing ion channel 2a. Mol Pharmacol. 87(4):561-71. 25583083
Sedensky, M.M., J.M. Siefker, J.Y. Koh, D.M. Miller, 3rd, and P.G. Morgan. (2004). A stomatin and a degenerin interact in lipid rafts of the nervous system of Caenorhabditis elegans. Am. J. Physiol. Cell Physiol. 287: C468-474. 15102610
Sheng, S., J. Li, K.A. McNulty, D. Avery, and T.R. Kleyman. (2000). Characterization of the selectivity filter of the epithelial sodium channel. J. Biol. Chem. 275: 8572-8581. 10722696
Sheng, S., J. Li, K.A. McNulty, T. Kieber-Emmons, and T.R. Kleyman. (2001a). Epithelial sodium channel pore region: structure and role in gating. J. Biol. Chem. 276: 1326-1334. 11022046
Sheng, S., K.A. McNulty, J.M. Harvey, and T.R. Kleyman. (2001b). Second transmembrane domains of ENaC subunits contribute to ion permeation and selectivity. J. Biol. Chem. 276: 44091-44098. 11564745
Shi S. and Kleyman TR. (2013). Gamma subunit second transmembrane domain contributes to epithelial sodium channel gating and amiloride block. Am J Physiol Renal Physiol. 305(11):F1585-92. 24107424
Shi, S., C.J. Luke, M.T. Miedel, G.A. Silverman, and T.R. Kleyman. (2016). Activation of the Caenorhabditis elegans degenerin channel by shear stress requires the MEC-10 subunit. J. Biol. Chem. [Epub: Ahead of Print] 27189943
Shi, S., D.D. Ghosh, S. Okumura, M.D. Carattino, O.B. Kashlan, S. Sheng, and T.R. Kleyman. (2011). Base of the thumb domain modulates epithelial sodium channel gating. J. Biol. Chem. 286: 14753-14761. 21367859
Snyder, P.M., D.R. Olson, F.J. McDonald, and D.B. Bucher. (2001). Multiple WW domains, but not the C2 domain, are required for inhibition of the epithelial Na+ channel by human Nedd4. J. Biol. Chem. 276: 28321-28326. 11359767
Springauf, A., P. Bresenitz, and S. Gründer. (2011). The interaction between two extracellular linker regions controls sustained opening of acid-sensing ion channel 1. J. Biol. Chem. 286: 24374-24384. 21576243
Su, X., Q. Li, K. Shrestha, E. Cormet-Boyaka, L. Chen, P.R. Smith, E.J. Sorscher, D.J. Benos, S. Matalon, and H.L. Ji. (2006). Interregulation of proton-gated Na+ channel 3 and cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 281: 36960-36968. 17012229
Takeda, A.N., I. Gautschi, M.X. van Bemmelen, and L. Schild. (2007). Cadmium trapping in an epithelial sodium channel pore mutant. J. Biol. Chem. 282: 31928-31936. 17804416
Tolino, L.A., S. Okumura, O.B. Kashlan, and M.D. Carattino. (2011). Insights into the mechanism of pore opening of acid-sensing ion channel 1a. J. Biol. Chem. 286: 16297-16307. 21388961
Ugawa, S., Y. Ishida, T. Ueda, K. Inoue, M. Nagao, and S. Shimada. (2007). Nafamostat mesilate reversibly blocks acid-sensing ion channel currents. Biochem. Biophys. Res. Commun. 363: 203-208. 17826743
Ugawa, S., Y. Ishida, T. Ueda, Y. Yu, and S. Shimada. (2008). Hypotonic stimuli enhance proton-gated currents of acid-sensing ion channel-1b. Biochem. Biophys. Res. Commun. 367: 530-534. 18158916
van Bemmelen, M.X., D. Huser, I. Gautschi, and L. Schild. (2015). The Human Acid-Sensing Ion Channel ASIC1a: Evidence for a Homotetrameric Assembly State at the Cell Surface. PLoS One 10: e0135191. 26252376
Waldmann, R., G. Champigny, F. Bassilana, C. Heurteaux, and M. Lazdunski. (1997). A proton-gated cation channel involved in acid-sensing. Nature 386: 173-177. 9062189
Wang, W., B. Duan, H. Xu, L. Xu, and T.-L. Xu. (2006). Calcium-permeable acid-sensing ion channel is a molecular target of the neurotoxic metal ion lead. J. Biol. Chem. 281: 2497-2505. 16319075
Wang, Y., A. Apicella, Jr, S.K. Lee, M. Ezcurra, R.D. Slone, M. Goldmit, W.R. Schafer, S. Shaham, M. Driscoll, and L. Bianchi. (2008). A glial DEG/ENaC channel functions with neuronal channel DEG-1 to mediate specific sensory functions in C. elegans. EMBO. J. 27: 2388-2399. 18701922
Welsh, M.J., M.P. Price, and J. Xie. (2002). Biochemical basis of touch perception: mechanosensory function of degenerin/epithelial Na+ channels. J. Biol. Chem. 277: 2369-2372. 11706013
Wiemuth, D. and S. Gründer. (2010). A single amino acid tunes Ca2+ inhibition of brain liver intestine Na+ channel (BLINaC). J. Biol. Chem. 285: 30404-30410. 20656685
Zhao, R., X. Liang, M. Zhao, S.L. Liu, Y. Huang, S. Idell, X. Li, and H.L. Ji. (2014). Correlation of apical fluid-regulating channel proteins with lung function in human COPD lungs. PLoS One 9: e109725. 25329998
Zhong, L., R.Y. Hwang, and W.D. Tracey. (2010). Pickpocket is a DEG/ENaC protein required for mechanical nociception in Drosophila larvae. Curr. Biol. 20: 429-434. 20171104


and Li GH. (2015). Geometric rules of channel gating inferred from computational models of the P2X receptor transmembrane domain. J Mol Graph Model. 61:107-114. 26209765
Alexander, S.P.H. and J.A. Peters. (1997). Receptor and ion channel nomenclature supplement. Trends Pharmacol. Sci. 18: 65-68.
Allsopp, R.C. and R.J. Evans. (2011). The Intracellular Amino Terminus Plays a Dominant Role in Desensitization of ATP-gated P2X Receptor Ion Channels. J. Biol. Chem. 286: 44691-44701. 22027824
Allsopp, R.C., S. El Ajouz, R. Schmid, and R.J. Evans. (2011). Cysteine scanning mutagenesis (residues Glu52-Gly96) of the human P2X1 receptor for ATP: mapping agonist binding and channel gating. J. Biol. Chem. 286: 29207-29217. 21690089
Allsopp, R.C., U. Lalo, and R.J. Evans. (2010). Lipid raft association and cholesterol sensitivity of P2X1-4 receptors for ATP: chimeras and point mutants identify intracellular amino-terminal residues involved in lipid regulation of P2X1 receptors. J. Biol. Chem. 285: 32770-32777. 20699225
Aschrafi, A., S. Sadtler, C. Niculescu, J. Rettinger, and G. Schmalzing. (2004). Trimeric architecture of homomeric P2X2 and heteromeric P2X1+2 receptor subtypes. J. Mol. Biol. 342: 333-343. 15313628
Bernier, L.P., D. Blais, E. Boué-Grabot, and P. Séguéla. (2012). A Dual Polybasic Motif Determines Phosphoinositide Binding and Regulation in the P2X Channel Family. PLoS One 7: e40595. 22792379
Browne, L.E., L. Cao, H.E. Broomhead, L. Bragg, W.J. Wilkinson, and R.A. North. (2011). P2X receptor channels show threefold symmetry in ionic charge selectivity and unitary conductance. Nat Neurosci 14: 17-18. 21170052
Browne, L.E., V. Compan, L. Bragg, and R.A. North. (2013). P2X7 receptor channels allow direct permeation of nanometer-sized dyes. J. Neurosci. 33: 3557-3566. 23426683
Burnstock, G. and C. Kennedy. (2011). P2X receptors in health and disease. Adv Pharmacol 61: 333-372. 21586364
Caseley, E.A., S.P. Muench, and L.H. Jiang. (2016). Conformational changes during human P2X7 receptor activation examined by structural modelling and cysteine-based cross-linking studies. Purinergic Signal. [Epub: Ahead of Print] 28025718
Coddou C., Yan Z. and Stojilkovic SS. (2015). Role of domain calcium in purinergic P2X2 receptor channel desensitization. Am J Physiol Cell Physiol. 308(9):C729-36. 25673774
Coddou, C., Z. Yan, T. Obsil, J.P. Huidobro-Toro, and S.S. Stojilkovic. (2011). Activation and regulation of purinergic P2X receptor channels. Pharmacol Rev 63: 641-683. 21737531
Dal Ben, D., M. Buccioni, C. Lambertucci, G. Marucci, A. Thomas, and R. Volpini. (2015). Purinergic P2X receptors: structural models and analysis of ligand-target interaction. Eur J Med Chem 89: 561-580. 25462266
de Souza CA., Teixeira PC., Faria RX., Krylova O., Pohl P. and Alves LA. (2012). A consensus segment in the M2 domain of the hP2X(7) receptor shows ion channel activity in planar lipid bilayers and in biological membranes. Biochim Biophys Acta. 1818(1):64-71. 21958668
de Torre-Minguela, C., M. Barberà-Cremades, A.I. Gómez, F. Martín-Sánchez, and P. Pelegrín. (2016). Macrophage activation and polarization modify P2X7 receptor secretome influencing the inflammatory process. Sci Rep 6: 22586. 26935289
Du J., Dong H. and Zhou HX. (2012). Size matters in activation/inhibition of ligand-gated ion channels. Trends Pharmacol Sci. 33(9):482-93. 22789930
Du, J., H. Dong, and H.X. Zhou. (2012). Gating mechanism of a P2X4 receptor developed from normal mode analysis and molecular dynamics simulations. Proc. Natl. Acad. Sci. USA 109: 4140-4145. 22378652
Fabbretti E. and Nistri A. (2012). Regulation of P2X3 receptor structure and function. CNS Neurol Disord Drug Targets. 11(6):687-98. 22963434
Fountain, S.J., K. Parkinson, M.T. Young, L. Cao, C.R. Thompson, and R.A. North. (2007). An intracellular P2X receptor required for osmoregulation in Dictyostelium discoideum. Nature. 448: 200-203. 17625565
Fountain, S.J., L. Cao, M.T. Young, and R.A. North. (2008). Permeation Properties of a P2X Receptor in the Green Algae Ostreococcus tauri. J. Biol. Chem. 283: 15122-15126. 18381285
Gao C., Yu Q., Xu H., Zhang L., Liu J., Jie Y., Ma W., Samways DS. and Li Z. (2015). Roles of the lateral fenestration residues of the P2X(4) receptor that contribute to the channel function and the deactivation effect of ivermectin. Purinergic Signal. 11(2):229-38. 25847072
Gao, X.F., J.F. Feng, W. Wang, Z.H. Xiang, X.J. Liu, C. Zhu, Z.X. Tang, X.Z. Dong, and C. He. (2015). Pirt reduces bladder overactivity by inhibiting purinergic receptor P2X3. Nat Commun 6: 7650. 26151598
Habermacher, C., A. Martz, N. Calimet, D. Lemoine, L. Peverini, A. Specht, M. Cecchini, and T. Grutter. (2016). Photo-switchable tweezers illuminate pore-opening motions of an ATP-gated P2X ion channel. Elife 5:. 26808983
Hattori M. and Gouaux E. (2012). Molecular mechanism of ATP binding and ion channel activation in P2X receptors. Nature. 485(7397):207-12. 22535247
He, Y.Q., J. Chen, X.J. Lu, and Y.H. Shi. (2013). Characterization of P2X7R and its function in the macrophages of ayu, Plecoglossus altivelis. PLoS One 8: e57505. 23437395
Jelínkova, I., V. Vávra, M. Jindrichova, T. Obsil, H.W. Zemkova, H. Zemkova, and S.S. Stojilkovic. (2008). Identification of P2X(4) receptor transmembrane residues contributing to channel gating and interaction with ivermectin. Pflugers Arch 456: 939-950. 18427835
Jiang, L.H., F. Rassendren, A. Surprenant, and R.A. North. (2000). Identification of amino acid residues contributing to the ATP-binding site of a purinergic P2X receptor. J. Biol. Chem. 275: 34190-34196. 10940304
Jindrichova M., Bhattacharya A., Rupert M., Skopek P., Obsil T. and Zemkova H. (2015). Functional characterization of mutants in the transmembrane domains of the rat P2X7 receptor that regulate pore conductivity and agonist sensitivity. J Neurochem. 133(6):815-27. 25712548
Jindrichova, M., K. Khafizov, A. Skorinkin, D. Fayuk, G. Bart, H. Zemkova, and R. Giniatullin. (2011). Highly conserved tyrosine 37 stabilizes desensitized states and restricts calcium permeability of ATP-gated P2X3 receptor. J Neurochem 119: 676-685. 21883226
Kawate, T. (2017). P2X Receptor Activation. Adv Exp Med Biol. [Epub: Ahead of Print] 28639248
Kawate, T., J.C. Michel, W.T. Birdsong, and E. Gouaux. (2009). Crystal structure of the ATP-gated P2X(4) ion channel in the closed state. Nature 460: 592-598. 19641588
Kawate, T., J.L. Robertson, M. Li, S.D. Silberberg, and K.J. Swartz. (2011). Ion access pathway to the transmembrane pore in P2X receptor channels. J Gen Physiol 137: 579-590. 21624948
Keceli B. and Kubo Y. (2014). Voltage- and ATP-dependent structural rearrangements of the P2X2 receptor associated with the gating of the pore. J Physiol. 592(Pt 21):4657-76. 25172943
Kracun S., Chaptal V., Abramson J. and Khakh BS. (2010). Gated access to the pore of a P2X receptor: structural implications for closed-open transitions. J Biol Chem. 285(13):10110-21. 20093367
Li, M., T. Kawate, S.D. Silberberg, and K.J. Swartz. (2010). Pore-opening mechanism in trimeric P2X receptor channels. Nat Commun 1: 44. 20975702
Li, Q., X. Luo, and S. Muallem. (2005). Regulation of the P2X7 receptor permeability to large molecules by extracellular Cl- and Na+. J. Biol. Chem. 280: 26922-26927. 15923180
Liang, X., H. Xu, C. Li, S. Yin, T. Xu, J. Liu, and Z. Li. (2013). Functional Identification of Close Proximity Amino Acid Side Chains within the Transmembrane-Spanning Helixes of the P2X2 Receptor. PLoS One 8: e70629. 23936459
Lu, H., D. Burns, P. Garnier, G. Wei, K. Zhu, and W. Ying. (2007). P2X7 receptors mediate NADH transport across the plasma membranes of astrocytes. Biochem. Biophys. Res. Commun. 362: 946-950. 17803959
Ludlow, M.J., L. Durai, and S.J. Ennion. (2009). Functional characterization of intracellular Dictyostelium discoideum P2X receptors. J. Biol. Chem. 284: 35227-35239. 19833731
Mansoor, S.E., W. Lü, W. Oosterheert, M. Shekhar, E. Tajkhorshid, and E. Gouaux. (2016). X-ray structures define human P2X3 receptor gating cycle and antagonist action. Nature. [Epub: Ahead of Print] 27626375
Marques-da-Silva, C., M.M. Chaves, J.C. Rodrigues, S. Corte-Real, R. Coutinho-Silva, and P.M. Persechini. (2011). Differential modulation of ATP-induced P2X7-associated permeabilities to cations and anions of macrophages by infection with Leishmania amazonensis. PLoS One 6: e25356. 21966508
McCleskey E.W. and M.S. Gold. (1999). Ion channels of nociception. Annu. Rev. Physiol. 61: 835-856. 10099712
Minato, Y., S. Suzuki, T. Hara, Y. Kofuku, G. Kasuya, Y. Fujiwara, S. Igarashi, E. Suzuki, O. Nureki, M. Hattori, T. Ueda, and I. Shimada. (2016). Conductance of P2X4 purinergic receptor is determined by conformational equilibrium in the transmembrane region. Proc. Natl. Acad. Sci. USA 113: 4741-4746. 27071117
North, R.A. (2002). Molecular physiology of P2X receptors. Physiol. Rev. 82: 1013-1067. 12270951
North, R.A. (1996). Families of ion channels with two hydrophobic segments. Curr. Opin. Cell Biol. 8: 474-483. 8791456
Pierdominici-Sottile, G., L. Moffatt, and J. Palma. (2016). The Dynamic Behavior of the P2X4 Ion Channel in the Closed Conformation. Biophys. J. 111: 2642-2650. 28002740
Pippel, A., M. Stolz, R. Woltersdorf, A. Kless, G. Schmalzing, and F. Markwardt. (2017). Localization of the gate and selectivity filter of the full-length P2X7 receptor. Proc. Natl. Acad. Sci. USA 114: E2156-E2165. 28235784
Pupovac, A. and R. Sluyter. (2016). Roles of extracellular nucleotides and P2 receptors in ectodomain shedding. Cell Mol Life Sci. [Epub: Ahead of Print] 27180276
Roger, S., P. Pelegrin, and A. Surprenant. (2008). Facilitation of P2X7 receptor currents and membrane blebbing via constitutive and dynamic calmodulin binding. J. Neurosci. 28: 6393-6401. 18562610
Rokic, M.B., S.S. Stojilkovic, V. Vavra, P. Kuzyk, V. Tvrdonova, and H. Zemkova. (2013). Multiple Roles of the Extracellular Vestibule Amino Acid Residues in the Function of the Rat P2X4 Receptor. PLoS One 8: e59411. 23555667
Rokic, M.B., V. Tvrdoňová, V. Vávra, M. Jindřichová, T. Obšil, S.S. Stojilkovic, and H. Zemková. (2010). Roles of conserved ectodomain cysteines of the rat P2X4 purinoreceptor in agonist binding and channel gating. Physiol Res 59: 927-935. 20406028
Sadovnick, A.D., B.J. Gu, A.L. Traboulsee, C.Q. Bernales, M. Encarnacion, I.M. Yee, M.G. Criscuoli, X. Huang, A. Ou, C.J. Milligan, S. Petrou, J.S. Wiley, and C. Vilariño-Güell. (2017). Purinergic receptors P2RX4 and P2RX7 in familial multiple sclerosis. Hum Mutat. [Epub: Ahead of Print] 28326637
Samways DS., Khakh BS. and Egan TM. (2012). Allosteric Modulation of Ca2+ flux in Ligand-gated Cation Channel (P2X4) by Actions on Lateral Portals. J Biol Chem. 287(10):7594-602. 22219189
Samways, D.S., B.S. Khakh, S. Dutertre, and T.M. Egan. (2011). Preferential use of unobstructed lateral portals as the access route to the pore of human ATP-gated ion channels (P2X receptors). Proc. Natl. Acad. Sci. USA 108: 13800-13805. 21808018
Smart, M.L., B. Gu, R.G. Panchal, J. Wiley, B. Cromer, D.A. Williams, and S. Petrou. (2003). P2X7 receptor cell surface expression and cytolytic pore formation are regulated by a distal C-terminal region. J. Biol. Chem. 278: 8853-8860. 12496266
Soto, F., M. Garcia-Guzman, and W. Stühmer. (1997). Cloned ligand-gated channels activated by extracellular ATP (P2X receptors). J. Membr. Biol. 160: 91-100. 9354701
Stojilkovic, S.S., Z. Yan, T. Obsil, and H. Zemkova. (2010). Structural insights into the function of P2X4: an ATP-gated cation channel of neuroendocrine cells. Cell Mol Neurobiol 30: 1251-1258. 21107680
Wen, H. and R.J. Evans. (2011). Contribution of the intracellular C terminal domain to regulation of human P2X1 receptors for ATP by phorbol ester and Gq coupled mGlu(1α) receptors. Eur J Pharmacol 654: 155-159. 21172341
Zemkova H., Khadra A., Rokic MB., Tvrdonova V., Sherman A. and Stojilkovic SS. (2015). Allosteric regulation of the P2X4 receptor channel pore dilation. Pflugers Arch. 467(4):713-26. 24917516


Bienert, G.P., M.D. Schüssler, and T.P. Jahn. (2008). Metalloids: essential, beneficial or toxic? Major intrinsic proteins sort it out. Trends Biochem. Sci. 33: 20-26. 18068370
Ahmadpour, D., E. Maciaszczyk-Dziubinska, R. Babazadeh, S. Dahal, M. Migocka, M. Andersson, R. Wysocki, M.J. Tamás, and S. Hohmann. (2016). The MAP kinase Slt2 modulates arsenite transport through the aquaglyceroporin Fps1. FEBS Lett. [Epub: Ahead of Print] 27607883
Amezcua-Romero JC., Pantoja O. and Vera-Estrella R. (2010). Ser123 is essential for the water channel activity of McPIP2;1 from Mesembryanthemum crystallinum. J Biol Chem. 285(22):16739-47. 20332086
Araya-Secchi, R., J.A. Garate, D.S. Holmes, and T. Perez-Acle. (2011). Molecular dynamics study of the archaeal aquaporin AqpM. BMC Genomics 12Suppl4: S8. 22369250
Assentoft, M., S. Kaptan, H.P. Schneider, J.W. Deitmer, B.L. de Groot, and N. MacAulay. (2016). Aquaporin 4 as a NH3 Channel. J. Biol. Chem. [Epub: Ahead of Print] 27435677
Au, C.G., T.L. Butler, J.R. Egan, S.T. Cooper, H.P. Lo, A.G. Compton, K.N. North, and D.S. Winlaw. (2008). Changes in skeletal muscle expression of AQP1 and AQP4 in dystrophinopathy and dysferlinopathy patients. Acta Neuropathol 116: 235-246. 18392839
Ayadi, M., D. Cavez, N. Miled, F. Chaumont, and K. Masmoudi. (2011). Identification and characterization of two plasma membrane aquaporins in durum wheat (Triticum turgidum L. subsp. durum) and their role in abiotic stress tolerance. Plant Physiol. Biochem 49: 1029-1039. 21723739
Beese-Sims, S.E., J. Lee, and D.E. Levin. (2011). Yeast Fps1 glycerol facilitator functions as a homotetramer. Yeast 28: 815-819. 22030956
Beitz, E., S. Pavlovic-Djuranovic, M. Yasui, P. Agre, and J.E. Schultz. (2004). Molecular dissection of water and glycerol permeability of the aquaglyceroporin from Plasmodium falciparum by mutational analysis. Proc. Natl. Acad. Sci. USA 101: 1153-1158. 14734807
Bellati, J., K. Alleva, G. Soto, V. Vitali, C. Jozefkowicz, and G. Amodeo. (2010). Intracellular pH sensing is altered by plasma membrane PIP aquaporin co-expression. Plant Mol. Biol. 74: 105-118. 20593222
Berny, M.C., D. Gilis, M. Rooman, and F. Chaumont. (2016). Single mutations in the transmembrane domains of maize plasma membrane aquaporins affect the activity of the monomers within a heterotetramer. Mol Plant. [Epub: Ahead of Print] 27109604
Berthaud A., Manzi J., Perez J. and Mangenot S. (2012). Modeling detergent organization around aquaporin-0 using small-angle X-ray scattering. J Am Chem Soc. 134(24):10080-8. 22621369
Berthaud, A., F. Quemeneur, M. Deforet, P. Bassereau, F. Brochard-Wyart, and S. Mangenot. (2015). Spreading of porous vesicles subjected to osmotic shocks: the role of aquaporins. Soft Matter. [Epub: Ahead of Print] 26662491
Bertl, A., and R. Kaldenhoff. (2007). Function of a separate NH3-pore in Aquaporin TIP2;2 from wheat. FEBS Lett. 581: 5413-5417. 17967420
Bienert, G.P., A.L. Moller, K.A. Kristiansen, A. Schulz, I.M. Moller, J.K. Schjoerring, and T.P. Jahn. (2007). Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem. 282: 1183-1192. 17105724
Bienert, G.P., B. Desguin, F. Chaumont, and P. Hols. (2013). Channel-mediated lactic acid transport: a novel function for aquaglyceroporins in bacteria. Biochem. J. 454: 559-570. 23799297
Bui, L.C., C. Tomkiewicz, S. Pierre, A. Chevallier, R. Barouki, and X. Coumoul. (2016). Regulation of Aquaporin 3 Expression by the AhR Pathway Is Critical to Cell Migration. Toxicol Sci 149: 158-166. 26454884
Buzhynskyy, N., J.F. Girmens, W. Faigle, S. Scheuring. (2007). Human cataract lens membrane at subnanometer resolution. J. Mol. Biol. 374: 162-169. 17920625
Calamita, G., B. Kempf, M. Bonhivers, W.R. Bishai, E. Bremer, and P. Agre. (1998). Regulation of the Escherichia coli water channel gene aqpZ. Proc. Natl. Acad. Sci. USA 95: 3627-3631. 9520416
Calamita. G. (2000). The Escherichia coli aquaporin-Z water channel. Mol. Microbiol. 37: 254-262. 10931322
Carbrey, J.M., D.A. Gorelick-Feldman, D. Kozono, J. Praetorius, S. Nielsen, and P. Agre. (2003). Aquaglyceroporin AQP9: solute permeation and metabolic control of expression in liver. Proc. Natl. Acad. Sci. USA 100: 2945-2950. 12594337
Carbrey, J.M., M. Bonhivers, J.D. Boeke, and P. Agre. (2001). Aquaporins in Saccharomyces: characterization of a second functional water channel protein. Proc. Natl. Acad. Sci. USA 98: 1000-1005. 11158584
Chau, D., K. Ng, T.S. Chan, Y.Y. Cheng, B. Fong, S. Tam, Y.L. Kwong, and E. Tse. (2015). Azacytidine sensitizes acute myeloid leukemia cells to arsenic trioxide by up-regulating the arsenic transporter aquaglyceroporin 9. J Hematol Oncol 8: 46. 25953102
Chauvigne F., Zapater C., Stavang JA., Taranger GL., Cerda J. and Finn RN. (2015). The pH sensitivity of Aqp0 channels in tetraploid and diploid teleosts. FASEB J. 29(5):2172-84. 25667219
Chevalier, A.S. and F. Chaumont. (2015). The LxxxA motif in the third transmembrane helix of the maize aquaporin ZmPIP2;5 acts as an ER export signal. Plant Signal Behav 10: e990845. 25897469
Chiba, Y., N. Mitani, N. Yamaji, and J.F. Ma. (2009). HvLsi1 is a silicon influx transporter in barley. Plant J. 57: 810-818. 18980663
Choi, W.G., and D.M. Roberts. (2007). Arabidopsis NIP2;1, a major intrinsic protein transporter of lactic acid induced by anoxic stress. J. Biol. Chem. 282: 24209-24218. 17584741
Chrispeels, M.J. and C. Maurel. (1994). Aquaporins: the molecular basis of facilitated water movement through living plant cells? Plant Physiol. 105: 9-13. 7518091
Cui, Y. and D.A. Bastien. (2011). Water transport in human aquaporin-4: Molecular dynamics (MD) simulations. Biochem. Biophys. Res. Commun. 412: 654-659. 21856282
Dai, Y.H., B.R. Liu, H.J. Chiang, and H.J. Lee. (2011). Gene transport and expression by arginine-rich cell-penetrating peptides in Paramecium. Gene 489: 89-97. 21925248
Danielsson, A., F. Pontén, L. Fagerberg, B.M. Hallström, J.M. Schwenk, M. Uhlén, O. Korsgren, and C. Lindskog. (2014). The human pancreas proteome defined by transcriptomics and antibody-based profiling. PLoS One 9: e115421. 25546435
de Paula Santos Martins, C., A.M. Pedrosa, D. Du, L.P. Gonçalves, Q. Yu, F.G. Gmitter, Jr, and M.G. Costa. (2015). Genome-Wide Characterization and Expression Analysis of Major Intrinsic Proteins during Abiotic and Biotic Stresses in Sweet Orange (Citrus sinensis L. Osb.). PLoS One 10: e0138786. 26397813
Dean, R.M., R.L. Rivers, M.L. Zeide, and D.M. Roberts. (1999). Purification and functional reconstitution of soybean nodulin 26. An aquaporin with water and glycerol transport properties. Biochemistry 38: 347-353. 9890916
Deen, P.M.T. and C.H. van Os. (1998). Epithelial aquaporins. Curr. Opin. Cell Biol. 10: 435-442. 9719862
Di Giusto, G., P. Flamenco, V. Rivarola, J. Fernández, L. Melamud, P. Ford, and C. Capurro. (2012). Aquaporin 2-increased renal cell proliferation is associated with cell volume regulation. J. Cell. Biochem. 113: 3721-3729. 22786728
Dynowski, M., G. Schaaf, D. Loque, O. Moran, and U. Ludewig. (2008). Plant plasma membrane water channels conduct the signalling molecule H2O2. Biochem. J. 414: 53-61. 18462192
Engel, A., Y. Fujiyoshi, and P. Agre. (2000). The importance of aquaporin water channel protein structures. EMBO J. 19: 800-806. 10698922
Engel, A., Y. Fujiyoshi, T. Gonen, and T. Walz. (2008). Junction-forming aquaporins. Curr. Opin. Struct. Biol. 18: 229-235. 18194855
Fenton, R.A., H.B. Moeller, J.D. Hoffert, M.J. Yu, S. Nielsen, and M.A. Knepper. (2008). Acute regulation of aquaporin-2 phosphorylation at Ser-264 by vasopressin. Proc. Natl. Acad. Sci. U. S. A. 105: 3134-3139. 18287043
Figarella, K., M. Rawer, N.L. Uzcategui, B.K. Kubata, K. Lauber, F. Madeo, S. Wesselborg, and M. Duszenko. (2005). Prostaglandin D2 induces programmed cell death in Trypanosoma brucei bloodstream form. Cell Death Differ. 12: 335-346. 15678148
Figarella, K., N.L. Uzcategui, Y. Zhou, A. LeFurgey, M. Ouellette, H. Bhattacharjee, and R. Mukhopadhyay. (2007). Biochemical characterization of Leishmania major aquaglyceroporin LmAQP1: possible role in volume regulation and osmotaxis. Mol. Microbiol. 65: 1006-1017. 17640270
Figueiredo, B.C., N.R. De Assis, S.B. De Morais, V.P. Martins, N.D. Ricci, R.M. Bicalho, C.d.a.S. Pinheiro, and S.C. Oliveira. (2014). Immunological characterization of a chimeric form of Schistosoma mansoni aquaporin in the murine model. Parasitology 141: 1277-1288. 24786243
Finn, R.N., F. Chauvigné, J.A. Stavang, X. Belles, and J. Cerdà. (2015). Insect glycerol transporters evolved by functional co-option and gene replacement. Nat Commun 6: 7814. 26183829
Fontijn, R.D., O.L. Volger, T.C. van der Pouw-Kraan, A. Doddaballapur, T. Leyen, J.M. Baggen, R.A. Boon, and A.J. Horrevoets. (2015). Expression of Nitric Oxide-Transporting Aquaporin-1 Is Controlled by KLF2 and Marks Non-Activated Endothelium In Vivo. PLoS One 10: e0145777. 26717516
Frick, A., U.K. Eriksson, F. de Mattia, F. Oberg, K. Hedfalk, R. Neutze, W.J. de Grip, P.M. Deen, and S. Törnroth-Horsefield. (2014). X-ray structure of human aquaporin 2 and its implications for nephrogenic diabetes insipidus and trafficking. Proc. Natl. Acad. Sci. USA 111: 6305-6310. 24733887
Froger, A., J.-P. Rolland, P. Bron, V. Lagrée, F. Le Cahérec, S. Deschamps, J.-F. Hubert, I. Pellerin, D. Thomas, and C. Delamarche. (2001). Functional characterization of a microbial aquaglyceroporin. Microbiology 147: 1129-1135. 11320116
Fu, D., A. Libson, L.J.W. Miercke, C. Weitzman, P. Nollert, J. Krucinski, and R.M. Stroud. (2000). Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290: 481-486. 11039922
Geadkaew, A., J. von Bülow, E. Beitz, S. Tesana, S. Vichasri Grams, and R. Grams. (2015). Bi-functionality of Opisthorchis viverrini aquaporins. Biochimie 108: 149-159. 25461277
Geijer C., Ahmadpour D., Palmgren M., Filipsson C., Klein DM., Tamas MJ., Hohmann S. and Lindkvist-Petersson K. (2012). Yeast aquaglyceroporins use the transmembrane core to restrict glycerol transport. J Biol Chem. 287(28):23562-70. 22593571
Gerbeau, P., J. Güçlü, P. Ripoche, and C. Maurel. (1999). Aquaporin Nt-TIPa can account for the high permeability of tobacco cell vacuolar membrane to small neutral solutes. Plant J. 18: 577-587. 10417709
Gonen, T. and T. Walz. (2006). The structure of aquaporins. Q. Rev. Biophys. 39: 361-396. 17156589
Gonen, T., P. Sliz, J. Kistler, Y. Cheng, and T. Walz. (2004b). Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature 429: 193-197. 15141214
Gonen, T., Y. Cheng, J. Kistler, and T. Walz. (2004a). Aquaporin-0 membrane junctions form upon proteolytic cleavage. J. Mol. Biol. 342: 1337-1345. 15351655
Gonen, T., Y. Cheng, P. Sliz, Y. Hiroaki, Y. Fujiyoshi, S.C. Harrison, and T. Walz. (2005). Lipid-protein interactions in double-layered two-dimensional AQP0 crystals. Nature 438: 633-638. Erratum in: Nature (2006) 441: 248. 16319884
Gourbal, B., N. Sonuc, H. Bhattacharjee, D. Legare, S. Sundar, M. Ouellette, B.P. Rosen, and R. Mukhopadhyay. (2004). Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin. J. Biol. Chem. 279: 31010-31017. 15138256
Guo, H., M. Wei, Y. Liu, Y. Zhu, W. Xu, L. Meng, N. Wang, C. Shao, S. Lu, F. Gao, Z. Cui, Z. Wei, F. Zhao, and S. Chen. (2017). Molecular cloning and expression analysis of the aqp1aa gene in half-smooth tongue sole (Cynoglossus semilaevis). PLoS One 12: e0175033. 28380032
Hara-Chikuma, M., and A.S. Verkman. (2008). Prevention of skin tumorigenesis and impairment of epidermal cell proliferation by targeted aquaporin-3 gene disruption. Mol. Cell. Biol. 28: 326-332. 17967887
Heller, K.B., E.C. Lin, and T.H. Wilson. (1980). Substrate specificity and transport properties of the glycerol facilitator of Escherichia coli. J. Bacteriol. 144: 274-278. 6998951
Hemley SJ., Bilston LE., Cheng S., Chan JN. and Stoodley MA. (2013). Aquaporin-4 expression in post-traumatic syringomyelia. J Neurotrauma. 30(16):1457-67. 23441695
Herraiz, A., F. Chauvigné, J. Cerdà, X. Bellés, and M.D. Piulachs. (2011). Identification and functional characterization of an ovarian aquaporin from the cockroach Blattella germanica L. (Dictyoptera, Blattellidae). J Exp Biol 214: 3630-3638. 21993792
Hesler, R.A., J.J. Huang, M.D. Starr, V.M. Treboschi, A.G. Bernanke, A.B. Nixon, S.J. McCall, R.R. White, and G.C. Blobe. (2016). TGF-β-Induced Stromal CYR61 Promotes Resistance to Gemcitabine in Pancreatic Ductal Adenocarcinoma Through Down-Regulation of the Nucleoside Transporters hENT1 and hCNT3. Carcinogenesis. [Epub: Ahead of Print] 27604902
Heymann, J.B. and A. Engel. (2000). Structural clues in the sequences of the aquaporins. J. Mol. Biol. 295: 1039-1053. 10656809
Hill AE. and Shachar-Hill Y. (2015). Are Aquaporins the Missing Transmembrane Osmosensors? J Membr Biol. 248(4):753-65. 25791748
Hirota, A., Y. Takiya, J. Sakamoto, N. Shiojiri, M. Suzuki, S. Tanaka, and R. Okada. (2015). Molecular Cloning of cDNA Encoding an Aquaglyceroporin, AQP-h9, in the Japanese Tree Frog, Hyla japonica: Possible Roles of AQP-h9 in Freeze Tolerance. Zoolog Sci 32: 296-306. 26402924
Horsefield, R., K. Nordén, M. Fellert, A. Backmark, S. Törnroth-Horsefield, A.C. Terwisscha van Scheltinga, J. Kvassman, P. Kjellbom, U. Johanson, and R. Neutze. (2008). High-resolution x-ray structure of human aquaporin 5. Proc. Natl. Acad. Sci. USA 105: 13327-13332. 18768791
Hub, J.S. and B.L. de Groot. (2008). Mechanism of selectivity in aquaporins and aquaglyceroporins. Proc. Natl. Acad. Sci. USA 105: 1198-1203. 18202181
Hwang, J.H., S.R. Ellingson, and D.M. Roberts. (2010). Ammonia permeability of the soybean nodulin 26 channel. FEBS Lett. 584: 4339-4343. 20875821
Ikeda, M., E. Beitz, D. Kozono, W.B. Guggino, P. Agre, and M. Yasui. (2002). Characterization of aquaporin-6 as a nitrate channel in mammalian cells. Requirement of pore-lining residue threonine. J. Biol. Chem. 277: 39873-39879. 12177001
Ikezoe, K., T. Oga, T. Honda, M. Hara-Chikuma, X. Ma, T. Tsuruyama, K. Uno, J. Fuchikami, K. Tanizawa, T. Handa, Y. Taguchi, A.S. Verkman, S. Narumiya, M. Mishima, and K. Chin. (2016). Aquaporin-3 potentiates allergic airway inflammation in ovalbumin-induced murine asthma. Sci Rep 6: 25781. 27165276
Isayenkov, S.V. and F.J. Maathuis. (2008). The Arabidopsis thaliana aquaglyceroporin AtNIP7;1 is a pathway for arsenite uptake. FEBS Lett. 582: 1625-1628. 18435919
Ishibashi, K., Y. Morishita, and Y. Tanaka. (2017). The Evolutionary Aspects of Aquaporin Family. Adv Exp Med Biol 969: 35-50. 28258564
Ishida Y., Nagae T. and Azuma M. (2012). A water-specific aquaporin is expressed in the olfactory organs of the blowfly, Phormia regina. J Chem Ecol. 38(8):1057-61. 22767214
Ishikawa, F., S. Suga, T. Uemura, M.H. Sato, and M. Maeshima. (2005). Novel type aquaporin SIPs are mainly localized to the ER membrane and show cell-specific expression in Arabidopsis thaliana. FEBS Lett. 579: 5814-5820. 16223486
Jelen S., Gena P., Lebeck J., Rojek A., Praetorius J., Frokiaer J., Fenton RA., Nielsen S., Calamita G. and Rutzler M. (2012). Aquaporin-9 and urea transporter-A gene deletions affect urea transmembrane passage in murine hepatocytes. Am J Physiol Gastrointest Liver Physiol. 303(11):G1279-87. 23042941
Jiang, J., B.V. Daniels, and D. Fu. (2006). Crystal structure of AqpZ tetramer reveals two distinct Arg-189 conformations associated with water permeation through the narrowest constriction of the water-conducting channel. J. Biol. Chem. 281: 454-460. 16239219
Jung, H.J., J.Y. Park, H.S. Jeon, and T.H. Kwon. (2011). Aquaporin-5: a marker protein for proliferation and migration of human breast cancer cells. PLoS One 6: e28492. 22145049
Jungersted JM., Bomholt J., Bajraktari N., Hansen JS., Klaerke DA., Pedersen PA., Hedfalk K., Nielsen KH., Agner T. and Helix-Nielsen C. (2013). In vivo studies of aquaporins 3 and 10 in human stratum corneum. Arch Dermatol Res. 305(8):699-704. 23677388
Kalluri, S.R., V. Rothhammer, O. Staszewski, R. Srivastava, F. Petermann, M. Prinz, B. Hemmer, and T. Korn. (2011). Functional characterization of aquaporin-4 specific T cells: towards a model for neuromyelitis optica. PLoS One 6: e16083. 21264240
Kaptan S., Assentoft M., Schneider HP., Fenton RA., Deitmer JW., MacAulay N. and de Groot BL. (2015). H95 Is a pH-Dependent Gate in Aquaporin 4. Structure. 23(12):2309-18. 26585511
Kikawada, T., A. Saito, Y. Kanamori, M. Fujita, K. Snigórska, M. Watanabe, and T. Okuda. (2008). Dehydration-inducible changes in expression of two aquaporins in the sleeping chironomid, Polypedilum vanderplanki. Biochim. Biophys. Acta. 1778: 514-520. 18082130
Klein, N., J. Neumann, J.D. O''Neil, and D. Schneider. (2015). Folding and stability of the aquaglyceroporin GlpF: Implications for human aqua(glycero)porin diseases. Biochim. Biophys. Acta. 1848: 622-633. 25462169
Kosinska Eriksson, U., G. Fischer, R. Friemann, G. Enkavi, E. Tajkhorshid, and R. Neutze. (2013). Subangstrom resolution X-ray structure details aquaporin-water interactions. Science 340: 1346-1349. 23766328
Koun, S., J.D. Kim, M. Rhee, M.J. Kim, and T.L. Huh. (2016). Spatiotemporal expression pattern of the zebrafish aquaporin 8 family during early developmental stages. Gene Expr Patterns 21: 1-6. 27264560
Kozono, D., X. Ding, I. Iwasaki, X. Meng, Y. Kamagata, P. Agre, and Y. Kitagawa. (2003). Functional expression and characterization of an archaeal aquaporin. AqpM from Methanothermobacter marburgensis. J. Biol. Chem. 278: 10649-10656. 12519768
Lebeck, J. (2014). Metabolic impact of the glycerol channels AQP7 and AQP9 in adipose tissue and liver. J Mol Endocrinol 52: R165-178. 24463099
Lebeck, J., M.U. Cheema, M.T. Skowronski, S. Nielsen, and J. Praetorius. (2015). Hepatic AQP9 expression in male rats is reduced in response to PPARα agonist treatment. Am. J. Physiol. Gastrointest Liver Physiol 308: G198-205. 25477377
Leung, J., A. Pang, W.H. Yuen, Y.L. Kwong, and E.W. Tse. (2007). Relationship of expression of aquaglyceroporin 9 with arsenic uptake and sensitivity in leukemia cells. Blood 109: 740-746. 16968895
Li, H., S. Lee, and B.K. Jap. (1997). Molecular design of aquaporin-1 water channel as revealed by electrocrystallography. Nature Struc. Biol. 4: 263-265. 9095192
Li, J. and A.S. Verkman. (2001). Impaired hearing in mice lacking aquaporin-4 water channels. J. Biol. Chem. 276: 31233-31237. 11406631
Li, R.Y., Y. Ago, W.J. Liu, N. Mitani, J. Feldmann, S.P. McGrath, J.F. Ma, and F.J. Zhao. (2009). The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol. 150: 2071-2080. 19542298
Li, T., W.G. Choi, I.S. Wallace, J. Baudry, and D.M. Roberts. (2011). Arabidopsis thaliana NIP7;1: an anther-specific boric acid transporter of the aquaporin superfamily regulated by an unusual tyrosine in helix 2 of the transport pore. Biochemistry 50: 6633-6641. 21710975
Li, Z., B. Li, L. Zhang, L. Chen, G. Sun, Q. Zhang, J. Wang, X. Zhi, L. Wang, Z. Xu, and H. Xu. (2016). The proliferation impairment induced by AQP3 deficiency is the result of glycerol uptake and metabolism inhibition in gastric cancer cells. Tumour Biol 37: 9169-9179. 26768614
Liu, K., H. Tsujimoto, S.J. Cha, P. Agre, and J.L. Rasgon. (2011). Aquaporin water channel AgAQP1 in the malaria vector mosquito Anopheles gambiae during blood feeding and humidity adaptation. Proc. Natl. Acad. Sci. USA 108: 6062-6066. 21444767
Loqué, D., U. Ludewig, L. Yuan, and N. von Wirén. (2005). Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole. Plant Physiology 137: 671-680. 15665250
Lu, D.C., H. Zhang, Z. Zador, and A.S. Verkman. (2008). Impaired olfaction in mice lacking aquaporin-4 water channels. FASEB J. 22: 3216-3223. 18511552
Ma, J.F., K. Tamai, N. Yamaji, N. Mitani, S. Konishi, M. Katsuhara, M. Ishiguro, Y. Murata, and M. Yano. (2007b). A silicon transporter in rice. Nature 440: 688-691. 16572174
Ma, J.F., N. Yamaji, K. Tamai, and N. Mitani. (2007a). Genotypic difference in silicon uptake and expression of silicon transporter genes in rice. Plant Physiol. 145: 919-924. 17905867
Mahdieh, M., A. Mostajeran, T. Horie, and M. Katsuhara. (2008). Drought stress alters water relations and expression of PIP-type aquaporin genes in Nicotiana tabacum plants. Plant Cell Physiol. 49: 801-813. 18385163
Mallo, R.C. and Ashby, M.T. (2006). AqpZ-mediated water permeability in Escherichia coli measured by stopped-flow spectroscopy. J. Bacteriol. 188:820-822. 16385074
Martos-Sitcha, J.A., M.A. Campinho, J.M. Mancera, G. Martínez-Rodríguez, and J. Fuentes. (2015). Vasotocin and isotocin regulate aquaporin 1 function in the sea bream. J Exp Biol 218: 684-693. 25573823
Mathew, L.G., E.M. Campbell, A.J. Yool, and J.A. Fabrick. (2011). Identification and characterization of functional aquaporin water channel protein from alimentary tract of whitefly, Bemisia tabaci. Insect Biochem Mol Biol 41: 178-190. 21146609
McDermott JR., Jiang X., Beene LC., Rosen BP. and Liu Z. (2010). Pentavalent methylated arsenicals are substrates of human AQP9. Biometals. 23(1):119-27. 19802720
Meng, Y.-L., Z. Liu, and B.P. Rosen. (2004). As(III) and Sb(III) uptake by GlpF and efflux by ArsB in Escherichia coli. J. Biol. Chem. 279: 18334-18341. 14970228
Michalek, K. (2016). Aquaglyceroporins in the kidney: present state of knowledge and prospects. J. Physiol. Pharmacol 67: 185-193. 27226178
Mitani N., N. Yamaji, J.F. Ma. (2008). Characterization of substrate specificity of a rice silicon transporter, Lsi1. Pflugers Arch : . 18214526
Moe, S.E., J.G. Sorbo, R. Sogaard, T. Zeuthen, O. Petter Ottersen, and T. Holen. (2008). New isoforms of rat Aquaporin-4. Genomics 91: 367-377. 18255256
Mukhopadhyay R., Bhattacharjee H. and Rosen BP. (2014). Aquaglyceroporins: generalized metalloid channels. Biochim Biophys Acta. 1840(5):1583-91. 24291688
Murata, K., K. Mitsuoka, T. Hirai, T. Walz, P. Agre, J.B. Heymann, A. Engel, and Y. Fujiyoshi. (2000). Structural determinants of water permeation through aquaporin-1. Science 407: 599-605.
Najafabadi, H.S., N. Torabi, and M. Chamankhah. (2008). Designing multiple degenerate primers via consecutive pairwise alignments. BMC Bioinformatics 9: 55. 18221562
Nakazawa, Y., M. Oka, A. Mitsuishi, M. Bando, and M. Takehana. (2011). Quantitative analysis of ascorbic acid permeability of aquaporin 0 in the lens. Biochem. Biophys. Res. Commun. 415: 125-130. 22020074
Navarro-Ródenas, A., J.M. Ruíz-Lozano, R. Kaldenhoff, and A. Morte. (2012). The aquaporin TcAQP1 of the desert truffle Terfezia claveryi is a membrane pore for water and CO(2) transport. Mol. Plant Microbe Interact. 25: 259-266. 22088195
Nemeth-Cahalan, K.L., K. Kalman, A. Froger, and J. E. Hall. (2007). Zinc Modulation of Water Permeability Reveals that Aquaporin 0 Functions as a Cooperative Tetramer. J. Gen. Physiol. 130(5):457-464. 17938229
Niemietz, C.M. and S.D. Tyerman. (2000). Channel-mediated permeation of ammonia gas through the peribacteroid membrane of soybean nodules. FEBS Lett. 465: 110-114. 10631315
Nishihara, E., E. Yokota, A. Tazaki, H. Orii, M. Katsuhara, K. Kataoka, H. Igarashi, Y. Moriyama, T. Shimmen, and S. Sonobe. (2008). Presence of aquaporin and V-ATPase on the contractile vacuole of Amoeba proteus. Biol Cell 100: 179-188. 18004980
Nozaki, K., D. Ishii, and K. Ishibashi. (2008). Intracellular aquaporins: clues for intracellular water transport? Pflugers Arch 456(4): 701-707. 18034355
Olesen, E.T. and R.A. Fenton. (2017). Aquaporin-2 membrane targeting: still a conundrum. Am. J. Physiol. Renal Physiol ajprenal.00010.2017. [Epub: Ahead of Print] 28179252
Oliveira, R., F. Lages, M. Silva-Graça, and C. Lucas. (2003). Fps1p channel is the mediator of the major part of glycerol passive diffusion in Saccharomyces cerevisiae: artefacts and re-definitions. Biochim. Biophys. Acta. 1613: 57-71. 12832087
Pareek G., Krishnamoorthy V. and D'Silva P. (2013). Molecular insights revealing interaction of Tim23 and channel subunits of presequence translocase. Mol Cell Biol. 33(23):4641-59. 24061477
Park, J.H. and M.H. Saier, Jr. (1996). Phylogenetic characterization of the MIP family of transmembrane channel proteins. J. Membr. Biol. 153: 171-180. 8849412
Philip, B.N., A.J. Kiss, and R.E. Lee, Jr. (2011). The protective role of aquaporins in the freeze-tolerant insect Eurosta solidaginis: functional characterization and tissue abundance of EsAQP1. J Exp Biol 214: 848-857. 21307072
Pietrement, C., N. Da Silva, C. Silberstein, M. James, M. Marsolais, A. Van Hoek, D. Brown, N. Pastor-Soler, N. Ameen, R. Laprade, V. Ramesh, and S. Breton. (2008). Role of NHERF1, Cystic Fibrosis transmembrane conductance regulator, and cAMP in the regulation of aquaporin 9. J. Biol. Chem. 283: 2986-2996. 18055461
Pillitteri, L.J., N.L. Bogenschutz, and K.U. Torii. (2008). The bHLH protein, MUTE, controls differentiation of stomata and the hydathode pore in arabidopsis. Plant Cell Physiol. 49: 934-943. 18450784
Pust, A., D. Kylies, C. Hube-Magg, M. Kluth, S. Minner, C. Koop, T. Grob, M. Graefen, G. Salomon, M.C. Tsourlakis, J. Izbicki, C. Wittmer, H. Huland, R. Simon, W. Wilczak, G. Sauter, S. Steurer, T. Krech, T. Schlomm, and N. Melling. (2015). Aquaporin 5 expression is frequent in prostate cancer and shows a dichotomous correlation with tumor phenotype and PSA recurrence. Hum Pathol. [Epub: Ahead of Print] 26614400
Reizer, J., A. Reizer, and M.H. Saier, Jr. (1993). The MIP family of integral membrane channel proteins: sequence comparisons, evolutionary relationships, reconstructed pathway of evolution and proposed functional differentiation of the two repeated halves of the proteins. Crit. Rev. Biochem. Mol. Biol. 28: 235-257. 8325040
Saparov, S.M., D. Kozono, U. Rothe, P. Agre, and P. Pohl. (2001). Water and ion permeation of aquaporin-1 in planar lipid bilayers. Major differences in structural determinants and stoichiometry. J. Biol. Chem. 276: 31515-31520. 11410596
Saparov, S.M., K. Liu, P. Agre, and P. Pohl. (2007). Fast and selective ammonia transport by aquaporin-8. J. Biol. Chem. 282: 5296-5301. 17189259
Shibata, Y., I. Katayama, T. Nakakura, Y. Ogushi, R. Okada, S. Tanaka, and M. Suzuki. (2015). Molecular and cellular characterization of urinary bladder-type aquaporin in Xenopus laevis. Gen Comp Endocrinol 222: 11-19. 25220852
Shukla, V.K. and M.J. Chrispeels. (1998). Aquaporins: their role and regulation in cellular water movement. NATO-ASI Series (subseries H). Cellular integration of signaling pathways in plant development, pp.11-22. Springer-Verlag.
Sidoux-Walter, F., N. Pettersson, and S. Hohmann. (2004). The Saccharomyces cerevisiae aquaporin Aqy1 is involved in sporulation. Proc. Natl. Acad. Sci. USA 101: 17422-17427. 15583134
Soria LR., Fanelli E., Altamura N., Svelto M., Marinelli RA. and Calamita G. (2010). Aquaporin-8-facilitated mitochondrial ammonia transport. Biochem Biophys Res Commun. 393(2):217-21. 20132793
Soto, G., K. Alleva, M.A. Mazzella, G. Amodeo, and J.P. Muschietti. (2008). AtTIP1;3 and AtTIP5;1, the only highly expressed Arabidopsis pollen-specific aquaporins, transport water and urea. FEBS Lett. 582: 4077-4082. 19022253
Soto, G., R. Fox, N. Ayub, K. Alleva, F. Guaimas, E.J. Erijman, A. Mazzella, G. Amodeo, and J. Muschietti. (2010). TIP5;1 is an aquaporin specifically targeted to pollen mitochondria and is probably involved in nitrogen remobilization in Arabidopsis thaliana. Plant J. 64: 1038-1047. 21143683
Suzuki, H., K. Nishikawa, Y. Hiroaki, and Y. Fujiyoshi. (2008). Formation of aquaporin-4 arrays is inhibited by palmitoylation of N-terminal cysteine residues. Biochim. Biophys. Acta. 1778(4): 1181-1189. 18179769
Törnroth-Horsefield, S., Y. Wang, K. Hedfalk, U. Johanson, M. Karlsson, E. Tajkhorshid, R. Neutze, and P. Kjellbom. (2006). Structural mechanism of plant aquaporin gating. Nature 439: 688-694. 16340961
Takano, J., M. Wada, U. Ludewig, G. Schaaf, N. von Wirén, and T. Fujiwara. (2006). The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. The Plant Cell 18: 1498-1509. 16679457
Tang, H., C. Shao, and J. He. (2017). Down-regulated expression of aquaporin-4 in the cerebellum after status epilepticus. Cogn Neurodyn 11: 183-188. 28348649
Tani, K., T. Mitsuma, Y. Hiroaki, A. Kamegawa, K. Nishikawa, Y. Tanimura, and Y. Fujiyoshi. (2009). Mechanism of aquaporin-4's fast and highly selective water conduction and proton exclusion. J. Mol. Biol. 389: 694-706. 19406128
Uehlein, N., B. Otto, D.T. Hanson, M. Fischer, N. McDowell, and R. Kaldenhoff. (2008). Function of Nicotiana tabacum Aquaporins as Chloroplast Gas Pores Challenges the Concept of Membrane CO2 Permeability. Plant Cell 20: 648-657. 18349152
Uehlein, N., C. Lovisolo, F. Siefritz, and R. Kaldenhoff. (2003). The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature (in press). 14520414
Uzcategui, N.L., A. Szallies, S. Pavlovic-Djuranovic, M. Palmada, K. Figarella, C. Boehmer, F. Lang, E. Beitz, and M. Duszenko. (2004). Cloning, heterologous expression, and characterization of three aquaglyceroporins from Trypanosoma brucei. J. Biol. Chem. 279: 42669-42676. 15294911
Varadaraj, K., S.S. Kumari, R. Patil, M.B. Wax, and R.T. Mathias. (2008). Functional characterization of a human aquaporin 0 mutation that leads to a congenital dominant lens cataract. Exp Eye Res 87: 9-21. 18501347
Verdoucq, L., A. Grondin, and C. Maurel. (2008). Structure-function analysis of plant aquaporin AtPIP2;1 gating by divalent cations and protons. Biochem. J. 415: 409-416. 18637793
Verma, R.K., A.B. Gupta, and R. Sankararamakrishnan. (2015). Major intrinsic protein superfamily: channels with unique structural features and diverse selectivity filters. Methods Enzymol 557: 485-520. 25950979
Viadiu, H., T. Gonen, and T. Walz. (2007). Projection map of aquaporin-9 at 7 Å resolution. J. Mol. Biol. 367: 80-88. 17239399
Virkki MT., Agrawal N., Edsbacker E., Cristobal S., Elofsson A. and Kauko A. (2014). Folding of Aquaporin 1: multiple evidence that helix 3 can shift out of the membrane core. Protein Sci. 23(7):981-92. 24777974
von Bülow, J., A. Golldack, T. Albers, and E. Beitz. (2015). The amoeboidal Dictyostelium aquaporin AqpB is gated via Tyr216 and aqpB gene deletion affects random cell motility. Biol Cell 107: 78-88. 25546705
Wang, F. and B. Ye. (2016). Bioinformatics analysis and construction of phylogenetic tree of aquaporins from Echinococcus granulosus. Parasitol Res 115: 3499-3511. 27164831
Wang, L., Q. Li, Q. Lei, C. Feng, Y. Gao, X. Zheng, Y. Zhao, Z. Wang, and J. Kong. (2015). MzPIP2;1: An Aquaporin Involved in Radial Water Movement in Both Water Uptake and Transportation, Altered the Drought and Salt Tolerance of Transgenic Arabidopsis. PLoS One 10: e0142446. 26562158
Watanabe, S., C.S. Moniaga, S. Nielsen, and M. Hara-Chikuma. (2016). Aquaporin-9 facilitates membrane transport of hydrogen peroxide in mammalian cells. Biochem. Biophys. Res. Commun. 471: 191-197. 26837049
Wysocki, R., C.C. Chéry, D. Wawrzycka, M. Van Hulle, R. Cornelis, J.M. Thevelein, and M.J. Tamás. (2001). The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Mol. Microbiol. 40: 1391-1401. 11442837
Yang, B., Z. Zador, and A.S. Verkman. (2008). Glial cell aquaporin-4 overexpression in transgenic mice accelerates cytotoxic brain swelling. J. Biol. Chem. 283: 15280-15286. 18375385
Yang, G., G. Zhang, Q. Wu, and J. Zhao. (2011). A novel mutation in the MIP gene is associated with autosomal dominant congenital nuclear cataract in a Chinese family. Mol Vis 17: 1320-1323. 21647270
Yang, H.-C., J. Cheng, T.M. Finan, B.P. Rosen, and H. Bhattacharjee. (2005). Novel pathway for arsenic detoxification in the legume symbiont Sinorhizobium meliloti. J. Bacteriol. 187: 6991-6997. 16199569
Yasui, M., A. Hazama, T.-H. Kwon, S. Nielsen, W.B. Guggino, and P. Agre. (1999). Rapid gating and anion permeability of an intracellular aquaporin. Nature 402: 184-187. 10647010
Yoo, Y.J., H.K. Lee, W. Han, D.H. Kim, M. Lee, J. Jeon, D.W. Lee, J. Lee, Y. Lee, J. Lee, J.S. Kim, Y. Cho, J.K. Han, and I. Hwang. (2016). Interactions between transmembrane helices within monomers of the aquaporin AtPIP2;1 play a crucial role in tetramer formation. Mol Plant. [Epub: Ahead of Print] 27142778
Yool, A.J. (2007). Dominant-negative suppression of big brain ion channel activity by mutation of a conserved glutamate in the first transmembrane domain. Gene Expr. 13: 329-337. 17708419
Yool, A.J. and E.M. Campbell. (2012). Structure, function and translational relevance of aquaporin dual water and ion channels. Mol Aspects Med 33: 553-561. 22342689
Yu, X.S., X. Yin, E.M. Lafer, and J.X. Jiang. (2005). Developmental regulation of the direct interaction between the intracellular loop of connexin 45.6 and the C terminus of major intrinsic protein (aquaporin-0). J. Biol. Chem. 280: 22081-22090. 15802270
Zardoya, R. and S. Villalba. (2001). A phylogenetic framework for the aquaporin family in eukaryotes. J. Mol. Evol. 52: 391-404. 11443343
Zeuthen T., B. Wu, S. Pavlovic-Djuranovic, L.M. Holm, N.L. Uzcategui, M. Duszenko, J.F. Kun, J.E. Schultz, E. Beitz. (2006). Ammonia permeability of the aquaglyceroporins from Plasmodium falciparum, Toxoplasma gondii and Trypansoma brucei. Mol. Microbiol. 61: 1598-1608. 16889642
Zhang, H. and A.S. Verkman. (2010). Aquaporin-1 tunes pain perception by interaction with Na(v)1.8 Na+ channels in dorsal root ganglion neurons. J. Biol. Chem. 285: 5896-5906. 20018876
Zhao, R., X. Liang, M. Zhao, S.L. Liu, Y. Huang, S. Idell, X. Li, and H.L. Ji. (2014). Correlation of apical fluid-regulating channel proteins with lung function in human COPD lungs. PLoS One 9: e109725. 25329998
Zhao, X.Q., N. Mitani, N. Yamaji, R.F. Shen, and J.F. Ma. (2010). Involvement of silicon influx transporter OsNIP2;1 in selenite uptake in rice. Plant Physiol. 153: 1871-1877. 20498338
Zwiazek, J.J., H. Xu, X. Tan, A. Navarro-Ródenas, and A. Morte. (2017). Significance of oxygen transport through aquaporins. Sci Rep 7: 40411. 28079178


and Franks NP. (2015). Structural comparisons of ligand-gated ion channels in open, closed, and desensitized states identify a novel propofol-binding site on mammalian gamma-aminobutyric acid type A receptors. Anesthesiology. 122(4):787-94. 25575161
and Rothberg BS. (2012). The BK channel: a vital link between cellular calcium and electrical signaling. Protein Cell. 3(12):883-92. 22996175
Alberola-Die, A., G. Fernández-Ballester, J.M. González-Ros, I. Ivorra, and A. Morales. (2016). Muscle-Type Nicotinic Receptor Modulation by 2,6-Dimethylaniline, a Molecule Resembling the Hydrophobic Moiety of Lidocaine. Front Mol Neurosci 9: 127. 27932949
Alexander, S.P.H. and J.A. Peters. (1997). Receptor and ion channel nomenclature supplement. Trends Pharmacol. Sci. 18: 4-6; 36-40; 42-44.
Althoff, T., R.E. Hibbs, S. Banerjee, and E. Gouaux. (2014). X-ray structures of GluCl in apo states reveal a gating mechanism of Cys-loop receptors. Nature 512: 333-337. 25143115
Arcario, M.J., C.G. Mayne, and E. Tajkhorshid. (2017). A membrane-embedded pathway delivers general anesthetics to two interacting binding sites in the Gloeobacter violaceus Ion Channel. J. Biol. Chem. [Epub: Ahead of Print] 28420728
Ashcroft, F.M. (2000). Ion Channels and Disease. San Diego: Academic Press.
Baenziger, J.E. and P.J. Corringer. (2011). 3D structure and allosteric modulation of the transmembrane domain of pentameric ligand-gated ion channels. Neuropharmacology 60: 116-125. 20713066
Baier, C.J., J. Fantini, and F.J. Barrantes. (2011). Disclosure of cholesterol recognition motifs in transmembrane domains of the human nicotinic acetylcholine receptor. Sci Rep 1: 69. 22355588
Baker, C., B.L. Sturt, and B.A. Bamber. (2010). Multiple roles for the first transmembrane domain of GABAA receptor subunits in neurosteroid modulation and spontaneous channel activity. Neurosci Lett 473: 242-247. 20193738
Baylis, H.A., K. Matsuda, M.D. Squire, J.T. Fleming, R.J. Harvey, M.G. Darlison, E.A. Barnard, and D.B. Sattelle. (1997). ACR-3, a Caenorhabditis elegans nicotinic acetylcholine receptor subunit. Molecular cloning and functional expression. Receptors Channels 5: 149-58. 9606719
Beg, A.A. and E.M. Jorgensen. (2003). EXP-1 is an excitatory GABA-gated cation channel. Nature Neurosci. (in press). 14555952
Bentley, G.N., A.K. Jones, and A. Agnew. (2007). ShAR2beta, a divergent nicotinic acetylcholine receptor subunit from the blood fluke Schistosoma. Parasitology 134: 833-840. 17214911
Bocquet, N., H. Nury, M. Baaden, C. Le Poupon, J.P. Changeux, M. Delarue, and P.J. Corringer. (2009). X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature 457: 111-114. 18987633
Bocquet, N., L. Prado de Carvalho, J. Cartaud, J. Neyton, C. Le Poupon, A. Taly, T. Grutter, J.P. Changeux, and P.J. Corringer. (2007). A prokaryotic proton-gated ion channel from the nicotinic acetylcholine receptor family. Nature 445: 116-119. 17167423
Bondarenko V., Mowrey D., Liu LT., Xu Y. and Tang P. (2013). NMR resolved multiple anesthetic binding sites in the TM domains of the alpha4beta2 nAChR. Biochim Biophys Acta. 1828(2):398-404. 23000369
Bondarenko V., Mowrey DD., Tillman TS., Seyoum E., Xu Y. and Tang P. (2014). NMR structures of the human alpha7 nAChR transmembrane domain and associated anesthetic binding sites. Biochim Biophys Acta. 1838(5):1389-95. 24384062
Bouzat, C., F. Gumilar, G. Spitzmaul, H.-L. Wang, D. Rayes, S.B. Hansen, P. Taylor, and S.M. Sine. (2004). Coupling of agonist binding to channel gating in an ACh-binding protein linked to an ion channel. Nature 430: 896-900. 15318223
Brejc, K., W.J. van Dijk, R.V. Klaassen, M. Schuurmans, J. van der Oost, A.B. Smit, and T.K. Sixma. (2001). Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411: 269-276. 11357122
Brömstrup, T., R.J. Howard, J.R. Trudell, R.A. Harris, and E. Lindahl. (2013). Inhibition versus potentiation of ligand-gated ion channels can be altered by a single mutation that moves ligands between intra- and intersubunit sites. Structure 21: 1307-1316. 23891290
Brownlow, S., R. Webster, R. Croxen, M. Brydson, B. Neville, J.P. Lin, A. Vincent, J. Newsom-Davis, and D. Beeson. (2001). Acetylcholine receptor delta subunit mutations underlie a fast-channel myasthenic syndrome and arthrogryposis multiplex congenita. J. Clin. Invest. 108: 125-130. 11435464
Burzomato, V., M. Beato, P.J. Groot-Kormelink, D. Colquhoun, and L.G. Sivilotti. (2004). Single-channel behavior of heteromeric α1β glycine receptors: an attempt to detect a conformational change before the channel opens. J. Neurosci. 24: 10924-10940. 15574743
Cascio M. (2004). Structure and function of the glycine receptor and related nicotinicoid receptors. J. Biol. Chem. 279: 19383-19386. 15023997
Chatzidaki A. and Millar NS. (2015). Allosteric modulation of nicotinic acetylcholine receptors. Biochem Pharmacol. 97(4):408-17. 26231943
Chen, Q., M.M. Wells, T.S. Tillman, M.N. Kinde, A. Cohen, Y. Xu, and P. Tang. (2016). Structural Basis of Alcohol Inhibition of the Pentameric Ligand-Gated Ion Channel ELIC. Structure. [Epub: Ahead of Print] 27916519
Chen, Y., K. Reilly, and Y. Chang. (2006). Evolutionarily conserved allosteric network in the Cys loop family of ligand-gated ion channels revealed by statistical covariance analyses. J. Biol. Chem. 281: 18184-18192. 16595655
Cheng, X., I. Ivanov, H. Wang, S.M. Sine, and J.A. McCammon. (2009). Molecular-dynamics simulations of ELIC-a prokaryotic homologue of the nicotinic acetylcholine receptor. Biophys. J. 96: 4502-4513. 19486673
Chiara, D.C., S.S. Jayakar, X. Zhou, X. Zhang, P.Y. Savechenkov, K.S. Bruzik, K.W. Miller, and J.B. Cohen. (2013). Specificity of intersubunit general anesthetic-binding sites in the transmembrane domain of the human α1β3γ2 γ-aminobutyric acid type A (GABAA) receptor. J. Biol. Chem. 288: 19343-19357. 23677991
Chiara, D.C., Z. Dostalova, S.S. Jayakar, X. Zhou, K.W. Miller, and J.B. Cohen. (2012). Mapping general anesthetic binding site(s) in human α1β3 γ-aminobutyric acid type A receptors with [³H]TDBzl-etomidate, a photoreactive etomidate analogue. Biochemistry 51: 836-847. 22243422
Chiodo, L., T.E. Malliavin, L. Maragliano, G. Cottone, and G. Ciccotti. (2015). A Structural Model of the Human α7 Nicotinic Receptor in an Open Conformation. PLoS One 10: e0133011. 26208301
Chisari, M., K. Wu, C.F. Zorumski, and S. Mennerick. (2011). Hydrophobic anions potently and uncompetitively antagonize GABA(A) receptor function in the absence of a conventional binding site. Br J Pharmacol 164: 667-680. 21457224
Colon-Saez JO. and Yakel JL. (2014). A mutation in the extracellular domain of the alpha7 nAChR reduces calcium permeability. Pflugers Arch. 466(8):1571-9. 24177919
Connolly, C.N. (2008). Trafficking of 5-HT(3) and GABA(A) receptors (Review). Mol. Membr. Biol. 25: 293-301. 18446615
Corringer, P.J., M. Baaden, N. Bocquet, M. Delarue, V. Dufresne, H. Nury, M. Prevost, and C. Van Renterghem. (2010). Atomic structure and dynamics of pentameric ligand-gated ion channels: new insight from bacterial homologues. J. Physiol. 588: 565-572. 19995852
Costa, B., E. Da Pozzo, and C. Martini. (2012). Translocator protein as a promising target for novel anxiolytics. Curr Top Med Chem 12: 270-285. 22204481
Cymes, G.D., Y. Ni, and C. Grosman. (2005). Probing ion-channel pores one proton at a time. Nature 438: 975-980. 16355215
Degani-Katzav, N., R. Gortler, M. Weissman, and Y. Paas. (2017). Mutational Analysis at Intersubunit Interfaces of an Anionic Glutamate Receptor Reveals a Key Interaction Important for Channel Gating by Ivermectin. Front Mol Neurosci 10: 92. 28428744
Dellisanti, C.D., B. Ghosh, S.M. Hanson, J.M. Raspanti, V.A. Grant, G.M. Diarra, A.M. Schuh, K. Satyshur, C.S. Klug, and C. Czajkowski. (2013). Site-directed spin labeling reveals pentameric ligand-gated ion channel gating motions. PLoS Biol 11: e1001714. 24260024
Dent, J.A., M.M. Smith, D.K. Vassilatis, and L. Avery. (2000). The genetics of ivermectin resistance in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 97: 2674-2679. 10716995
Di Maio, D., B. Chandramouli, and G. Brancato. (2015). Pathways and Barriers for Ion Translocation through the 5-HT3A Receptor Channel. PLoS One 10: e0140258. 26465896
Díaz-Otero, F., M. Quesada, J. Morales-Corraliza, C. Martínez-Parra, P. Gómez-Garre, and J.M. Serratosa. (2008). Autosomal dominant nocturnal frontal lobe epilepsy with a mutation in the CHRNB2 gene. Epilepsia 49: 516-520. 17900292
Du J., Dong H. and Zhou HX. (2012). Size matters in activation/inhibition of ligand-gated ion channels. Trends Pharmacol Sci. 33(9):482-93. 22789930
Du J., Lu W., Wu S., Cheng Y. and Gouaux E. (2015). Glycine receptor mechanism elucidated by electron cryo-microscopy. Nature. 526(7572):224-9. 26344198
Feng, Z., W. Li, A. Ward, B.J. Piggott, E.R. Larkspur, P.W. Sternberg, and X.Z. Xu. (2006). A C. elegans model of nicotine-dependent behavior: regulation by TRP-family channels. Cell 127: 621-633. 17081982
Filippova, N., V.E. Wotring, and D.S. Weiss. (2004). Evidence that the TM1-TM2 loop contributes to the ρ1 GABA receptor pore. J. Biol. Chem. 279: 20906-20914. 15007065
Fisher, J.L. (2009). The anti-convulsant stiripentol acts directly on the GABA(A) receptor as a positive allosteric modulator. Neuropharmacology 56: 190-197. 18585399
Forman, S.A. and K.W. Miller. (2016). Mapping General Anesthetic Sites in Heteromeric γ-Aminobutyric Acid Type A Receptors Reveals a Potential For Targeting Receptor Subtypes. Anesth Analg 123: 1263-1273. 27167687
Fritsch, S., I. Ivanov, H. Wang, and X. Cheng. (2011). Ion selectivity mechanism in a bacterial pentameric ligand-gated ion channel. Biophys. J. 100: 390-398. 21244835
Fucile, S. (2017). The Distribution of Charged Amino Acid Residues and the Ca2+ Permeability of Nicotinic Acetylcholine Receptors: A Predictive Model. Front Mol Neurosci 10: 155. 28611586
Gasiorek, A., S.M. Trattnig, P.K. Ahring, U. Kristiansen, B. Frølund, K. Frederiksen, and A.A. Jensen. (2016). Delineation of the functional properties and the mechanism of action of TMPPAA, an allosteric agonist and positive allosteric modulator of 5-HT3 receptors. Biochem Pharmacol 110-111: 92-108. 27086281
Ghosh B., Satyshur KA. and Czajkowski C. (2013). Propofol binding to the resting state of the gloeobacter violaceus ligand-gated ion channel (GLIC) induces structural changes in the inter- and intrasubunit transmembrane domain (TMD) cavities. J Biol Chem. 288(24):17420-31. 23640880
Ghosh, R., E.C. Andersen, J.A. Shapiro, J.P. Gerke, and L. Kruglyak. (2012). Natural variation in a chloride channel subunit confers avermectin resistance in C. elegans. Science 335: 574-578. 22301316
Gielen, M., P. Thomas, and T.G. Smart. (2015). The desensitization gate of inhibitory Cys-loop receptors. Nat Commun 6: 6829. 25891813
Gill, J.K., M. Savolainen, G.T. Young, R. Zwart, E. Sher, and N.S. Millar. (2011). Agonist activation of alpha7 nicotinic acetylcholine receptors via an allosteric transmembrane site. Proc. Natl. Acad. Sci. USA 108: 5867-5872. 21436053
Gill-Thind, J.K., P. Dhankher, J.M. D'Oyley, T.D. Sheppard, and N.S. Millar. (2015). Structurally similar allosteric modulators of α7 nicotinic acetylcholine receptors exhibit five distinct pharmacological effects. J. Biol. Chem. 290: 3552-3562. 25516597
Gimenez C., Perez-Siles G., Martinez-Villarreal J., Arribas-Gonzalez E., Jimenez E., Nunez E., de Juan-Sanz J., Fernandez-Sanchez E., Garcia-Tardon N., Ibanez I., Romanelli V., Nevado J., James VM., Topf M., Chung SK., Thomas RH., Desviat LR., Aragon C., Zafra F., Rees MI., Lapunzina P., Harvey RJ. and Lopez-Corcuera B. (2012). A novel dominant hyperekplexia mutation Y705C alters trafficking and biochemical properties of the presynaptic glycine transporter GlyT2. J Biol Chem. 287(34):28986-9002. 22753417
Gisselmann, G., J. Plonka, H. Pusch, and H. Hatt. (2004). Drosophila melanogaster GRD and LCCH3 subunits form heteromultimeric GABA-gated cation channels. Br J Pharmacol 142: 409-413. 15148245
Gonzalez-Gutierrez G. and Grosman C. (2015). The atypical cation-conduction and gating properties of ELIC underscore the marked functional versatility of the pentameric ligand-gated ion-channel fold. J Gen Physiol. 146(1):15-36. 26078054
Gonzalez-Gutierrez, G., L.G. Cuello, S.K. Nair, and C. Grosman. (2013). Gating of the proton-gated ion channel from Gloeobacter violaceus at pH 4 as revealed by X-ray crystallography. Proc. Natl. Acad. Sci. USA 110: 18716-18721. 24167270
Goyal, R., A.A. Salahudeen, and M. Jansen. (2011). Engineering a prokaryotic Cys-loop receptor with a third functional domain. J. Biol. Chem. 286: 34635-34642. 21844195
Grupe, M., M. Grunnet, J.F. Bastlund, and A.A. Jensen. (2015). Targeting α4β2 nicotinic acetylcholine receptors in central nervous system disorders: perspectives on positive allosteric modulation as a therapeutic approach. Basic Clin Pharmacol Toxicol 116: 187-200. 25441336
Grutter, T., L.P. de Carvalho, V. Dufresne, A. Taly, and J.P. Changeux. (2006). Identification of two critical residues within the Cys-loop sequence that determine fast-gating kinetics in a pentameric ligand-gated ion channel. J Mol Neurosci 30: 63-64. 17192629
Gupta, S., S. Chakraborty, R. Vij, and A. Auerbach. (2016). A mechanism for acetylcholine receptor gating based on structure, coupling, phi, and flip. J Gen Physiol. [Epub: Ahead of Print] 27932572
Hammer H., Bader BM., Ehnert C., Bundgaard C., Bunch L., Hoestgaard-Jensen K., Schroeder OH., Bastlund JF., Gramowski-Voss A. and Jensen AA. (2015). A Multifaceted GABAA Receptor Modulator: Functional Properties and Mechanism of Action of the Sedative-Hypnotic and Recreational Drug Methaqualone (Quaalude). Mol Pharmacol. 88(2):401-20. 26056160
Hanna, M.C., P.A. Davies, T.G. Hales, and E.F. Kirkness. (2000). Evidence for expression of heteromeric serotonin 5-HT(3) receptors in rodents. J. Neurochem. 75: 240-247. 10854267
Henault CM., Juranka PF. and Baenziger JE. (2015). The M4 Transmembrane alpha-Helix Contributes Differently to Both the Maturation and Function of Two Prokaryotic Pentameric Ligand-gated Ion Channels. J Biol Chem. 290(41):25118-28. 26318456
Hénault, C.M. and J.E. Baenziger. (2016). Functional characterization of two prokaryotic pentameric ligand-gated ion channel chimeras - role of the GLIC transmembrane domain in proton sensing. Biochim. Biophys. Acta. [Epub: Ahead of Print] 27845033
Herb, A., W. Wisden, H. Lüddens, G. Puia, S. Vicini, and P.H. Seeburg. (1992). The third γ subunit of the gamma-aminobutyric acid type A receptor family. Proc. Natl. Acad. Sci. U.S.A. 89: 1433-1437. 1311098
Hernandez, C.C., W. Kong, N. Hu, Y. Zhang, W. Shen, L. Jackson, X. Liu, Y. Jiang, and R.L. Macdonald. (2017). Altered Channel Conductance States and Gating of GABAA Receptors by a Pore Mutation Linked to Dravet Syndrome. eNeuro 4:. 28197552
Heusser, S.A., &.#.2.1.4.;. Yoluk, G. Klement, E.A. Riederer, E. Lindahl, and R.J. Howard. (2016). Functional characterization of neurotransmitter activation and modulation in a nematode model ligand-gated ion channel. J Neurochem. [Epub: Ahead of Print] 27102368
Hibbs, R.E. and E. Gouaux. (2011). Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature 474: 54-60. 21572436
Hilf, R.J., and R. Dutzler. (2008). X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature 452: 375-379. 18322461
Hilf, R.J., C. Bertozzi, I. Zimmermann, A. Reiter, D. Trauner, and R. Dutzler. (2010). Structural basis of open channel block in a prokaryotic pentameric ligand-gated ion channel. Nat Struct Mol Biol 17: 1330-1336. 21037567
Howard, R.J., S. Murail, K.E. Ondricek, P.J. Corringer, E. Lindahl, J.R. Trudell, and R.A. Harris. (2011). Structural basis for alcohol modulation of a pentameric ligand-gated ion channel. Proc. Natl. Acad. Sci. USA 108: 12149-12154. 21730162
Huang X., Chen H., Michelsen K., Schneider S. and Shaffer PL. (2015). Crystal structure of human glycine receptor-alpha3 bound to antagonist strychnine. Nature. 526(7572):277-80. 26416729
Huang Y., Wang JJ. and Yung WH. (2013). Coupling between GABA-A receptor and chloride transporter underlies ionic plasticity in cerebellar Purkinje neurons. Cerebellum. 12(3):328-30. 23341142
Ivanov, I., X. Cheng, S.M. Sine, and J.A. McCammon. (2007). Barriers to ion translocation in cationic and anionic receptors from the Cys-loop family. J. Am. Chem. Soc. 129: 8217-8224. 17552523
Jayakar SS., Zhou X., Savechenkov PY., Chiara DC., Desai R., Bruzik KS., Miller KW. and Cohen JB. (2015). Positive and Negative Allosteric Modulation of an alpha1beta3gamma2 gamma-Aminobutyric Acid Type A (GABAA) Receptor by Binding to a Site in the Transmembrane Domain at the gamma+-beta- Interface. J Biol Chem. 290(38):23432-46. 26229099
Joseph, T.T. and J.S. Mincer. (2016). Common Internal Allosteric Network Links Anesthetic Binding Sites in a Pentameric Ligand-Gated Ion Channel. PLoS One 11: e0158795. 27403526
Keramidas A. and Lynch JW. (2013). An outline of desensitization in pentameric ligand-gated ion channel receptors. Cell Mol Life Sci. 70(7):1241-53. 22936353
Khiroug, S.S., P.C. Harkness, P.W. Lamb, S.N. Sudweeks, L. Khiroug, N.S. Millar, and J.L. Yakel. (2002). Rat nicotinic ACh receptor alpha7 and beta2 subunits co-assemble to form functional heteromeric nicotinic receptor channels. J. Physiol. 540: 425-434. 11956333
Kinde, M.N., W. Bu, Q. Chen, Y. Xu, R.G. Eckenhoff, and P. Tang. (2016). Common Anesthetic-binding Site for Inhibition of Pentameric Ligand-gated Ion Channels. Anesthesiology 124: 664-673. 26756520
Kodera, H., C. Ohba, M. Kato, T. Maeda, K. Araki, D. Tajima, M. Matsuo, N. Hino-Fukuyo, K. Kohashi, A. Ishiyama, S. Takeshita, H. Motoi, T. Kitamura, A. Kikuchi, Y. Tsurusaki, M. Nakashima, N. Miyake, M. Sasaki, S. Kure, K. Haginoya, H. Saitsu, and N. Matsumoto. (2016). De novo GABRA1 mutations in Ohtahara and West syndromes. Epilepsia 57: 566-573. 26918889
Kudryashev, M., D. Castaño-Díez, C. Deluz, G. Hassaine, L. Grasso, A. Graf-Meyer, H. Vogel, and H. Stahlberg. (2016). The Structure of the Mouse Serotonin 5-HT3 Receptor in Lipid Vesicles. Structure 24: 165-170. 26724993
Kudryavtsev, D., I. Shelukhina, C. Vulfius, T. Makarieva, V. Stonik, M. Zhmak, I. Ivanov, I. Kasheverov, Y. Utkin, and V. Tsetlin. (2015). Natural compounds interacting with nicotinic acetylcholine receptors: from low-molecular weight ones to peptides and proteins. Toxins (Basel) 7: 1683-1701. 26008231
Langlhofer, G. and C. Villmann. (2016). The Intracellular Loop of the Glycine Receptor: It''s not all about the Size. Front Mol Neurosci 9: 41. 27330534
Lansdell SJ., Sathyaprakash C., Doward A. and Millar NS. (2015). Activation of human 5-hydroxytryptamine type 3 receptors via an allosteric transmembrane site. Mol Pharmacol. 87(1):87-95. 25338672
Lee, B.H., S.H. Hwang, S.H. Choi, T.J. Shin, J. Kang, S.M. Lee, and S.Y. Nah. (2011). Resveratrol enhances 5-hydroxytryptamine type 3A receptor-mediated ion currents: the role of arginine 222 residue in pre-transmembrane domain I. Biol Pharm Bull 34: 523-527. 21467640
Lev, B., S. Murail, F. Poitevin, B.A. Cromer, M. Baaden, M. Delarue, and T.W. Allen. (2017). String method solution of the gating pathways for a pentameric ligand-gated ion channel. Proc. Natl. Acad. Sci. USA 114: E4158-E4167. 28487483
Livesey, M.R., M.A. Cooper, J.J. Lambert, and J.A. Peters. (2011). Rings of charge within the extracellular vestibule influence ion permeation of the 5-HT3A receptor. J. Biol. Chem. 286: 16008-16017. 21454663
Lozon, Y., A. Sultan, S.J. Lansdell, T. Prytkova, B. Sadek, K.H. Yang, F.C. Howarth, N.S. Millar, and M. Oz. (2016). Inhibition of human α7 nicotinic acetylcholine receptors by cyclic monoterpene carveol. Eur J Pharmacol 776: 44-51. 26849939
Luger, D., G. Poli, M. Wieder, M. Stadler, S. Ke, M. Ernst, A. Hohaus, T. Linder, T. Seidel, T. Langer, S. Khom, and S. Hering. (2015). Identification of the putative binding pocket of valerenic acid on GABAA receptors using docking studies and site-directed mutagenesis. Br J Pharmacol 172: 5403-5413. 26375408
Lummis, S.C., D.L. Beene, L.W. Lee, H.A. Lester, R.W. Broadhurst, and D.A. Dougherty. (2005). Cis-trans isomerization at a proline opens the pore of a neurotransmitter-gated ion channel. Nature 438: 248-252. 16281040
Luu, T., P.W. Gage, and M.L. Tierney. (2006). GABA increases both the conductance and mean open time of recombinant GABAA channels co-expressed with GABARAP. J. Biol. Chem. 281: 35699-35708. 16954214
Lynagh, T. and J.W. Lynch. (2012). Molecular mechanisms of Cys-loop ion channel receptor modulation by ivermectin. Front Mol Neurosci 5: 60. 22586367
Lynagh, T., B.A. Cromer, V. Dufour, and B. Laube. (2014). Comparative pharmacology of flatworm and roundworm glutamate-gated chloride channels: Implications for potential anthelmintics. Int J Parasitol Drugs Drug Resist 4: 244-255. 25516835
Maldifassi, M.C., R. Baur, and E. Sigel. (2016). Molecular mode of action of CGS 9895 at α1 β2 γ2 GABAA receptors. J Neurochem 138: 722-730. 27319298
Manetti, D., C. Bellucci, S. Dei, E. Teodori, K. Varani, E. Spirova, D. Kudryavtsev, I. Shelukhina, V. Tsetlin, and M.N. Romanelli. (2016). New quinoline derivatives as nicotinic receptor modulators. Eur J Med Chem 110: 246-258. 26840365
McCracken, M.L., C.M. Borghese, J.R. Trudell, and R.A. Harris. (2010). A transmembrane amino acid in the GABAA receptor β2 subunit critical for the actions of alcohols and anesthetics. J Pharmacol Exp Ther 335: 600-606. 20826568
McKinnon, N.K., D.C. Reeves, and M.H. Akabas. (2011). 5-HT3 receptor ion size selectivity is a property of the transmembrane channel, not the cytoplasmic vestibule portals. J Gen Physiol 138: 453-466. 21948949
Menard, C., H.R. Horvitz, and S. Cannon. (2005). Chimeric mutations in the M2 segment of the 5-hydroxytryptamine-gated chloride channel MOD-1 define a minimal determinant of anion/cation permeability. J. Biol. Chem. 280: 27502-27507. 15878844
Mineur, Y.S., A. Abizaid, Y. Rao, R. Salas, R.J. DiLeone, D. Gündisch, S. Diano, M. De Biasi, T.L. Horvath, X.B. Gao, and M.R. Picciotto. (2011). Nicotine decreases food intake through activation of POMC neurons. Science 332: 1330-1332. 21659607
Mitchell K.E., T. Iwamoto, J. Tomich, L.C. Freeman. (2000). A synthetic peptide based on a glycine-gated chloride channel induces a novel chloride conductance in isolated epithelial cells. Biochim. Biophys. Acta. 1466: 47-60. 10825430
Miyazawa, A. Y. Fujiyoshi, and N. Unwin. (2003). Structure and gating mechanism of the acetylcholine receptor pore. Nature 423: 949-955. 12827192
Moraga-Cid, G., L. Sauguet, C. Huon, L. Malherbe, C. Girard-Blanc, S. Petres, S. Murail, A. Taly, M. Baaden, M. Delarue, and P.J. Corringer. (2015). Allosteric and hyperekplexic mutant phenotypes investigated on an α1 glycine receptor transmembrane structure. Proc. Natl. Acad. Sci. USA 112: 2865-2870. 25730860
Moroni, M., J.O. Meyer, C. Lahmann, and L.G. Sivilotti. (2011). In glycine and GABA(A) channels, different subunits contribute asymmetrically to channel conductance via residues in the extracellular domain. J. Biol. Chem. 286: 13414-13422. 21343294
Mukherjee, A. (2015). [Computational analysis of a cys-loop ligand gated ion channel from the green alga Chlamydomonas reinhardtii]. Mol Biol (Mosk) 49: 832-845. 26510602
Naffaa, M.M. and A. Samad. (2016). The binding mode of picrotoxinin in GABAA-ρ receptors: Insight into the subunit''s selectivity in the transmembrane domain. Comput Biol Chem 64: 202-209. [Epub: Ahead of Print] 27423910
Nury, H., C. Van Renterghem, Y. Weng, A. Tran, M. Baaden, V. Dufresne, J.P. Changeux, J.M. Sonner, M. Delarue, and P.J. Corringer. (2011). X-ray structures of general anaesthetics bound to a pentameric ligand-gated ion channel. Nature 469: 428-431. 21248852
Nury, H., F. Poitevin, C. Van Renterghem, J.P. Changeux, P.J. Corringer, M. Delarue, and M. Baaden. (2010). One-microsecond molecular dynamics simulation of channel gating in a nicotinic receptor homologue. Proc. Natl. Acad. Sci. USA 107: 6275-6280. 20308576
Oertel, J., C. Villmann, H. Kettenmann, F. Kirchhoff, and C.M. Becker. (2007). A novel glycine receptor beta subunit splice variant predicts an unorthodox transmembrane topology. Assembly into heteromeric receptor complexes. J. Biol. Chem. 282: 2798-2807. 17145751
Pandya, A. and J.L. Yakel. (2011). Allosteric modulator Desformylflustrabromine relieves the inhibition of α2β2 and α4β2 nicotinic acetylcholine receptors by β-amyloid(1-42) peptide. J Mol Neurosci 45: 42-47. 21424792
Pandya, A. and J.L. Yakel. (2011). Allosteric modulators of the α4β2 subtype of neuronal nicotinic acetylcholine receptors. Biochem Pharmacol 82: 952-958. 21596025
Pantazis, A., A. Segaran, C.H. Liu, A. Nikolaev, J. Rister, A.S. Thum, T. Roeder, E. Semenov, M. Juusola, and R.C. Hardie. (2008). Distinct roles for two histamine receptors (HclA and HclB) at the Drosophila photoreceptor synapse. J. Neurosci. 28: 7250-7259. 18632929
Parikh, R.B., M. Bali, and M.H. Akabas. (2011). Structure of the M2 transmembrane segment of GLIC, a prokaryotic Cys loop receptor homologue from Gloeobacter violaceus, probed by substituted cysteine accessibility. J. Biol. Chem. 286: 14098-14109. 21362624
Peters, J.A., M.A. Cooper, J.E. Carland, M.R. Livesey, T.G. Hales, and J.J. Lambert. (2010). Novel structural determinants of single channel conductance and ion selectivity in 5-hydroxytryptamine type 3 and nicotinic acetylcholine receptors. J. Physiol. 588: 587-596. 19933751
Price, K.L., Y. Hirayama, and S.C. Lummis. (2017). Subtle Differences among 5-HT3AC, 5-HT3AD, and 5-HT3AE Receptors Are Revealed by Partial Agonists. ACS Chem Neurosci. [Epub: Ahead of Print] 28367632
Puinean AM., Lansdell SJ., Collins T., Bielza P. and Millar NS. (2013). A nicotinic acetylcholine receptor transmembrane point mutation (G275E) associated with resistance to spinosad in Frankliniella occidentalis. J Neurochem. 124(5):590-601. 23016960
Purohit, P. and A. Auerbach. (2007). Acetylcholine receptor gating: movement in the α-subunit extracellular domain. J. Gen. Physiol. 130(6):569-579. 18040059
Purohit, P., A. Mitra, and A. Auerbach. (2007). A stepwise mechanism for acetylcholine receptor channel gating. Nature 446: 930-933. 17443187
Ranganathan, R., S.C. Cannon and H.R. Horvitz. (2000). MOD-1 is a serotonin-gated chloride channel that modulates locomotory behavior in C. elegans. Nature 408: 470-473. 11100728
Reeves, D.C. and S.C.R. Lummis. (2002). The molecular basis of the structure and function of the 5-HT3 receptor: a model ligand-gated ion channel. Mol. Membrane Biol. 19: 11-26. 11989819
Rienzo, M., S.C. Lummis, and D.A. Dougherty. (2014). Structural requirements in the transmembrane domain of GLIC revealed by incorporation of noncanonical histidine analogs. Chem Biol 21: 1700-1706. 25525989
Ringstad, N., N. Abe, and H.R. Horvitz. (2009). Ligand-gated chloride channels are receptors for biogenic amines in C. elegans. Science 325: 96-100. 19574391
Safratowich, B.D., C. Lor, L. Bianchi, and L. Carvelli. (2013). Amphetamine activates an amine-gated chloride channel to generate behavioral effects in Caenorhabditis elegans. J. Biol. Chem. 288: 21630-21637. 23775081
Sarang, S.S., S.M. Lukyanova, D.D. Brown, B.S. Cummings, S.R. Gullans, and R.G. Schnellmann. (2008). Identification, coassembly, and activity of γ- aminobutyric acid receptor subunits in renal proximal tubular cells. J. Pharmacol. Exp. Ther. 324: 376-382. 17959749
Sauguet L., Shahsavar A., Poitevin F., Huon C., Menny A., Nemecz A., Haouz A., Changeux JP., Corringer PJ. and Delarue M. (2014). Crystal structures of a pentameric ligand-gated ion channel provide a mechanism for activation. Proc Natl Acad Sci U S A. 111(3):966-71. 24367074
Sauguet, L., R.J. Howard, L. Malherbe, U.S. Lee, P.J. Corringer, R. Adron Harris, and M. Delarue. (2013). Structural basis for potentiation by alcohols and anaesthetics in a ligand-gated ion channel. Nat Commun 4: 1697. 23591864
Schmandt, N., P. Velisetty, S.V. Chalamalasetti, R.A. Stein, R. Bonner, L. Talley, M.D. Parker, H.S. Mchaourab, V.C. Yee, D.T. Lodowski, and S. Chakrapani. (2015). A chimeric prokaryotic pentameric ligand-gated channel reveals distinct pathways of activation. J Gen Physiol 146: 323-340. 26415570
Shen, X.M., T. Okuno, M. Milone, K. Otsuka, K. Takahashi, H. Komaki, E. Giles, K. Ohno, and A.G. Engel. (2016). Mutations Causing Slow-Channel Myasthenia Reveal that a Valine ring in the Channel Pore of Muscle AChR is Optimized for Stabilizing Channel Gating. Hum Mutat. [Epub: Ahead of Print] 27375219
Shivers, B.D., I. Killisch, R. Sprengel, H. Sontheimer, M. Köhler, P.R. Schofield, and P.H. Seeburg. (1989). Two novel GABAA receptor subunits exist in distinct neuronal subpopulations. Neuron. 3: 327-337. 2561970
Sigel, E., R. Baur, I. Rácz, J. Marazzi, T.G. Smart, A. Zimmer, and J. Gertsch. (2011). The major central endocannabinoid directly acts at GABA(A) receptors. Proc. Natl. Acad. Sci. USA 108: 18150-18155. 22025726
Sine, S.M. and A.G. Engel. (2006). Recent advances in Cys-loop receptor structure and function. Nature 440: 448-455. 16554804
Sivilotti, L.G. (2010). What single-channel analysis tells us of the activation mechanism of ligand-gated channels: the case of the glycine receptor. J. Physiol. 588: 45-58. 19770192
Snell, H.D. and E.B. Gonzales. (2016). 5-(N, N-Hexamethylene) amiloride is a GABA-A ρ1 receptor positive allosteric modulator. Channels (Austin) 1-9. [Epub: Ahead of Print] 27367557
Spurny R., Billen B., Howard RJ., Brams M., Debaveye S., Price KL., Weston DA., Strelkov SV., Tytgat J., Bertrand S., Bertrand D., Lummis SC. and Ulens C. (2013). Multisite binding of a general anesthetic to the prokaryotic pentameric Erwinia chrysanthemi ligand-gated ion channel (ELIC). J Biol Chem. 288(12):8355-64. 23364792
Squire, M.D., C. Tornøe, H.A. Baylis, J.T. Fleming, E.A. Barnard, and D.B. Sattelle. (1995). Molecular cloning and functional co-expression of a Caenorhabditis elegans nicotinic acetylcholine receptor subunit (acr-2). Receptors Channels 3: 107-115. 8581398
Stewart, D.S., D.W. Pierce, M. Hotta, A.T. Stern, and S.A. Forman. (2014). Mutations at beta N265 in γ-aminobutyric acid type A receptors alter both binding affinity and efficacy of potent anesthetics. PLoS One 9: e111470. 25347186
Sun, J., J.F. Comeau, and J.E. Baenziger. (2016). Probing the structure of the uncoupled nicotinic acetylcholine receptor. Biochim. Biophys. Acta. 1859: 146-154. [Epub: Ahead of Print] 27871840
Szarecka, A., Y. Xu, and P. Tang. (2007). Dynamics of heteropentameric nicotinic acetylcholine receptor: implications of the gating mechanism. Proteins 68: 948-960. 17546671
Tapia, L., A. Kuryatov, and J. Lindstrom. (2007). Ca2+ permeability of the (alpha4)3(beta2)2 stoichiometry greatly exceeds that of (alpha4)2(beta2)3 human acetylcholine receptors. Mol Pharmacol 71: 769-776. 17132685
Therien, J.P. and J.E. Baenziger. (2017). Pentameric ligand-gated ion channels exhibit distinct transmembrane domain archetypes for folding/expression and function. Sci Rep 7: 450. 28348412
Thompson, A.J., H.A. Lester, and S.C. Lummis. (2010). The structural basis of function in Cys-loop receptors. Q. Rev. Biophys. 43: 449-499. 20849671
Trattnig, S.M., A. Gasiorek, T.Z. Deeb, E.J. Ortiz, S.J. Moss, A.A. Jensen, and P.A. Davies. (2016). Copper and protons directly activate the zinc-activated channel. Biochem Pharmacol 103: 109-117. 26872532
Tricoire-Leignel, H. and S.H. Thany. (2010). Identification of critical elements determining toxins and insecticide affinity, ligand binding domains and channel properties. Adv Exp Med Biol 683: 45-52. 20737787
Tsetlin, V., D. Kuzmin, and I. Kasheverov. (2011). Assembly of nicotinic and other Cys-loop receptors. J Neurochem 116: 734-741. 21214570
Unwin, N. (1995). Acetylcholine receptor channel imaged in the open state. Nature 373: 37-43. 7800037
Unwin, N. (2013). Nicotinic acetylcholine receptor and the structural basis of neuromuscular transmission: insights from Torpedo postsynaptic membranes. Q. Rev. Biophys. 46: 283-322. 24050525
Velisetty P., Chalamalasetti SV. and Chakrapani S. (2012). Conformational transitions underlying pore opening and desensitization in membrane-embedded Gloeobacter violaceus ligand-gated ion channel (GLIC). J Biol Chem. 287(44):36864-72. 22977232
Velisetty, P., S.V. Chalamalasetti, and S. Chakrapani. (2014). Structural basis for allosteric coupling at the membrane-protein interface in Gloeobacter violaceus ligand-gated ion channel (GLIC). J. Biol. Chem. 289: 3013-3025. 24338475
Wang HL., Cheng X. and Sine SM. (2012). Intramembrane proton binding site linked to activation of bacterial pentameric ion channel. J Biol Chem. 287(9):6482-9. 22084238
Wang, J., X. Wang, S.J. Lansdell, J. Zhang, N.S. Millar, and Y. Wu. (2016). A three amino acid deletion in the transmembrane domain of the nicotinic acetylcholine receptor α6 subunit confers high-level resistance to spinosad in Plutella xylostella. Insect Biochem Mol Biol 71: 29-36. 26855198
Wang, Q. and J.W. Lynch. (2012). A comparison of glycine- and ivermectin-mediated conformational changes in the glycine receptor ligand-binding domain. Int J Biochem. Cell Biol. 44: 335-340. 22094187
Wang, X., A.M. Puinean, A.O. O Reilly, M.S. Williamson, C.L.C. Smelt, N.S. Millar, and Y. Wu. (2017). Mutations on M3 helix of Plutella xylostella glutamate-gated chloride channel confer unequal resistance to abamectin by two different mechanisms. Insect Biochem Mol Biol 86: 50-57. 28576654
Wang, X., R. Wang, Y. Yang, S. Wu, A.O. O''Reilly, and Y. Wu. (2015). A point mutation in the glutamate-gated chloride channel of Plutella xylostella is associated with resistance to abamectin. Insect Mol Biol. [Epub: Ahead of Print] 26592158
Webster, R., S. Maxwell, H. Spearman, K. Tai, O. Beckstein, M. Sansom, and D. Beeson. (2012). A novel congenital myasthenic syndrome due to decreased acetylcholine receptor ion-channel conductance. Brain 135: 1070-1080. 22382357
Wei, Q., S.F. Wu, and C.F. Gao. (2017). Molecular characterization and expression pattern of three GABA receptor-like subunits in the small brown planthopper Laodelphax striatellus (Hemiptera: Delphacidae). Pestic Biochem Physiol 136: 34-40. 28187828
Wells, M.M., T.S. Tillman, D.D. Mowrey, T. Sun, Y. Xu, and P. Tang. (2015). Ensemble-based virtual screening for cannabinoid-like potentiators of the human glycine receptor α1 for the treatment of pain. J Med Chem 58: 2958-2966. 25790278
Westergard, T., R. Salari, J.V. Martin, and G. Brannigan. (2015). Interactions of L-3,5,4''-Triiodothyronine, Allopregnanolone, and Ivermectin with the GABAA Receptor: Evidence for Overlapping Intersubunit Binding Modes. PLoS One 10: e0139072. 26421724
Witzemann, V., E. Stein, B. Barg, T. Konno, M. Koenen, W. Kues, M. Criado, M. Hofmann, and B. Sakmann. (1990). Primary structure and functional expression of the α-, β-, γ-, δ- and ε-subunits of the acetylcholine receptor from rat muscle. Eur J Biochem 194: 437-448. 1702709
Xiong, W., X. Wu, D.M. Lovinger, and L. Zhang. (2012). A common molecular basis for exogenous and endogenous cannabinoid potentiation of glycine receptors. J. Neurosci. 32: 5200-5208. 22496565
Xue, H. (1998). Identification of major phylogenetic branches of inhibitory ligand-gated channel receptors. J. Mol. Evol. 47: 323-333. 9732459
Yamaguchi, M., Y. Sawa, K. Matsuda, F. Ozoe, and Y. Ozoe. (2012). Amino acid residues of both the extracellular and transmembrane domains influence binding of the antiparasitic agent milbemycin to Haemonchus contortus AVR-14B glutamate-gated chloride channels. Biochem. Biophys. Res. Commun. 419: 562-566. 22369940
Yévenes, G.E. and H.U. Zeilhofer. (2011). Molecular sites for the positive allosteric modulation of glycine receptors by endocannabinoids. PLoS One 6: e23886. 21901142
Yoluk O., Lindahl E. and Andersson M. (2015). Conformational Gating Dynamics in the GluCl Anion-Selective Chloride Channel. ACS Chem Neurosci. 6(8):1459-67. 25992588
Yu, X., M. Wang, M. Kang, L. Liu, X. Guo, and B. Xu. (2011). Molecular cloning and characterization of two nicotinic acetylcholine receptor β subunit genes from Apis cerana cerana. Arch Insect Biochem Physiol 77: 163-178. 21618599
Yuan, S., S. Filipek, and H. Vogel. (2016). A Gating Mechanism of the Serotonin 5-HT3 Receptor. Structure 24: 816-825. 27112600
Zemkova, H., V. Tvrdonova, A. Bhattacharya, and M. Jindrichova. (2014). Allosteric modulation of ligand gated ion channels by ivermectin. Physiol Res 63Suppl1: S215-224. 24564661
Zhang, D., M. McGregor, T. Bordia, X.A. Perez, J.M. McIntosh, M.W. Decker, and M. Quik. (2015). α7 nicotinic receptor agonists reduce levodopa-induced dyskinesias with severe nigrostriatal damage. Mov Disord. [Epub: Ahead of Print] 26573698
Zheng, F., A.P. Robertson, M. Abongwa, E.W. Yu, and R.J. Martin. (2016). The Ascaris suum nicotinic receptor, ACR-16, as a drug target: Four novel negative allosteric modulators from virtual screening. Int J Parasitol Drugs Drug Resist 6: 60-73. 27054065
Zhu, F. and G. Hummer. (2009). Gating transition of pentameric ligand-gated ion channels. Biophys. J. 97: 2456-2463. 19883588
Zhu, F. and G. Hummer. (2010). Pore opening and closing of a pentameric ligand-gated ion channel. Proc. Natl. Acad. Sci. USA 107: 19814-19819. 21041674
Zouridakis, M., P. Giastas, E. Zarkadas, D. Chroni-Tzartou, P. Bregestovski, and S.J. Tzartos. (2014). Crystal structures of free and antagonist-bound states of human α9 nicotinic receptor extracellular domain. Nat Struct Mol Biol 21: 976-980. 25282151
Zuo, H., L. Gao, Z. Hu, H. Liu, and G. Zhong. (2013). Cloning, expression analysis, and molecular modeling of the γ-aminobutyric acid receptor alpha2 subunit gene from the common cutworm, Spodoptera litura. J Insect Sci 13: 49. 23909412


Alexander, S.P.H. and J.A. Peters. (1997). Receptor and ion channel nomenclature supplement. Trends Pharmacol. Sci. 18: 36-40.
Alsaloum, M., R. Kazi, Q. Gan, J. Amin, and L.P. Wollmuth. (2016). A Molecular Determinant of Subtype-Specific Desensitization in Ionotropic Glutamate Receptors. J. Neurosci. 36: 2617-2622. 26937003
Amin, J.B., C.L. Salussolia, K. Chan, M.C. Regan, J. Dai, H.X. Zhou, H. Furukawa, M.E. Bowen, and L.P. Wollmuth. (2017). Divergent roles of a peripheral transmembrane segment in AMPA and NMDA receptors. J Gen Physiol. [Epub: Ahead of Print] 28507080
Armstrong, N., J. Jasti, M. Beich-Frandsen, and E. Gouaux. (2006). Measurement of conformational changes accompanying desensitization in an ionotropic glutamate receptor. Cell 127: 85-97. 17018279
Ayalon, G., E. Segev, S. Elgavish, and Y. Stern-Bach. (2005). Two regions in the N-terminal domain of ionotropic glutamate receptor 3 form the subunit oligomerization interfaces that control subtype-specific receptor assembly. J Biol Chem. 280: 15053-15060. 15703162
Bats C., Soto D., Studniarczyk D., Farrant M. and Cull-Candy SG. (2012). Channel properties reveal differential expression of TARPed and TARPless AMPARs in stargazer neurons. Nat Neurosci. 15(6):853-61. 22581185
Becchetti, A., S. Pillozzi, R. Morini, E. Nesti, and A. Arcangeli. (2010). New insights into the regulation of ion channels by integrins. Int Rev Cell Mol Biol 279: 135-190. 20797679
Bettler B., J. Boulter, I. Hermans-Borgmeyer, A. O'Shea-Greenfield, E.S. Deneris, C. Moll, U. Borgmeyer, M. Hollmann, S. Heinemann. (1990). Cloning of a novel glutamate receptor subunit, GluR5: expression in the nervous system during development. Neuron. 5: 583-595. 1977421
Cais, O., B. Herguedas, K. Krol, S.G. Cull-Candy, M. Farrant, and I.H. Greger. (2014). Mapping the interaction sites between AMPA receptors and TARPs reveals a role for the receptor N-terminal domain in channel gating. Cell Rep 9: 728-740. 25373908
Carbone, A.L. and A.J. Plested. (2016). Superactivation of AMPA receptors by auxiliary proteins. Nat Commun 7: 10178. 26744192
Chaudhry, C., A.J. Plested, P. Schuck, and M.L. Mayer. (2009). Energetics of glutamate receptor ligand binding domain dimer assembly are modulated by allosteric ions. Proc. Natl. Acad. Sci. USA 106: 12329-12334. 19617541
Chen, C., E. Buhl, M. Xu, V. Croset, J.S. Rees, K.S. Lilley, R. Benton, J.J. Hodge, and R. Stanewsky. (2015). Drosophila Ionotropic Receptor 25a mediates circadian clock resetting by temperature. Nature 527: 516-520. 26580016
Chen, G.-Q., C. Cui, M.L. Mayer, and E. Gouaux. (1999). Functional characterization of a potassium-selective prokaryotic glutamate receptor. Nature 402: 817-819. 10617203
Chen, Q., Y. Man, J. Li, D. Pei, and W. Wu. (2017). Olfactory Ionotropic Receptors in Mosquito Aedes albopictus (Diptera: Culicidae). J Med Entomol. [Epub: Ahead of Print] 28399284
Chen, W., A. Tankovic, P.B. Burger, H. Kusumoto, S.F. Traynelis, and H. Yuan. (2017). Functional Evaluation of a De Novo GRIN2A Mutation Identified in a Patient with Profound Global Developmental Delay and Refractory Epilepsy. Mol Pharmacol. [Epub: Ahead of Print] 28126851
Cokić, B. and V. Stein. (2008). Stargazin modulates AMPA receptor antagonism. Neuropharmacology 54: 1062-1070. 18378265
Coombs, I.D., D. Soto, M. Zonouzi, M. Renzi, C. Shelley, M. Farrant, and S.G. Cull-Candy. (2012). Cornichons modify channel properties of recombinant and glial AMPA receptors. J. Neurosci. 32: 9796-9804. 22815494
Danielson, E., J. Metallo, and S.H. Lee. (2012). Role of TARP interaction in S-SCAM-mediated regulation of AMPA receptors. Channels (Austin) 6: 393-397. 22878254
Das, U., J. Kumar, M.L. Mayer, and A.J. Plested. (2010). Domain organization and function in GluK2 subtype kainate receptors. Proc. Natl. Acad. Sci. USA 107: 8463-8468. 20404149
Dong, H. and H.X. Zhou. (2011). Atomistic mechanism for the activation and desensitization of an AMPA-subtype glutamate receptor. Nat Commun 2: 354. 21673675
Du J., Dong H. and Zhou HX. (2012). Size matters in activation/inhibition of ligand-gated ion channels. Trends Pharmacol Sci. 33(9):482-93. 22789930
Dutta A., Krieger J., Lee JY., Garcia-Nafria J., Greger IH. and Bahar I. (2015). Cooperative Dynamics of Intact AMPA and NMDA Glutamate Receptors: Similarities and Subfamily-Specific Differences. Structure. 23(9):1692-704. 26256538
Elegheert, J., W. Kakegawa, J.E. Clay, N.F. Shanks, E. Behiels, K. Matsuda, K. Kohda, E. Miura, M. Rossmann, N. Mitakidis, J. Motohashi, V.T. Chang, C. Siebold, I.H. Greger, T. Nakagawa, M. Yuzaki, and A.R. Aricescu. (2016). Structural basis for integration of GluD receptors within synaptic organizer complexes. Science 353: 295-299. 27418511
Fisher, J.L. and D.D. Mott. (2012). The auxiliary subunits neto1 and neto2 reduce voltage-dependent inhibition of recombinant kainate receptors. J. Neurosci. 32: 12928-12933. 22973017
Furukawa, H., S.K. Singh, R. Mancusso, and E. Gouaux. (2005). Subunit arrangement and function in NMDA receptors. Nature 438: 185-192. 16281028
Gan, Q., J. Dai, H.X. Zhou, and L.P. Wollmuth. (2016). The Transmembrane Domain Mediates Tetramerization of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors. J. Biol. Chem. 291: 6595-6606. 26839312
Gouaux, E. (2004). Structure and function of AMPA receptors. J. Physiol. 554: 249-253. 14645452
Gudasheva, T.A., V.V. Grigoriev, K.N. Koliasnikova, V.L. Zamoyski, and S.B. Seredenin. (2016). Neuropeptide cycloprolylglycine is an endogenous positive modulator of AMPA receptors. Dokl Biochem Biophys 471: 387-389. 28058675
Hald, H., P. Naur, D.S. Pickering, D. Sprogøe, U. Madsen, D.B. Timmermann, P.K. Ahring, T. Liljefors, A. Schousboe, J. Egebjerg, M. Gajhede, and J.S. Kastrup. (2007). Partial agonism and antagonism of the ionotropic glutamate receptor iGLuR5: structures of the ligand-binding core in complex with domoic acid and 2-amino-3-[5-tert-butyl-3-(phosphonomethoxy)-4-isoxazolyl]propionic acid. J. Biol. Chem. 282: 25726-25736. 17581823
Hamada, S., I. Ogawa, M. Yamasaki, Y. Kiyama, H. Kassai, A.M. Watabe, K. Nakao, A. Aiba, M. Watanabe, and T. Manabe. (2014). The glutamate receptor GluN2 subunit regulates synaptic trafficking of AMPA receptors in the neonatal mouse brain. Eur J. Neurosci. 40: 3136-3146. 25131300
Hoffmann, J., C. Villmann, M. Werner, and M. Hollmann. (2006). Investigation via ion pore transplantation of the putative relationship between glutamate receptors and K+ channels. Mol. Cell Neurosci 33: 358-370. 17011207
Howe, J.R. (2014). Modulation of non-NMDA receptor gating by auxiliary subunits. J. Physiol. [Epub: Ahead of Print] 25172949
Humeau, Y., D. Reisel, A.W. Johnson, T. Borchardt, V. Jensen, C. Gebhardt, V. Bosch, P. Gass, D.M. Bannerman, M.A. Good, Ø. Hvalby, R. Sprengel, and A. Lüthi. (2007). A pathway-specific function for different AMPA receptor subunits in amygdala long-term potentiation and fear conditioning. J. Neurosci. 27: 10947-10956. 17928436
Jackson, A.C. and R.A. Nicoll. (2011). The expanding social network of ionotropic glutamate receptors: TARPs and other transmembrane auxiliary subunits. Neuron. 70: 178-199. 21521608
Jin, R., S. Clark, A.M. Weeks, J.T. Dudman, E. Gouaux, and K.M. Partin. (2005). Mechanism of positive allosteric modulators acting on AMPA receptors. J. Neurosci. 25: 9027-9036. 16192394
Kamboj, R.K., D.D. Schoepp, S. Nutt, L. Shekter, B. Korczak, R.A. True, V. Rampersad, D.M. Zimmerman, and M.A. Wosnick MA. (1994). Molecular cloning, expression, and pharmacological characterization of humEAA1, a human kainate receptor subunit. J. Neurochem. 62:1-9. 8263508
Kang, J., and F.J. Turano. (2003). The putative glutamate receptor 1.1 (AtGLR1.1) functions as a regulator of carbon and nitrogen metabolism in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 100: 6872-6877. 12738881
Karakas, E. and H. Furukawa. (2014). Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 344: 992-997. 24876489
Karataeva, A.R., R.V. Klaassen, J. Ströder, M. Ruiperez-Alonso, J.J. Hjorth, P. van Nierop, S. Spijker, H.D. Mansvelder, and A.B. Smit. (2014). C-terminal interactors of the AMPA receptor auxiliary subunit Shisa9. PLoS One 9: e87360. 24498314
Kato, A.S., M.B. Gill, H. Yu, E.S. Nisenbaum, and D.S. Bredt. (2010). TARPs differentially decorate AMPA receptors to specify neuropharmacology. Trends Neurosci 33: 241-248. 20219255
Kato, A.S., M.B. Gill, M.T. Ho, H. Yu, Y. Tu, E.R. Siuda, H. Wang, Y.W. Qian, E.S. Nisenbaum, S. Tomita, and D.S. Bredt. (2010). Hippocampal AMPA receptor gating controlled by both TARP and cornichon proteins. Neuron. 68: 1082-1096. 21172611
Kennard, J.T., R. Barmanray, S. Sampurno, E. Ozturk, C.A. Reid, L. Paradiso, G.M. D'Abaco, A.H. Kaye, S.J. Foote, T.J. O'Brien, and K.L. Powell. (2011). Stargazin and AMPA receptor membrane expression is increased in the somatosensory cortex of Genetic Absence Epilepsy Rats from Strasbourg. Neurobiol Dis 42: 48-54. 21220022
Kim, K.S., D. Yan, and S. Tomita. (2010). Assembly and stoichiometry of the AMPA receptor and transmembrane AMPA receptor regulatory protein complex. J. Neurosci. 30: 1064-1072. 20089915
Krieger J., Bahar I. and Greger IH. (2015). Structure, Dynamics, and Allosteric Potential of Ionotropic Glutamate Receptor N-Terminal Domains. Biophys J. 109(6):1136-48. 26255587
Lee, C.H., W. Lü, J.C. Michel, A. Goehring, J. Du, X. Song, and E. Gouaux. (2014). NMDA receptor structures reveal subunit arrangement and pore architecture. Nature 511: 191-197. 25008524
Lee, J.H., G.B. Kang, H.H. Lim, K.S. Jin, S.H. Kim, M. Ree, C.S. Park, S.J. Kim, and S.H. Eom. (2008). Crystal structure of the GluR0 ligand-binding core from Nostoc punctiforme in complex with L-glutamate: structural dissection of the ligand interaction and subunit interface. J. Mol. Biol. 376: 308-316. 18164033
Lee, J.H., S.J. Park, S.H. Rho, Y.J. Im, M.K. Kim, G.B. Kang, and S.H. Eom. (2005). Crystallization and preliminary X-ray crystallographic analysis of the GluR0 ligand-binding core from Nostoc punctiforme. Acta Crystallogr Sect F Struct Biol Cryst Commun 61: 1020-1022. 16511224
Lemke, J.R., K. Geider, K.L. Helbig, H.O. Heyne, H. Schütz, J. Hentschel, C. Courage, C. Depienne, C. Nava, D. Heron, R.S. Møller, H. Hjalgrim, D. Lal, B.A. Neubauer, P. Nürnberg, H. Thiele, G. Kurlemann, G.L. Arnold, V. Bhambhani, D. Bartholdi, C.R. Pedurupillay, D. Misceo, E. Frengen, P. Strømme, D.J. Dlugos, E.S. Doherty, E.K. Bijlsma, C.A. Ruivenkamp, M.J. Hoffer, A. Goldstein, D.S. Rajan, V. Narayanan, K. Ramsey, N. Belnap, I. Schrauwen, R. Richholt, B.P. Koeleman, J. Sá, C. Mendonça, C.G. de Kovel, S. Weckhuysen, K. Hardies, P. De Jonghe, L. De Meirleir, M. Milh, C. Badens, M. Lebrun, T. Busa, C. Francannet, A. Piton, E. Riesch, S. Biskup, H. Vogt, T. Dorn, I. Helbig, J.L. Michaud, B. Laube, and S. Syrbe. (2016). Delineating the GRIN1 phenotypic spectrum: A distinct genetic NMDA receptor encephalopathy. Neurology 86: 2171-2178. 27164704
Li KW., Chen N. and Smit AB. (2013). Interaction proteomics of the AMPA receptor: towards identification of receptor sub-complexes. Amino Acids. 44(5):1247-51. 23344883
Li, D., H. Yuan, X.R. Ortiz-Gonzalez, E.D. Marsh, L. Tian, E.M. McCormick, G.J. Kosobucki, W. Chen, A.J. Schulien, R. Chiavacci, A. Tankovic, C. Naase, F. Brueckner, C. von Stülpnagel-Steinbeis, C. Hu, H. Kusumoto, U.B. Hedrich, G. Elsen, K. Hörtnagel, E. Aizenman, J.R. Lemke, H. Hakonarson, S.F. Traynelis, and M.J. Falk. (2016). GRIN2D Recurrent De Novo Dominant Mutation Causes a Severe Epileptic Encephalopathy Treatable with NMDA Receptor Channel Blockers. Am J Hum Genet. [Epub: Ahead of Print] 27616483
Limapichat, W., W.Y. Yu, E. Branigan, H.A. Lester, and D.A. Dougherty. (2013). Key Binding Interactions for Memantine in the NMDA Receptor. ACS Chem Neurosci 4: 255-260. 23421676
Lopez MN., Wilding TJ. and Huettner JE. (2013). Q/R site interactions with the M3 helix in GluK2 kainate receptor channels revealed by thermodynamic mutant cycles. J Gen Physiol. 142(3):225-39. 23940260
Lü, W., J. Du, A. Goehring, and E. Gouaux. (2017). Cryo-EM structures of the triheteromeric NMDA receptor and its allosteric modulation. Science 355:. 28232581
Mayer, M.L. (2006). Glutamate receptors at atomic resolution. Nature 440: 456-462. 16554805
Mayer, M.L. (2011). Emerging models of glutamate receptor ion channel structure and function. Structure 19: 1370-1380. 22000510
Mayer, M.L., R. Olson, and E. Gouaux. (2001). Mechanisms for ligand binding to GluR0 ion channels: crystal structures of the glutamate and serine complexes and a closed apo state. J. Mol. Biol. 311: 815-836. 11518533
Midgett, C.R., A. Gill, and D.R. Madden. (2012). Domain architecture of a calcium-permeable AMPA receptor in a ligand-free conformation. Front Mol Neurosci 4: 56. 22232575
Monyer H., R. Sprengel, R. Schoepfer, A. Herb, M. Higuchi, H. Lomeli, N. Burnashev, B. Sakmann, P.H. Seeburg. (1992). Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science. 256: 1217-1221. 1350383
Moreau, A., P. Gosselin-Badaroudine, and M. Chahine. (2015). Gating pore currents, a new pathological mechanism underlying cardiac arrhythmias associated with dilated cardiomyopathy. Channels (Austin) 9: 139-144. 26046592
Motazacker, M.M., B.R. Rost, T. Hucho, M. Garshasbi, K. Kahrizi, R. Ullmann, S.S. Abedini, S.E. Nieh, S.H. Amini, C. Goswami, A. Tzschach, L.R. Jensen, D. Schmitz, H.H. Ropers, H. Najmabadi, and A.W. Kuss. (2007). A defect in the ionotropic glutamate receptor 6 gene (GRIK2) is associated with autosomal recessive mental retardation. Am J Hum Genet 81: 792-798. 17847003
Nakanishi, N., N.A. Shneider, and R. Axel. (1990). A family of glutamate receptor genes: Evidence for the formation of heteromultimeric receptors with distinct channel properties. Neuron 5: 569-581. 1699567
Ogden, K.K., W. Chen, S.A. Swanger, M.J. McDaniel, L.Z. Fan, C. Hu, A. Tankovic, H. Kusumoto, G.J. Kosobucki, A.J. Schulien, Z. Su, J. Pecha, S. Bhattacharya, S. Petrovski, A.E. Cohen, E. Aizenman, S.F. Traynelis, and H. Yuan. (2017). Molecular Mechanism of Disease-Associated Mutations in the Pre-M1 Helix of NMDA Receptors and Potential Rescue Pharmacology. PLoS Genet 13: e1006536. 28095420
Ohba, C., M. Shiina, J. Tohyama, K. Haginoya, T. Lerman-Sagie, N. Okamoto, L. Blumkin, D. Lev, S. Mukaida, F. Nozaki, M. Uematsu, A. Onuma, H. Kodera, M. Nakashima, Y. Tsurusaki, N. Miyake, F. Tanaka, M. Kato, K. Ogata, H. Saitsu, and N. Matsumoto. (2015). GRIN1 mutations cause encephalopathy with infantile-onset epilepsy, and hyperkinetic and stereotyped movement disorders. Epilepsia 56: 841-848. 25864721
Olson, R. and E. Gouaux. (2005). Crystal structure of the Vibrio cholerae cytolysin (VCC) pro-toxin and its assembly into a heptameric transmembrane pore. J. Mol. Biol. 350: 997-1016. 15978620
Pozo, K., L.A. Cingolani, S. Bassani, F. Laurent, M. Passafaro, and Y. Goda. (2012). β3 integrin interacts directly with GluA2 AMPA receptor subunit and regulates AMPA receptor expression in hippocampal neurons. Proc. Natl. Acad. Sci. USA 109: 1323-1328. 22232691
Pressey, J.C., V. Mahadevan, C.S. Khademullah, Z. Dargaei, J. Chevrier, W. Ye, M. Huang, A.K. Chauhan, S.J. Meas, P. Uvarov, M.S. Airaksinen, and M.A. Woodin. (2017). A kainate receptor subunit promotes the recycling of the neuron-specific K+-Cl- co-transporter KCC2 in hippocampal neurons. J. Biol. Chem. 292: 6190-6201. 28235805
Regan MC., Romero-Hernandez A. and Furukawa H. (2015). A structural biology perspective on NMDA receptor pharmacology and function. Curr Opin Struct Biol. 33:68-75. 26282925
Rigby, M., S.G. Cull-Candy, and M. Farrant. (2015). Transmembrane AMPAR Regulatory Protein γ-2 Is Required for the Modulation of GABA Release by Presynaptic AMPARs. J. Neurosci. 35: 4203-4214. 25762667
Safferling, M., W. Tichelaar, G. Kümmerle, A. Jouppila, A. Kuusinen, K. Keinänen, and D.R. Madden. (2001). First images of a glutamate receptor ion channel: oligomeric state and molecular dimensions of GluRB homomers. Biochemistry 40: 13948-13953. 11705385
Sager, C., D. Tapken, and M. Hollmann. (2011). The C-terminal domains of TARPs: unexpectedly versatile domains. Channels (Austin) 4: 155-158. 20224299
Salussolia, C.L., A. Corrales, I. Talukder, R. Kazi, G. Akgul, M. Bowen, and L.P. Wollmuth. (2011). Interaction of the M4 Segment with Other Transmembrane Segments Is Required for Surface Expression of Mammalian α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors. J. Biol. Chem. 286: 40205-40218. 21930708
Schober, D.A., M.B. Gill, H. Yu, D.L. Gernert, M.W. Jeffries, P.L. Ornstein, A.S. Kato, C.C. Felder, and D.S. Bredt. (2011). Transmembrane AMPA receptor regulatory proteins and cornichon-2 allosterically regulate AMPA receptor antagonists and potentiators. J. Biol. Chem. 286: 13134-13142. 21343286
Schüler, T., I. Mesic, C. Madry, I. Bartholomäus, and B. Laube. (2008). Formation of NR1/NR2 and NR1/NR3 heterodimers constitutes the initial step in N-methyl-D-aspartate receptor assembly. J. Biol. Chem. 283(1): 37-46. 17959602
Siegler Retchless B., Gao W. and Johnson JW. (2012). A single GluN2 subunit residue controls NMDA receptor channel properties via intersubunit interaction. Nat Neurosci. 15(3):406-13. 22246434
Slotboom, D.J., I. Sobczak, W.N. Konings, and J.S. Lolkema. (1999). A conserved serine-rich stretch in the glutamate transporter family forms a substrate-sensitive reentrant loop. Proc. Natl. Acad. Sci. USA 96: 14282-14287. 10588697
Sobolevsky, A.I., M.P. Rosconi, and E. Gouaux. (2009). X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462: 745-756. 19946266
Soto, D., I.D. Coombs, E. Gratacòs-Batlle, M. Farrant, and S.G. Cull-Candy. (2014). Molecular mechanisms contributing to TARP regulation of channel conductance and polyamine block of calcium-permeable AMPA receptors. J. Neurosci. 34: 11673-11683. 25164663
Stephens, N.R., Z. Qi, and E.P. Spalding. (2008). Glutamate receptor subtypes evidenced by differences in desensitization and dependence on the GLR3.3 and GLR3.4 genes. Plant Physiol. 146: 529-538. 18162597
Straub, C. and S. Tomita. (2012). The regulation of glutamate receptor trafficking and function by TARPs and other transmembrane auxiliary subunits. Curr Opin Neurobiol 22: 488-495. 21993243
Studniarczyk, D., I. Coombs, S.G. Cull-Candy, and M. Farrant. (2013). TARP γ-7 selectively enhances synaptic expression of calcium-permeable AMPARs. Nat Neurosci 16: 1266-1274. 23872597
Sumioka, A. (2013). Auxiliary subunits provide new insights into regulation of AMPA receptor trafficking. J Biochem 153: 331-337. 23426437
Sun, Y., R. Olson, M. Horning, N. Armstrong, M. Mayer, and E. Gouaux. (2002). Mechanism of glutamate receptor desensitization. Nature 417: 245-253. 12015593
Talukder, I. and L.P. Wollmuth. (2011). Local constraints in either the GluN1 or GluN2 subunit equally impair NMDA receptor pore opening. J Gen Physiol 138: 179-194. 21746848
Traynelis, S.F., L.P. Wollmuth, C.J. McBain, F.S. Menniti, K.M. Vance, K.K. Ogden, K.B. Hansen, H. Yuan, S.J. Myers, and R. Dingledine. (2010). Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62: 405-496. 20716669
Twomey, E.C., M.V. Yelshanskaya, R.A. Grassucci, J. Frank, and A.I. Sobolevsky. (2016). Elucidation of AMPA receptor-stargazin complexes by cryo-electron microscopy. Science 353: 83-86. 27365450
Uemura, T., H. Mori, and M. Mishina. (2004). Direct interaction of GluRδ2 with Shank scaffold proteins in cerebellar Purkinje cells. Mol. Cell Neurosci. 26: 330-241. 15207857
Unwin, N. (1993). Neurotransmitter action: Opening of ligand-gated ion channels. Cell 72: 31-41. 7679054
Vance, K.M., N. Simorowski, S.F. Traynelis, and H. Furukawa. (2011). Ligand-specific deactivation time course of GluN1/GluN2D NMDA receptors. Nat Commun 2: 294. 21522138
Wheeler, G.L. and C. Brownlee. (2008). Ca2+ signalling in plants and green algae--changing channels. Trends Plant Sci. 13: 506-514. 18703378
Wilding, T.J., M.N. Lopez, and J.E. Huettner. (2014). Radial symmetry in a chimeric glutamate receptor pore. Nat Commun 5: 3349. 24561802
Yan, D. and S. Tomita. (2012). Defined criteria for auxiliary subunits of glutamate receptors. J. Physiol. 590: 21-31. 21946847
Yang, Y.C., C.H. Lee, and C.C. Kuo. (2010). Ionic flow enhances low-affinity binding: a revised mechanistic view into Mg2+ block of NMDA receptors. J. Physiol. 588: 633-650. 20026615
Yelshanskaya, M.V., A.K. Singh, J.M. Sampson, C. Narangoda, M. Kurnikova, and A.I. Sobolevsky. (2016). Structural Bases of Noncompetitive Inhibition of AMPA-Subtype Ionotropic Glutamate Receptors by Antiepileptic Drugs. Neuron. 91: 1305-1315. 27618672
Yelshanskaya, M.V., M. Li, and A.I. Sobolevsky. (2014). Structure of an agonist-bound ionotropic glutamate receptor. Science 345: 1070-1074. 25103407
Yelshanskaya, M.V., S. Mesbahi-Vasey, M.G. Kurnikova, and A.I. Sobolevsky. (2017). Role of the Ion Channel Extracellular Collar in AMPA Receptor Gating. Sci Rep 7: 1050. 28432359
Yuan, H., K.B. Hansen, J. Zhang, T.M. Pierson, T.C. Markello, K.V. Fajardo, C.M. Holloman, G. Golas, D.R. Adams, C.F. Boerkoel, W.A. Gahl, and S.F. Traynelis. (2014). Functional analysis of a de novo GRIN2A missense mutation associated with early-onset epileptic encephalopathy. Nat Commun 5: 3251. 24504326
Zhang, Y.V., J. Ni, and C. Montell. (2013). The molecular basis for attractive salt-taste coding in Drosophila. Science 340: 1334-1338. 23766326
Zhao, Y., S. Chen, C. Yoshioka, I. Baconguis, and E. Gouaux. (2016). Architecture of fully occupied GluA2 AMPA receptor-TARP complex elucidated by cryo-EM. Nature 536: 108-111. 27368053


Andrade, S.L. and O. Einsle. The Amt/Mep/Rh family of ammonium transport proteins. Mol. Membr. Biol. 24: 357-365. 17710640
Andrade, S.L., A. Dickmanns, R. Ficner, and O. Einsle. (2005). Crystal structure of the archaeal ammonium transporter Amt-1 from Archaeoglobus fulgidus. Proc. Natl. Acad. Sci. USA 102: 14994-14999. 16214888
Bakouh, N., F. Benjelloun, P. Hulin, F. Brouillard, A. Edelman, B. Chérif-Zahar, and G. Planelles. (2004). NH3 is involved in the NH4+ transport induced by the functional expression of the human RhC glycoprotein. J. Biol. Chem. 279: 15975-15983. 14761968
Barnes, E.M., Jr. and A. Jayakumar. (1993). NH4+ transport systems in Escherichia coli. In: E.P. Bakker (Ed.), Alkali Cation Transport Systems in Prokaryotes, Boca Raton, FL: CRC Press, pp. 397-409.
Blakey, D., A. Leech, G.H. Thomas, G. Coutts, K. Findlay, and M. Merrick. (2002). Purification of the Escherichia coli ammonium transporter AmtB reveals a trimeric stoichiometry. Biochem. J. 364: 527-535. 12023896
Blauwkamp, T.A. and A.J. Ninfa. (2003). Antagonism of PII signalling by the AmtB protein of Escherichia coli. Mol. Microbiol. 48: 1017-1028. 12753193
Boeckstaens, M., B. André, and A.M. Marini. (2008). Distinct transport mechanisms in yeast ammonium transport/sensor proteins of the mep/amt/rh family and impact on filamentation. J. Biol. Chem. 283: 21362-21370. 18508774
Cherif-Zahar, B., A. Durand, I. Schmidt, N. Hamdaoui, I. Matic, M. Merrick, and G. Matassi. (2007). Evolution and functional characterization of the RH50 gene from the ammonia-oxidizing bacterium Nitrosomonas europaea. J. Bacteriol. 189: 9090-9100. 17921289
Conroy, M.J., P.A. Bullough, M. Merrick, and N.D. Avent. (2005). Modelling the human rhesus proteins: implications for structure and function. Br J Haematol 131: 543-551. 16281947
Dabas, N., S. Schneider, and J. Morschhäuser. (2009). Mutational analysis of the Candida albicans ammonium permease Mep2p reveals residues required for ammonium transport and signaling. Eukaryot. Cell. 8: 147-160. 19060183
Deschuyteneer, A., M. Boeckstaens, C. De Mees, P. Van Vooren, R. Wintjens, and A.M. Marini. (2013). SNPs altering ammonium transport activity of human Rhesus factors characterized by a yeast-based functional assay. PLoS One 8: e71092. 23967154
Durand A. and M. Merrick. (2006). In Vitro Analysis of the Escherichia coli AmtB-GlnK Complex Reveals a Stoichiometric Interaction and Sensitivity to ATP and 2-Oxoglutarate. J. Biol. Chem. 281: 29558-29567. 16864585
Fong, R.N., K.S. Kim, C. Yoshihara, W.B. Inwood, and S. Kustu. (2007). The W148L substitution in the Escherichia coli ammonium channel AmtB increases flux and indicates that the substrate is an ion. Proc. Natl. Acad. Sci. USA 104: 18706-18711. 17998534
Gruswitz, F., J. O'Connell 3rd, and R.M. Stroud. (2007). Inhibitory complex of the transmembrane ammonia channel, AmtB, and the cytosolic regulatory protein, GlnK, at 1.96 A. Proc. Natl. Acad. Sci. U.S.A. 104: 42-47. 17190799
Gruswitz, F., S. Chaudhary, J.D. Ho, A. Schlessinger, B. Pezeshki, C.M. Ho, A. Sali, C.M. Westhoff, and R.M. Stroud. (2010). Function of human Rh based on structure of RhCG at 2.1 Å. Proc. Natl. Acad. Sci. USA 107: 9638-9643. 20457942
Hall, J.A. and S. Kustu. (2011). The pivotal twin histidines and aromatic triad of the Escherichia coli ammonium channel AmtB can be replaced. Proc. Natl. Acad. Sci. USA 108: 13270-13274. 21775672
Huergo, L.F., M. Merrick, F.O. Pedrosa, L.S. Chubatsu, L.M. Araujo, and E.M. Souza. (2007). Ternary complex formation between AmtB, GlnZ and the nitrogenase regulatory enzyme DraG reveals a novel facet of nitrogen regulation in bacteria. Mol. Microbiol. 66: 1523-1535. 18028310
Inwood, W.B., J.A. Hall, K.S. Kim, R. Fong, and S. Kustu. (2009). Genetic evidence for an essential oscillation of transmembrane-spanning segment 5 in the Escherichia coli ammonium channel AmtB. Genetics 183: 1341-1355. 19884311
Ishikita, H. and E.W. Knapp. (2007). Protonation states of ammonia/ammonium in the hydrophobic pore of ammonia transporter protein AmtB. J. Am. Chem. Soc. 129(5):1210-1215. 17263403
Javelle, A., B. André, A.-M. Marini, and M. Chalot. (2003a). High-affinity ammonium transporters and nitrogen sensing in mycorrhizas. Trends Microbiol. 11: 53-55. 12598122
Javelle, A., B.-R. Rodríguez-Pastrana, C. Jacob, B. Botton, A. Brun, B. André, A.-M. Marini, and M. Chalot. (2001). Molecular characterization of two ammonium transporters from the ectomycorrhizal fungus Hebeloma cylindrosporum. FEBS Lett. 505: 393-398. 11576535
Javelle, A., D. Lupo, L. Zheng, X.D. Li, F.K. Winkler, and M. Merrick. (2006). An unusual twin-his arrangement in the pore of ammonia channels is essential for substrate conductance. J. Biol. Chem. 281: 39492-39498. 17040913
Javelle, A., M. Morel, B.-R. Rodríguez-Pastrana, B. Botton, B. André, A.-M. Marini, A. Brun, and M. Chalot. (2003b). Molecular characterization, function and regulation of ammonium transporters (Amt) and ammonium-metabolizing enzymes (GS, NADP-GDH) in the ectomycorrhizal fungus Hebeloma cylindrosporum. Mol. Microbiol. 47: 411-430. 12519192
Kakinuma, M., C. Nakamoto, K. Kishi, D.A. Coury, and H. Amano. (2016). Isolation and functional characterization of an ammonium transporter gene, PyAMT1, related to nitrogen assimilation in the marine macroalga Pyropia yezoensis (Rhodophyta). Mar Environ Res. [Epub: Ahead of Print] 27581686
Khademi, S., J. O'Connell, III, J. Remis, Y. Robles-Colmenares, L.J.W. Miercke, and R.M. Stroud. (2004). Mechanism of ammonia transport by Amt/MEP/Rh: Structure of AmtB at 1.35 Å. Science 305: 1587-1594. 15361618
Kleiner, D. (1993). NH4+ transport systems. In: E.P. Bakker (Ed.), Alkali Cation Transport Systems in Prokaryotes. Boca Raton, FL: CRC Press, pp. 378-396.
Knepper, M.A. and P. Agre. (2004). Structural biology. The atomic architecture of a gas channel. Science 305: 1573-1574. 15361612
Lalonde, S., D.W. Ehrhardt, D. Loqué, J. Chen, S.Y. Rhee, and W.B. Frommer. (2008). Molecular and cellular approaches for the detection of protein-protein interactions: latest techniques and current limitations. Plant J. 53: 610-635. 18269572
Lanquar, V., D. Loqué, F. Hörmann, L. Yuan, A. Bohner, W.R. Engelsberger, S. Lalonde, W.X. Schulze, N. von Wirén, and W.B. Frommer. (2009). Feedback inhibition of ammonium uptake by a phospho-dependent allosteric mechanism in Arabidopsis. Plant Cell 21: 3610-3622. 19948793
Li, X., S. Jayachandran, H.H. Nguyen, and M.K. Chan. (2007). Structure of the Nitrosomonas europaea Rh protein. Proc. Natl. Acad. Sci. U.S.A. 104: 19279-19284. 18040042
Liu, Z., Y. Chen, R. Mo, C. Hui, J.F. Cheng, N. Mohandas, and C.H. Huang. (2000). Characterization of human RhCG and mouse RhCG as novel nonerythroid Rh glycoprotein homologues predominantly expressed in kidney and testis. J. Biol. Chem. 275: 25641-25651. 10852913
Lopez, C., S. Métral, D. Eladari, S. Drevensek, P. Gane, R. Chambreys, V. Bennett, J.-P. Cartron, C.L. Kim, and Y. Colin. (2005). The ammonium transporter RhBG. Requirement of a tyrosine-based signal and ankyrin-G for basolateral targeting and membrane anchorage in polarized kidney epithelial cells. J. Biol. Chem. 280: 8221-8228. 15611082
Loqué, D., S. Lalonde, L.L. Looger, N. von Wirén, and W.B. Frommer. (2007). A cytosolic trans-activation domain essential for ammonium uptake. Nature 446: 195-198. 17293878
Loqué, D., S.I. Mora, S.L. Andrade, O. Pantoja, and W.B. Frommer. (2009). Pore mutations in ammonium transporter AMT1 with increased electrogenic ammonium transport activity. J. Biol. Chem. 284: 24988-24995. 19581303
Lorenz, M.C. and J. Heitman. (1998). The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae. EMBO J. 17: 1236-1247. 9482721
Ludewig, U., B. Neuhäuser, and M. Dynowski. (2007). Molecular mechanisms of ammonium transport and accumulation in plants. FEBS Lett. 581: 2301-2308. 17397837
Ludewig, U., N. von Wirén, and W.B. Frommer. (2002). Uniport of NH4+ by the root hair plasma membrane ammonium transporter LeAMT1;1. J. Biol. Chem. 277: 13548-13555. 11821433
Lupo, D., X.D. Li, A. Durand, T. Tomizaki, B. Cherif-Zahar, G. Matassi, M. Merrick, and F.K. Winkler. (2007). The 1.3-A resolution structure of Nitrosomonas europaea Rh50 and mechanistic implications for NH3 transport by Rhesus family proteins. Proc. Natl. Acad. Sci. U.S.A. 104: 19303-19308. 18032606
Marini, A. and B. André. (2000). In vivo N-glycosylation of the Mep2 high-affinity ammonium transporter of Saccharomyces cerevisiae reveals an extracytosolic N-terminus. Mol. Microbiol. 38: 552-564. 11069679
Marini, A., J. Springael, W.B. Frommer, and B. André. (2000). Cross-talk between ammonium transporters in yeast and interference by the soybean SAT1 protein. Mol. Microbiol. 35: 378-385. 10652098
Marini, A., S. Vissers, A. Urrestarazu, and B. André. (1994). Cloning and expression of the MEP1 gene encoding an ammonium transporter in Saccharomyces cerevisiae. EMBO J. 13: 3456-3463. 8062822
Marini, A.-M., G. Matassi, V. Raynal, B. Andre, J.P. Cartron, and B. Cherif-Zahar. (2000). The human Rhesus-associated RhAG protein and a kidney homologue promote ammonium transport in yeast. Nat. Genet. 26: 341-344. 11062476
Meier-Wagner, J., L. Nolden, M. Jakoby, R. Siewe, R. Krämer, and A. Burkovski. (2001). Multiplicity of ammonium uptake systems in Corynebacterium glutamicum: role of Amt and AmtB. Microbiology 147: 135-143. 11160807
Merhi, A., C. De Mees, R. Abdo, J. Victoria Alberola, and A.M. Marini. (2015). Wnt/β-Catenin Signaling Regulates the Expression of the Ammonium Permease Gene RHBG in Human Cancer Cells. PLoS One 10: e0128683. 26029888
Musa-Aziz, R., L.M. Chen, M.F. Pelletier, and W.F. Boron. (2009). Relative CO2/NH3 selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG. Proc. Natl. Acad. Sci. USA 106: 5406-5411. 19273840
Nakhoul, N.L., S.M. Abdulnour-Nakhoul, E. Schmidt, R. Doetjes, E. Rabon, and L.L. Hamm. (2010). pH sensitivity of ammonium transport by Rhbg. Am. J. Physiol. Cell Physiol. 299: C1386-1397. 20810915
Neuhäuser, B., M. Dynowski, and U. Ludewig. (2009). Channel-like NH3 flux by ammonium transporter AtAMT2. FEBS Lett. 583: 2833-2838. 19635480
Ninnemann, O., J. Jauniaux, and W.B. Frommer. (1994). Identification of a high affinity NH4+ transporter from plants. EMBO J. 13: 3464-3471. 8062823
Ortiz-Ramirez, C., S.I. Mora, J. Trejo, and O. Pantoja. (2011). PvAMT1;1, a Highly Selective Ammonium Transporter That Functions as H+/NHFormula Symporter. J. Biol. Chem. 286: 31113-31122. 21757699
Pau, V.P., Y. Zhu, Z. Yuchi, Q.Q. Hoang, and D.S. Yang. (2007). Characterization of the C-terminal domain of a potassium channel from Streptomyces lividans (KcsA). J. Biol. Chem. 282: 29163-29169.
Paz-Yepes, J., A. Herrero, and E. Flores. (2007). The NtcA-regulated amtB gene is necessary for full methylammonium uptake activity in the cyanobacterium Synechococcus elongatus. J. Bacteriol. 189: 7791-7798. 17704220
Pedro-Roig, L., C. Lange, M.J. Bonete, J. Soppa, and J. Maupin-Furlow. (2013). Nitrogen regulation of protein-protein interactions and transcript levels of GlnK PII regulator and AmtB ammonium transporter homologs in Archaea. Microbiologyopen 2: 826-840. 24039236
Rutherford, J.C., G. Chua, T. Hughes, M.E. Cardenas, and J. Heitman. (2008). A Mep2-dependent Transcriptional Profile Links Permease Function to Gene Expression during Pseudohyphal Growth in Saccharomyces cerevisiae. Mol. Biol. Cell 19: 3028-3039. 18434596
Rutherford, J.C., X. Lin, K. Nielsen, and J. Heitman. (2008). Amt2 permease is required to induce ammonium-responsive invasive growth and mating in Cryptococcus neoformans. Eukaryot. Cell. 7(2): 237-246. 18055915
Saier, M.H., Jr., B.H. Eng, S. Fard, J. Garg, D.A. Haggerty, W.J. Hutchinson, D.L. Jack, E.C. Lai, H.J. Liu, D.P. Nusinew, A.M. Omar, S.S. Pao, I.T. Paulsen, J.A. Quan, M. Sliwinski, T.-T. Tseng, S. Wachi, and G.B. Young. (1999). Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochim. Biophys. Acta 1422: 1-56. 10082980
Salussolia, C.L., A. Corrales, I. Talukder, R. Kazi, G. Akgul, M. Bowen, and L.P. Wollmuth. (2011). Interaction of the M4 Segment with Other Transmembrane Segments Is Required for Surface Expression of Mammalian α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors. J. Biol. Chem. 286: 40205-40218. 21930708
Siewe, R.M., B. Weil, A. Burkovski, B.J. Eikmanns, M. Eikmanns, and R. Krämer. (1995). Functional and genetic characterization of the (Methyl)ammonium uptake carrier of Corynebacterium glutamicum. J. Biol. Chem. 271: 5398-5403. 8621394
Sohlenkamp, C., M. Shelden, S. Howitt, and M. Udvardi. (2000). Characterization of Arabidopsis AtAMT2, a novel ammonium transporter in plants. FEBS Lett. 467: 273-278. 10675553
Soupene, E., H. Lee, and S. Kustu. (2002b). Ammonium/methylammonium transport (Amt) proteins facilitate diffusion of NH3 bidirectionally. Proc. Natl. Acad. Sci. U.S.A. 99(6):3926-3931. 11891327
Soupene, E., L. He, D. Yan, and S. Kustu. (1998). Ammonia acquisition in enteric bacteria: physiological role of the ammonium/methylammonium transport B (AmtB) protein. Proc. Natl. Acad. Sci. USA 95: 7030-7034. 9618533
Soupene, E., N. King, E. Feild, P. Liu, K.K. Niyogi, C.-H. Huang, and S. Kustu. (2002d). Rhesus expression in a green alga is regulated by CO2. Proc. Natl. Acad. Sci. USA 99: 7769-7773. 12032358
Soupene, E., R.M. Ramirez, and S. Kustu. (2002c). Evidence that fungal MEP proteins mediate diffusion of the uncharged species NH3 across the cytoplasmic membrane. Mol. Cell Biol. 21(17):5733-5741.
Soupene, E., T. Chu, R.W. Corbin, D.F. Hunt, and S. Kustu. (2002a). Gas channels for NH3: proteins from hyperthermophiles complement an Escherichia coli mutant. J. Bacteriol. 184(12):3396-3400.
Soupene, E., W. Inwood, and S. Kustu. (2004). Lack of the Rhesus protein Rh1 impairs growth of the green alga Chlamydomonas reinhardtii at high CO2. Proc. Natl. Acad. Sci. USA 101: 7787-7792. 15096599
Teichert, S., J.C. Rutherford, M. Wottawa, J. Heitman, and B. Tudzynski. (2008). Impact of ammonium permeases mepA, mepB, and mepC on nitrogen-regulated secondary metabolism in Fusarium fujikuroi. Eukaryot. Cell. 7(2): 187-201. 18083831
Thomas, G.H., J.G.L. Mullins, and M. Merrick. (2000). Membrane topology of the Mep/Amt family of ammonium transporters. Mol. Microbiol. 37: 331-344. 10931328
Vázquez-Bermúdez, M.F., J. Paz-Yepes, A. Herrero, and E. Flores. (2002). The NtcA-activated amt1gene encodes a permease required for uptake of low concentrations of ammonium in the cyanobacterium Synechococcus sp. PCC7942. Microbiology 148: 861-869. 11882722
von Wittgenstein, N.J., C.H. Le, B.J. Hawkins, and J. Ehlting. (2014). Evolutionary classification of ammonium, nitrate, and peptide transporters in land plants. BMC Evol Biol 14: 11. 24438197
Walter, B., M. Küspert, D. Ansorge, R. Krämer, and A. Burkovski. (2008). Dissection of ammonium uptake systems in Corynebacterium glutamicum : mechanism of action and energetics of AmtA and AmtB. J. Bacteriol. 190: 2611-2614. 18245289
Wang, S., E.A. Orabi, S. Baday, S. Bernèche, and G. Lamoureux. (2012). Ammonium transporters achieve charge transfer by fragmenting their substrate. J. Am. Chem. Soc. 134: 10419-10427. 22631217
Weidinger, K., B. Neuhäuser, S. Gilch, U. Ludewig, O. Meyer, and I. Schmidt. (2007). Functional and physiological evidence for a rhesus-type ammonia transporter in Nitrosomonas europaea. FEMS Microbiol. Lett. 273: 260-267. 17608700
Westhoff, C.M., D.L. Siegel, C.G. Burd, and J.K. Foskett. (2004). Mechanism of genetic complementation of ammonium transport in yeast by human erythrocyte Rh-associated glycoprotein. J. Biol. Chem. 279: 17443-17448. 14966114
Westhoff, C.M., M. Ferreri-Jacobia, D.O. Mak, and J.K. Foskett. (2002). Identification of the erythrocyte Rh blood group glycoprotein as a mammalian ammonium transporter. J. Biol. Chem. 277: 12499-12502. 11861637
Worrell, R.T., L. Merk, and J.B. Matthews. (2008). Ammonium transport in the colonic crypt cell line, T84: role for Rhesus glycoproteins and NKCC1. Am. J. Physiol. Gastrointest Liver Physiol 294: G429-440. 18032481
Yakunin, A.F. and P.C. Hallenbeck. (2002). AmtB is necessary for NH4+-induced nitrogenase switch-off and ADP-ribosylation in Rhodobacter capsulatus. J. Bacteriol. 184: 4081-4088. 12107124
Yoshino, R., T. Morio, Y. Yamada, H. Kuwayama, M. Sameshima, Y. Tanaka, H. Sesaki, and M. Iijima. (2007). Regulation of Ammonia Homeostasis by the Ammonium Transporter AmtA in Dictyostelium discoideum. Eukaryot. Cell. 6: 2419-2428. 17951519
Yuan, L., D. Loqué, F. Ye, W.B. Frommer, and N. von Wirén. (2007). Nitrogen-dependent posttranscriptional regulation of the ammonium transporter AtAMT1;1. Plant Physiol. 143: 732-744. 17172286
Yuan, L., L. Graff, D. Loqué, S. Kojima, Y.N. Tsuchiya, H. Takahashi, and N. von Wirén. (2009). AtAMT1;4, a pollen-specific high-affinity ammonium transporter of the plasma membrane in Arabidopsis. Plant Cell Physiol. 50: 13-25. 19073648
Zidi-Yahiaoui N., Callebaut I., Genetet S., Le Van Kim C., Cartron JP., Colin Y., Ripoche P. and Mouro-Chanteloup I. (2009). Functional analysis of human RhCG: comparison with E. coli ammonium transporter reveals similarities in the pore and differences in the vestibule. Am J Physiol Cell Physiol. 297(3):C537-47. 19553567


and Singh H. (2010). Two decades with dimorphic Chloride Intracellular Channels (CLICs). FEBS Lett. 584(10):2112-21. 20226783
Al Khamici, H., L.J. Brown, K.R. Hossain, A.L. Hudson, A.A. Sinclair-Burton, J.P. Ng, E.L. Daniel, J.E. Hare, B.A. Cornell, P.M. Curmi, M.W. Davey, and S.M. Valenzuela. (2015). Members of the chloride intracellular ion channel protein family demonstrate glutaredoxin-like enzymatic activity. PLoS One 10: e115699. 25581026
Averaimo, S., R. Abeti, N. Savalli, L.J. Brown, P.M. Curmi, S.N. Breit, and M. Mazzanti. (2013). Point mutations in the transmembrane region of the clic1 ion channel selectively modify its biophysical properties. PLoS One 8: e74523. 24058583
Berryman, M., J. Bruno, J. Price, and J.C. Edwards. (2004). CLIC-5A functions as a chloride channel in vitro and associates with the cortical actin cytoskeleton in vitro and in vivo. J. Biol. Chem. 279: 34794-34801. 15184393
Cromer, B.A., M.A. Gorman, G. Hansen, J.J. Adams, M. Coggan, D.R. Littler, L.J. Brown, M. Mazzanti, S.N. Breit, P.M. Curmi, A.F. Dulhunty, P.G. Board, and M.W. Parker MW. (2007). Structure of the Janus protein human CLIC2. J. Mol. Biol. 374: 719-731. 17945253
Duncan, R.R., P.K. Westwood, A. Boyd, and R.H. Ashley. (1997). Rat brain p64H1, expression of a new member of the p64 chloride channel protein family in endoplasmic reticulum. J. Biol. Chem. 272: 23880-23886. 9295337
Edwards, J.C., C. Cohen, W. Xu, and P.H. Schlesinger. (2006). c-Src control of chloride channel support for osteoclast HCl transport and bone resorption. J. Biol. Chem. 281: 28011-28022. 16831863
Elter, A., A. Hartel, C. Sieben, B. Hertel, E. Fischer-Schliebs, U. Lüttge, A. Moroni, and G. Thiel. (2007). A plant homolog of animal chloride intracellular channels (CLICs) generates an ion conductance in heterologous systems. J. Biol. Chem. 282: 8786-8792. 17267397
Goodchild, S.C., C.N. Angstmann, S.N. Breit, P.M. Curmi, and L.J. Brown. (2011). Transmembrane Extension and Oligomerization of the CLIC1 Chloride Intracellular Channel Protein upon Membrane Interaction. Biochemistry 50: 10887-10897. 22082111
Halpin, S.F. (2004). Brain imaging using multislice CT: a personal perspective. Br J Radiol 77SpecNo1: S20-26. 15546839
Hansen, A.M., Y. Qiu, N. Yeh, F.R. Blattner, T. Durfee, and D.J. Jin. (2005). SspA is required for acid resistance in stationary phase by downregulation of H-NS in Escherichia coli. Mol. Microbiol. 56: 719-734. 15819627
Harrop, S.J., M.Z. DeMaere, W.D. Fairlie, T. Reztsova, S.M. Valenzuela, M. Mazzanti, R. Tonini, M.R. Qiu, L. Jankova, K. Warton, A.R. Bauskin, W.M. Wu, S. Pankhurst, T.J. Campbell, S.N. Breit, and P.M. Curmi. (2001). Crystal structure of a soluble form of the intracellular chloride ion channel CLIC1 (NCC27) at 1.4-Å resolution. J. Biol. Chem. 276: 44993-5000. 11551966
Kleba, B., T.R. Clark, E.I. Lutter, D.W. Ellison, and T. Hackstadt. (2010). Disruption of the Rickettsia rickettsii Sca2 autotransporter inhibits actin-based motility. Infect. Immun. 78: 2240-2247. 20194597
Landry, D, S. Sullivan, M. Nicolaides, C. Redhead, A. Edelman, M. Field, Q. al-Awqati, and J. Edwards. (1993). Molecular cloning and characterization of p64, a chloride channel protein from kidney microsomes. J. Biol. Chem. 268: 14948-14955. 7686908
Leanza, L., L. Biasutto, A. Managò, E. Gulbins, M. Zoratti, and I. Szabò. (2013). Intracellular ion channels and cancer. Front Physiol 4: 227. 24027528
Meng, X., G. Wang, C. Viero, Q. Wang, W. Mi, X.D. Su, T. Wagenknecht, A.J. Williams, Z. Liu, and C.C. Yin. (2009). CLIC2-RyR1 interaction and structural characterization by cryo-electron microscopy. J. Mol. Biol. 387: 320-334. 19356589
Murthi P., Stevenson JL., Money TT., Borg AJ., Brennecke SP. and Gude NM. (2012). Placental CLIC3 is increased in fetal growth restriction and pre-eclampsia affected human pregnancies. Placenta. 33(9):741-4. 22795578
Nishizawa, T., T. Nagao, T. Iwatsubo, J.G. Forte, and T. Urushidani. (2000). Molecular cloning and characterization of a novel chloride intracellular channel-related protein, parchorin, expressed in water-secreting cells. J. Biol. Chem. 275: 11164-11173. 10753923
Peretti M., Angelini M., Savalli N., Florio T., Yuspa SH. and Mazzanti M. (2015). Chloride channels in cancer: Focus on chloride intracellular channel 1 and 4 (CLIC1 AND CLIC4) proteins in tumor development and as novel therapeutic targets. Biochim Biophys Acta. 1848(10 Pt B):2523-31. 25546839
Peter B., Polyansky AA., Fanucchi S. and Dirr HW. (2014). A Lys-Trp cation-pi interaction mediates the dimerization and function of the chloride intracellular channel protein 1 transmembrane domain. Biochemistry. 53(1):57-67. 24328417
Peter, B., N.C. Ngubane, S. Fanucchi, and H.W. Dirr. (2013). Membrane mimetics induce helix formation and oligomerization of the chloride intracellular channel protein 1 transmembrane domain. Biochemistry 52: 2739-2749. 23547926
Peter, B., S. Fanucchi, and H.W. Dirr. (2014). A conserved cationic motif enhances membrane binding and insertion of the chloride intracellular channel protein 1 transmembrane domain. Eur Biophys. J. 43: 405-414. 24925575
Ponsioen B., van Zeijl L., Langeslag M., Berryman M., Littler D., Jalink K. and Moolenaar WH. (2009). Spatiotemporal regulation of chloride intracellular channel protein CLIC4 by RhoA. Mol Biol Cell. 20(22):4664-72. 19776349
Singh, H. and R.H. Ashley. CLIC4 (p64H1) and its putative transmembrane domain form poorly selective, redox-regulated ion channels. Mol. Membr. Biol. 24: 41-52. 17453412
Tulk, B.M., P.H. Schlesinger, S.A. Kapadia, and J.C. Edwards. (2000). CLIC-1 functions as a chloride channel when expressed and purified from bacteria. J. Biol. Chem. 275: 26986-26993. 10874038
Valenzuela, S., D.K. Martin, S.B. Por, J.M. Robbins, K. Warton, M.R. Bootcov, P.R. Schofield, T.J. Campbell, and S.N. Breit. (1997). Molecular cloning and expression of a chloride ion channel of cell nuclei. J. Biol. Chem. 272: 12575-12582. 9139710
Warton, K., R. Tonini, W.D. Fairlie, J.M. Matthews, S.M. Valenzuela, M.R. Qiu, W.M. Wu, S. Pankhurst, A.R. Bauskin, S.J. Harrop, T.J. Campbell, P.M.G. Curmi, S.N. Breit, and M. Mazzanti. (2002). Recombinant CLIC1 (NCC27) assembles in lipid bilayers via a pH-dependent two-state process to form chloride ion channels with identical characteristics to those observed in Chinese hamster ovary cells expressing CLIC1. J. Biol. Chem. 277: 26003-26011. 11978800
Wu, X., R. Altman, M.A. Eiteman, and E. Altman. (2014). Adaptation of Escherichia coli to elevated sodium concentrations increases cation tolerance and enables greater lactic acid production. Appl. Environ. Microbiol. 80: 2880-2888. 24584246


Agnel, M., T. Vermat, and J. Culouscou. (1999). Identification of three novel members of the calcium-dependent chloride channel (CaCC) family predominantly expressed in the digestive tract and trachea. FEBS Lett. 455: 295-301. 10437792
Barrett, K.E. and S.J. Keely. (2000). Chloride secretion by the intestinal epithelium: molecular basis and regulatory aspects. Annu. Rev. Physiol. 62: 535-572. 10845102
Elble, R.C., G. Ji, K. Nehrke, J. DeBiasio, P.D. Kingsley, M.I. Kotlikoff, and B.U. Pauli. (2002). Molecular and functional characterization of a murine calcium-activated chloride channel expressed in smooth muscle. J. Biol. Chem. 277: 18586-18591. 11896056
Evans, S.R., W.B. Thoreson, and C.L. Beck. (2004). Molecular and functional analyses of two new calcium-activated chloride channel family members from mouse eye and intestine. J. Biol. Chem. 279: 41792-41800. 15284223
Fuller, C.M., I.I. Ismailov, D.A. Keeton, and D.J. Benos. (1994). Phosphorylation and activation of a bovine tracheal anion channel by Ca2+/calmodulin-dependent protein kinase II. J. Biol. Chem. 269: 26642-26650. 7929397
Gibson, A., A.P. Lewis, K. Affleck, A.J. Aitken, E. Meldrum, and N. Thompson. (2005). hCLCA1 and mCLCA3 are secreted non-integral membrane proteins and therefore are not ion channels. J. Biol. Chem. 280: 27205-27212. 15919655
Lee, R.M. and S.M. Jeong. (2016). [Identification of a Novel Calcium (Ca^(2+))-Activated Chloride Channel Accessory Gene in Xenopus laevis]. Mol Biol (Mosk) 50: 106-114. 27028816
Lee, R.M., R.H. Ryu, S.W. Jeong, S.J. Oh, H. Huang, J.S. Han, C.H. Lee, C.J. Lee, L.Y. Jan, and S.M. Jeong. (2011). Isolation and Expression Profile of the Ca-Activated Chloride Channel-like Membrane Protein 6 Gene in Xenopus laevis. Lab Anim Res 27: 109-116. 21826170
Ran, S. and D.J. Benos. (1992). Immunopurification and structural analysis of a putative epithelial Cl- channel protein isolated from bovine trachea. J. Biol. Chem. 267: 3618-3625. 1371273
Ran, S., C.M. Fuller, M. Pia Arrate, R. Latorre, and D.J. Benos. (1992). Functional reconstitution of a chloride channel protein from bovine trachea. J. Biol. Chem. 267: 20630-20637. 1383206
Sala-Rabanal, M., Z. Yurtsever, K.N. Berry, and T.J. Brett. (2015). Novel Roles for Chloride Channels, Exchangers, and Regulators in Chronic Inflammatory Airway Diseases. Mediators Inflamm 2015: 497387. 26612971
Yoon, I.S., S.M. Jeong, S.N. Lee, J.H. Lee, J.H. Kim, M.K. Pyo, J.H. Lee, B.H. Lee, S.H. Choi, H. Rhim, H. Choe, and S.Y. Nah. (2006). Cloning and heterologous expression of a Ca2+-activated chloride channel isoform from rat brain. Biol Pharm Bull 29: 2168-2173. 17077509


Bultynck G., Kiviluoto S., Henke N., Ivanova H., Schneider L., Rybalchenko V., Luyten T., Nuyts K., De Borggraeve W., Bezprozvanny I., Parys JB., De Smedt H., Missiaen L. and Methner A. (2012). The C terminus of Bax inhibitor-1 forms a Ca2+-permeable channel pore. J Biol Chem. 287(4):2544-57. 22128171
Büttner, S., D. Ruli, F.N. Vögtle, L. Galluzzi, B. Moitzi, T. Eisenberg, O. Kepp, L. Habernig, D. Carmona-Gutierrez, P. Rockenfeller, P. Laun, M. Breitenbach, C. Khoury, K.U. Fröhlich, G. Rechberger, C. Meisinger, G. Kroemer, and F. Madeo. (2011). A yeast BH3-only protein mediates the mitochondrial pathway of apoptosis. EMBO. J. 30: 2779-2792. 21673659
Carrara G., Saraiva N., Parsons M., Byrne B., Prole DL., Taylor CW. and Smith GL. (2015). Golgi anti-apoptotic proteins are highly conserved ion channels that affect apoptosis and cell migration. J Biol Chem. 290(18):11785-801. 25713081
Carrara, G., M. Parsons, N. Saraiva, and G.L. Smith. (2017). Golgi anti-apoptotic protein: a tale of camels, calcium, channels and cancer. Open Biol 7:. 28469007
Chang, Y., R. Bruni, B. Kloss, Z. Assur, E. Kloppmann, B. Rost, W.A. Hendrickson, and Q. Liu. (2014). Structural basis for a pH-sensitive calcium leak across membranes. Science 344: 1131-1135. 24904158
Jin, L., M. Miyazaki, S. Mizuno, M. Takigawa, T. Hirose, K. Nishimura, T. Toida, K. Williams, K. Kashiwagi, and K. Igarashi. (2008). The pore region of N-methyl-D-aspartate receptors differentially influences stimulation and block by spermine. J Pharmacol Exp Ther 327: 68-77. 18632991
Kota K., Kuzhikandathil EV., Afrasiabi M., Lacy B., Kontoyianni M., Crider AM. and Song D. (2015). Identification of key residues involved in the activation and signaling properties of dopamine D3 receptor. Pharmacol Res. 99:174-184. 26116441
Liu, Q. (2017). TMBIM-mediated Ca2+ homeostasis and cell death. Biochim. Biophys. Acta. [Epub: Ahead of Print] 28064000
M''Angale, P.G. and B.E. Staveley. (2016). Knockdown of the putative Lifeguard homologue CG3814 in neurons of Drosophila melanogaster. Genet Mol Res 15:. 28002605
van Stelten, J., F. Silva, D. Belin, and T.J. Silhavy. (2009). Effects of antibiotics and a proto-oncogene homolog on destruction of protein translocator SecY. Science 325: 753-756. 19661432


Egido, W., V. Castrejón, B. Antón, and M. Martínez. (2008). Maitotoxin induces two dose-dependent conductances in Xenopus oocytes. Comparison with nystatin effects as a pore inductor. Toxicon. 51: 797-812. 18255116 18255116 18255116
Bihler, H., C.L. Slayman, and A. Bertl. (1998). NSC1: a novel high-current inward rectifier for cations in the plasma membrane of Saccharomyces cerevisiae. FEBS Lett. 432: 59-64. 9710251 9710251
Estacion, M., H. B. Nguyen and J.J. Gargus (1996). Calcium is permeable through a maitotoxin-activated nonselective cation channel in mouse L cells. Am. J. Physiol. 270: C1145-C1152. 8928742
Fantino, E., D. Church, U. Bengtsson and J.J. Gargus (1997). Mammalian gene encoding growth factor-activated cation channel is homologue to yeast microsomal protein SEC62 and maps to human chromosome 3. J. Gen. Physiol. 110: 44a.
Frace, A.M. and J.J. Gargus (1989). Activation of single-channel currents in mouse fibroblasts by platelet-derived growth factor. Proc. Natl. Acad. Sci. USA 86: 2511-2515. 2467305
Gargus, J.J., A.M. Frace and F. Jung (1993). The role of a PDGF-activated nonselective cation channel in the proliferative response. In "Nonselective cation channels: pharmacology, physiology and biophysics" (D. Siemen and J. Hescheler, eds.), Birkhäuser Verlag, Basel, Switzerland, pp. 289-295. 7505659
Jung, F., S. Selvaraj and J.J. Gargus (1992). Blockers of platelet-derived growth factor-activated nonselective cation channel inhibit cell proliferation. Am. J. Physiol. 262: C1464-C1470. 1377445
Lakkaraju, A.K., R. Thankappan, C. Mary, J.L. Garrison, J. Taunton, and K. Strub. (2012). Efficient secretion of small proteins in mammalian cells relies on Sec62-dependent posttranslational translocation. Mol. Biol. Cell 23: 2712-2722. 22648169
Lyman, S.K. and R. Schekman. (1997). Binding of secretory precursor polypeptides to a translocon subcomplex is regulated by BiP. Cell 88: 85-96. 9019409


Andrews, S.C., B.C. Berks, J. McClay, A. Ambler, M.A. Quail, P. Golby, and J.R. Guest. (1997). A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system. Microbiology 143(Pt11): 3633-3647. 9387241
Czyzewski, B.K. and D.N. Wang. (2012). Identification and characterization of a bacterial hydrosulphide ion channel. Nature 483: 494-497. 22407320
Falke, D., K. Schulz, C. Doberenz, L. Beyer, H. Lilie, B. Thiemer, and R.G. Sawers. (2010). Unexpected oligomeric structure of the FocA formate channel of Escherichia coli : a paradigm for the formate-nitrite transporter family of integral membrane proteins. FEMS Microbiol. Lett. 303: 69-75. 20041954
Jia, W., N. Tovell, S. Clegg, M. Trimmer, and J. Cole. (2009). A single channel for nitrate uptake, nitrite export and nitrite uptake by Escherichia coli NarU and a role for NirC in nitrite export and uptake. Biochem. J. 417: 297-304. 18691156
Kuzminov, A. and F.W. Stahl. (1997). Stability of linear DNA in recA mutant Escherichia coli cells reflects ongoing chromosomal DNA degradation. J. Bacteriol. 179: 880-888. 9006046
Lü, W., J. Du, T. Wacker, E. Gerbig-Smentek, S.L. Andrade, and O. Einsle. (2011). pH-dependent gating in a FocA formate channel. Science 332: 352-354. 21493860
Moraes, T.F. and R.A. Reithmeier. (2012). Membrane transport metabolons. Biochim. Biophys. Acta. 1818: 2687-2706. 22705263
Nakata, K., M.M. Koh, T. Tsuchido, and Y. Matsumura. (2010). All genomic mutations in the antimicrobial surfactant-resistant mutant, Escherichia coli OW66, are involved in cell resistance to surfactant. Appl. Microbiol. Biotechnol. 87: 1895-1905. 20480162
Nölling, J. and J.N. Reeve. (1997). Growth- and substrate-dependent transcription of the formate dehydrogenase (fdhCAB) operon in Methanobacterium thermoformicicum Z-245. J. Bacteriol. 179: 899-908. 9006048
Park, J.S., S.J. Lee, H.G. Rhie, and H.S. Lee. (2008). Characterization of a chromosomal nickel resistance determinant from Klebsiella oxytoca CCUG 15788. J Microbiol Biotechnol 18: 1040-1043. 18600044
Pui, C.H., W.M. Crist, and A.T. Look. (1990). Biology and clinical significance of cytogenetic abnormalities in childhood acute lymphoblastic leukemia. Blood 76: 1449-1463. 2207320
Rycovska-Blume, A., W. Lü, S. Andrade, K. Fendler, and O. Einsle. (2015). Structural and Functional Studies of NirC from Salmonella typhimurium. Methods Enzymol 556: 475-497. 25857796
Unkles, S.E., K.L. Hawker, C. Grieve, E.I. Campbell, P. Montague, and J.R. Kinghorn. (1991). crnA encodes a nitrate transporter in Aspergillus nidulans. Proc. Natl. Acad. Sci. USA 88: 204-208. 1986367
Unkles, S.E., V.F. Symington, Z. Kotur, Y. Wang, M.Y. Siddiqi, J.R. Kinghorn, and A.D. Glass. (2011). Physiological and biochemical characterization of AnNitA, the Aspergillus nidulans high-affinity nitrite transporter. Eukaryot. Cell. 10: 1724-1732. 22021238
Waight, A.B., J. Love, and D.N. Wang. (2010). Structure and mechanism of a pentameric formate channel. Nat Struct Mol Biol 17: 31-37. 20010838
Wang, Y., Y. Huang, J. Wang, C. Cheng, W. Huang, P. Lu, Y.N. Xu, P. Wang, N. Yan, and Y. Shi. (2009). Structure of the formate transporter FocA reveals a pentameric aquaporin-like channel. Nature 462: 467-472. 19940917
Wood, G.E., A.K. Haydock, and J.A. Leigh. (2003). Function and regulation of the formate dehydrogenase genes of the methanogenic archaeon Methanococcus maripaludis. J. Bacteriol. 185: 2548-2554. 12670979


Adomaviciene A., Smith KJ., Garnett H. and Tammaro P. (2013). Putative pore-loops of TMEM16/anoctamin channels affect channel density in cell membranes. J Physiol. 591(Pt 14):3487-505. 23613533
Almaça, J., Y. Tian, F. Aldehni, J. Ousingsawat, P. Kongsuphol, J.R. Rock, B.D. Harfe, R. Schreiber, and K. Kunzelmann. (2009). TMEM16 proteins produce volume-regulated chloride currents that are reduced in mice lacking TMEM16A. J. Biol. Chem. 284: 28571-28578. 19654323
Bethel, N.P. and M. Grabe. (2016). Atomistic insight into lipid translocation by a TMEM16 scramblase. Proc. Natl. Acad. Sci. USA. [Epub: Ahead of Print] 27872308
Beurg, M., K.X. Kim, and R. Fettiplace. (2014). Conductance and block of hair-cell mechanotransducer channels in transmembrane channel-like protein mutants. J Gen Physiol 144: 55-69. 24981230
Boedtkjer DM., Kim S., Jensen AB., Matchkov VM. and Andersson KE. (2015). New selective inhibitors of calcium-activated chloride channels - T16Ainh -A01, CaCCinh -A01 and MONNA - what do they inhibit? Br J Pharmacol. 172(16):4158-72. 26013995
Brunner, J.D., N.K. Lim, S. Schenck, A. Duerst, and R. Dutzler. (2014). X-ray structure of a calcium-activated TMEM16 lipid scramblase. Nature 516: 207-212. 25383531
Bulley, S., Z.P. Neeb, S.K. Burris, J.P. Bannister, C.M. Thomas-Gatewood, W. Jangsangthong, and J.H. Jaggar. (2012). TMEM16A/ANO1 Channels Contribute to the Myogenic Response in Cerebral Arteries. Circ Res 111: 1027-1036. 22872152
Caputo, A., E. Caci, L. Ferrera, N. Pedemonte, C. Barsanti, E. Sondo, U. Pfeffer, R. Ravazzolo, O. Zegarra-Moran, and L.J. Galietta. (2008). TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322: 590-594. 18772398
Chatzigeorgiou, M., S. Bang, S.W. Hwang, and W.R. Schafer. (2013). tmc-1 encodes a sodium-sensitive channel required for salt chemosensation in C. elegans. Nature 494: 95-99. 23364694
Chauhan, N., L. Farine, K. Pandey, A.K. Menon, and P. Bütikofer. (2016). Lipid topogenesis - 35years on. Biochim. Biophys. Acta. [Epub: Ahead of Print] 26946259
Chen, Y., H. An, T. Li, Y. Liu, C. Gao, P. Guo, H. Zhang, and Y. Zhan. (2011). Direct or indirect regulation of calcium-activated chloride channel by calcium. J. Membr. Biol. 240: 121-129. 21424226
Corey, D.P. and J.R. Holt. (2016). Are TMCs the Mechanotransduction Channels of Vertebrate Hair Cells? J. Neurosci. 36: 10921-10926. 27798174
Corns, L.F., S.L. Johnson, C.J. Kros, and W. Marcotti. (2016). Tmc1 Point Mutation Affects Ca2+ Sensitivity and Block by Dihydrostreptomycin of the Mechanoelectrical Transducer Current of Mouse Outer Hair Cells. J. Neurosci. 36: 336-349. 26758827
Duran, C. and H.C. Hartzell. (2011). Physiological roles and diseases of Tmem16/Anoctamin proteins: are they all chloride channels? Acta Pharmacol Sin 32: 685-692. 21642943
Erickson, T., C.P. Morgan, J. Olt, K. Hardy, E. Busch-Nentwich, R. Maeda, R. Clemens, J.F. Krey, A. Nechiporuk, P.G. Barr-Gillespie, W. Marcotti, and T. Nicolson. (2017). Integration of Tmc1/2 into the mechanotransduction complex in zebrafish hair cells is regulated by Transmembrane O-methyltransferase (Tomt). Elife 6:. 28534737
Ferrera, L., A. Caputo, I. Ubby, E. Bussani, O. Zegarra-Moran, R. Ravazzolo, F. Pagani, and L.J. Galietta. (2009). Regulation of TMEM16A chloride channel properties by alternative splicing. J. Biol. Chem. 284: 33360-33368. 19819874
Fettiplace, R. (2016). Is TMC1 the Hair Cell Mechanotransducer Channel? Biophys. J. 111: 3-9. 27410728
Galietta, L.J. (2009). The TMEM16 protein family: a new class of chloride channels? Biophys. J. 97: 3047-3053. 20006941
Gao X., Huang SS., Yuan YY., Wang GJ., Xu JC., Ji YB., Han MY., Yu F., Kang DY., Lin X. and Dai P. (2015). Targeted gene capture and massively parallel sequencing identify TMC1 as the causative gene in a six-generation Chinese family with autosomal dominant hearing loss. Am J Med Genet A. 167A(10):2357-65. 26079994
Gui D., Li Y. and Chen X. (2015). Alterations of TMEM16a allostery in human retinal microarterioles in long-standing hypertension. IUBMB Life. 67(5):348-54. 25914185
Guo, Y., Y. Wang, W. Zhang, S. Meltzer, D. Zanini, Y. Yu, J. Li, T. Cheng, Z. Guo, Q. Wang, J.S. Jacobs, Y. Sharma, D.F. Eberl, M.C. Göpfert, L.Y. Jan, Y.N. Jan, and Z. Wang. (2016). Transmembrane channel-like (tmc) gene regulates Drosophila larval locomotion. Proc. Natl. Acad. Sci. USA. [Epub: Ahead of Print] 27298354
Gyobu, S., H. Miyata, M. Ikawa, D. Yamazaki, H. Takeshima, J. Suzuki, and S. Nagata. (2016). A Role of TMEM16E Carrying a Scrambling Domain in Sperm Motility. Mol. Cell Biol. 36: 645-659. 26667038
Han, Y., A.M. Shewan, and P. Thorn. (2016). HCO3- transport through anoctamin/transmembrane protein ANO1/TMEM16A, in pancreatic acinar cells, regulates luminal pH. J. Biol. Chem. [Epub: Ahead of Print] 27510033
Horton, J.S. and A.J. Stokes. (2014). The transmembrane channel-like protein family and human papillomaviruses: Insights into epidermodysplasia verruciformis and progression to squamous cell carcinoma. Oncoimmunology 3: e28288. 24800179
Hou, C., W. Tian, T. Kleist, K. He, V. Garcia, F. Bai, Y. Hao, S. Luan, and L. Li. (2014). DUF221 proteins are a family of osmosensitive calcium-permeable cation channels conserved across eukaryotes. Cell Res 24: 632-635. 24503647
Huang, F., J.R. Rock, B.D. Harfe, T. Cheng, X. Huang, Y.N. Jan, and L.Y. Jan. (2009). Studies on expression and function of the TMEM16A calcium-activated chloride channel. Proc. Natl. Acad. Sci. USA 106: 21413-21418. 19965375
Huang, F., X. Wong, and L.Y. Jan. (2012). International Union of Basic and Clinical Pharmacology. LXXXV: calcium-activated chloride channels. Pharmacol Rev 64: 1-15. 22090471
Hwang, S.J., P.J. Blair, F.C. Britton, K.E. O'Driscoll, G. Hennig, Y.R. Bayguinov, J.R. Rock, B.D. Harfe, K.M. Sanders, and S.M. Ward. (2009). Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles. J. Physiol. 587: 4887-4904. 19687122
Jang, W., J.Y. Kim, S. Cui, J. Jo, B.C. Lee, Y. Lee, K.S. Kwon, C.S. Park, and C. Kim. (2015). The anoctamin family channel subdued mediates thermal nociception in Drosophila. J. Biol. Chem. 290: 2521-2528. 25505177
Jeon, J.H., S.S. Paik, M.H. Chun, U. Oh, and I.B. Kim. (2013). Presynaptic Localization and Possible Function of Calcium-Activated Chloride Channel Anoctamin 1 in the Mammalian Retina. PLoS One 8: e67989. 23840801
Jin, L., Y. Liu, F. Sun, M.T. Collins, K. Blackwell, A.S. Woo, E.J. Reichenberger, and Y. Hu. (2017). Three novel ANO5 missense mutations in Caucasian and Chinese families and sporadic cases with gnathodiaphyseal dysplasia. Sci Rep 7: 40935. 28176803
Jung J., Nam JH., Park HW., Oh U., Yoon JH. and Lee MG. (2013). Dynamic modulation of ANO1/TMEM16A HCO3(-) permeability by Ca2+/calmodulin. Proc Natl Acad Sci U S A. 110(1):360-5. 23248295
Kanazawa, T. and S. Matsumoto. (2014). Expression of transient receptor potential vanilloid 1 and anoctamin 1 in rat trigeminal ganglion neurons innervating the tongue. Brain Res Bull 106: 17-20. 24792786
Kawashima Y., Kurima K., Pan B., Griffith AJ. and Holt JR. (2015). Transmembrane channel-like (TMC) genes are required for auditory and vestibular mechanosensation. Pflugers Arch. 467(1):85-94. 25074487
Kawashima, Y., G.S. Géléoc, K. Kurima, V. Labay, A. Lelli, Y. Asai, T. Makishima, D.K. Wu, C.C. Della Santina, J.R. Holt, and A.J. Griffith. (2011). Mechanotransduction in mouse inner ear hair cells requires transmembrane channel-like genes. J Clin Invest 121: 4796-4809. 22105175
Keramidas A. and Lynch JW. (2013). An outline of desensitization in pentameric ligand-gated ion channel receptors. Cell Mol Life Sci. 70(7):1241-53. 22936353
Kim, K.X. and R. Fettiplace. (2013). Developmental changes in the cochlear hair cell mechanotransducer channel and their regulation by transmembrane channel-like proteins. J Gen Physiol 141: 141-148. 23277480
Kim, K.X., M. Beurg, C.M. Hackney, D.N. Furness, S. Mahendrasingam, and R. Fettiplace. (2013). The role of transmembrane channel-like proteins in the operation of hair cell mechanotransducer channels. J Gen Physiol 142: 493-505. 24127526
Kiyosue, T., K. Yamaguchi-Shinozaki, and K. Shinozaki. (1994). ERD15, a cDNA for a dehydration-induced gene from Arabidopsis thaliana. Plant Physiol. 106: 1707. 7846179
Kralt, A., M. Carretta, M. Mari, F. Reggiori, A. Steen, B. Poolman, and L.M. Veenhoff. (2015). Intrinsically disordered linker and plasma membrane-binding motif sort Ist2 and Ssy1 to junctions. Traffic 16: 135-147. 25409870
Kumar, S., W. Namkung, A.S. Verkman, and P.K. Sharma. (2012). Novel 5-substituted benzyloxy-2-arylbenzofuran-3-carboxylic acids as calcium activated chloride channel inhibitors. Bioorg Med Chem 20: 4237-4244. 22739085
Kunzelmann, K., I. Cabrita, P. Wanitchakool, J. Ousingsawat, L. Sirianant, R. Benedetto, and R. Schreiber. (2015). Modulating Ca2+ signals: a common theme for TMEM16, Ist2, and TMC. Pflugers Arch. [Epub: Ahead of Print] 26700940
Kurima, K., S. Ebrahim, B. Pan, M. Sedlacek, P. Sengupta, B.A. Millis, R. Cui, H. Nakanishi, T. Fujikawa, Y. Kawashima, B.Y. Choi, K. Monahan, J.R. Holt, A.J. Griffith, and B. Kachar. (2015). TMC1 and TMC2 Localize at the Site of Mechanotransduction in Mammalian Inner Ear Hair Cell Stereocilia. Cell Rep 12: 1606-1617. 26321635
Kurima, K., Y. Yang, K. Sorber, and A.J. Griffith. (2003). Characterization of the transmembrane channel-like (TMC) gene family: functional clues from hearing loss and epidermodysplasia verruciformis. Genomics 82: 300-308. 12906855
Labay, V., R.M. Weichert, T. Makishima, and A.J. Griffith. (2010). Topology of transmembrane channel-like gene 1 protein. Biochemistry 49: 8592-8598. 20672865
Li, R.S., Y. Wang, H.S. Chen, F.Y. Jiang, Q. Tu, W.J. Li, and R.X. Yin. (2016). TMEM16A contributes to angiotensin II-induced cerebral vasoconstriction via the RhoA/ROCK signaling pathway. Mol Med Rep 13: 3691-3699. 26955761
Lim, N.K., A.K. Lam, and R. Dutzler. (2016). Independent activation of ion conduction pores in the double-barreled calcium-activated chloride channel TMEM16A. J Gen Physiol 148: 375-392. 27799318
Lin J., Jiang Y., Li L., Liu Y., Tang H. and Jiang D. (2015). TMEM16A mediates the hypersecretion of mucus induced by Interleukin-13. Exp Cell Res. 334(2):260-9. 25770012
Liu J., Liu Y., Ren Y., Kang L. and Zhang L. (2014). Transmembrane protein with unknown function 16A overexpression promotes glioma formation through the nuclear factor-kappaB signaling pathway. Mol Med Rep. 9(3):1068-74. 24401903
Loewen, M.E. and G.W. Forsyth. (2005). Structure and function of CLCA proteins. Physiol. Rev. 85: 1061-1092. 15987802
Maeda, R., K.S. Kindt, W. Mo, C.P. Morgan, T. Erickson, H. Zhao, R. Clemens-Grisham, P.G. Barr-Gillespie, and T. Nicolson. (2014). Tip-link protein protocadherin 15 interacts with transmembrane channel-like proteins TMC1 and TMC2. Proc. Natl. Acad. Sci. USA 111: 12907-12912. 25114259
Mancina, R.M., P. Dongiovanni, S. Petta, P. Pingitore, M. Meroni, R. Rametta, J. Borén, T. Montalcini, A. Pujia, O. Wiklund, G. Hindy, R. Spagnuolo, B.M. Motta, R.M. Pipitone, A. Craxì, S. Fargion, V. Nobili, P. Käkelä, V. Kärjä, V. Männistö, J. Pihlajamäki, D.F. Reilly, J. Castro-Perez, J. Kozlitina, L. Valenti, and S. Romeo. (2016). The MBOAT7-TMC4 Variant rs641738 Increases Risk of Nonalcoholic Fatty Liver Disease in Individuals of European Descent. Gastroenterology. [Epub: Ahead of Print] 26850495
Manji, S.S., K.A. Miller, L.H. Williams, and H.H. Dahl. (2012). Identification of three novel hearing loss mouse strains with mutations in the Tmc1 gene. Am J Pathol 180: 1560-1569. 22330676
Martins, J.R., D. Faria, P. Kongsuphol, B. Reisch, R. Schreiber, and K. Kunzelmann. (2011). Anoctamin 6 is an essential component of the outwardly rectifying chloride channel. Proc. Natl. Acad. Sci. USA 108: 18168-18172. 22006324
Maurya, D.K. and A. Menini. (2014). Developmental expression of the calcium-activated chloride channels TMEM16A and TMEM16B in the mouse olfactory epithelium. Dev Neurobiol 74: 657-675. 24318978
Milenkovic, V.M., M. Brockmann, H. Stöhr, B.H. Weber, and O. Strauss. (2010). Evolution and functional divergence of the anoctamin family of membrane proteins. BMC Evol Biol 10: 319. 20964844
Miyauchi, T., T. Nomura, S. Suzuki, M. Takeda, S. Shinkuma, K. Arita, Y. Fujita, and H. Shimizu. (2016). Genetic analysis of a novel splice-site mutation in TMC8 reveals the in vivo importance of the transmembrane channel-like domain of TMC8. Br J Dermatol. [Epub: Ahead of Print] 26997147
Mroz, M.S. and S.J. Keely. (2012). Epidermal growth factor chronically upregulates Ca2+-dependent Cl- conductance and TMEM16A expression in intestinal epithelial cells. J. Physiol. 590: 1907-1920. 22351639
Nakanishi H., Kurima K., Kawashima Y. and Griffith AJ. (2014). Mutations of TMC1 cause deafness by disrupting mechanoelectrical transduction. Auris Nasus Larynx. 41(5):399-408. 24933710
Ni, Y.L., A.S. Kuan, and T.Y. Chen. (2014). Activation and inhibition of TMEM16A calcium-activated chloride channels. PLoS One 9: e86734. 24489780
Oh, U. and J. Jung. (2016). Cellular functions of TMEM16/anoctamin. Pflugers Arch 468: 443-453. 26811235
Ohba, C., M. Kato, N. Takahashi, H. Osaka, T. Shiihara, J. Tohyama, S. Nabatame, J. Azuma, Y. Fujii, M. Hara, R. Tsurusawa, T. Inoue, R. Ogata, Y. Watanabe, N. Togashi, H. Kodera, M. Nakashima, Y. Tsurusaki, N. Miyake, F. Tanaka, H. Saitsu, and N. Matsumoto. (2015). De novo KCNT1 mutations in early-onset epileptic encephalopathy. Epilepsia 56: e121-128. 26140313
Ousingsawat, J., J.R. Martins, R. Schreiber, J.R. Rock, B.D. Harfe, and K. Kunzelmann. (2009). Loss of TMEM16A causes a defect in epithelial Ca2+-dependent chloride transport. J. Biol. Chem. 284: 28698-28703. 19679661
Pan, B., G.S. Géléoc, Y. Asai, G.C. Horwitz, K. Kurima, K. Ishikawa, Y. Kawashima, A.J. Griffith, and J.R. Holt. (2013). TMC1 and TMC2 Are Components of the Mechanotransduction Channel in Hair Cells of the Mammalian Inner Ear. Neuron. 79: 504-515. 23871232
Pang C., Yuan H., Ren S., Chen Y., An H. and Zhan Y. (201). TMEM16A/B associated CaCC: structural and functional insights. Protein Pept Lett. 21(1):94-9. 24151904
Pang, C.L., H.B. Yuan, T.G. Cao, J.G. Su, Y.F. Chen, H. Liu, H. Yu, H.L. Zhang, Y. Zhan, H.L. An, and Y.B. Han. (2015). Molecular simulation assisted identification of Ca2+ binding residues in TMEM16A. J Comput Aided Mol Des. [Epub: Ahead of Print] 26481648
Paulino, C., Y. Neldner, A.K. Lam, V. Kalienkova, J.D. Brunner, S. Schenck, and R. Dutzler. (2017). Structural basis for anion conduction in the calcium-activated chloride channel TMEM16A. Elife 6:. 28561733
Peters CJ., Yu H., Tien J., Jan YN., Li M. and Jan LY. (2015). Four basic residues critical for the ion selectivity and pore blocker sensitivity of TMEM16A calcium-activated chloride channels. Proc Natl Acad Sci U S A. 112(11):3547-52. 25733897
Piechowicz, K.A., E.C. Truong, K.M. Javed, R.R. Chaney, J.Y. Wu, P.W. Phuan, A.S. Verkman, and M.O. Anderson. (2016). Synthesis and evaluation of 5,6-disubstituted thiopyrimidine aryl aminothiazoles as inhibitors of the calcium-activated chloride channel TMEM16A/Ano1. J Enzyme Inhib Med Chem 1-7. [Epub: Ahead of Print] 26796863
Planells-Cases, R. and T.J. Jentsch. (2009). Chloride channelopathies. Biochim. Biophys. Acta. [Epub: Ahead of Print] 19419694
Qin, Y., Y. Jiang, A.S. Sheikh, S. Shen, J. Liu, and D. Jiang. (2016). Interleukin-13 stimulates MUC5AC expression via a STAT6-TMEM16A-ERK1/2 pathway in human airway epithelial cells. Int Immunopharmacol 40: 106-114. 27588910
Schenk, L.K., U. Schulze, S. Henke, T. Weide, and H. Pavenstädt. (2016). TMEM16F Regulates Baseline Phosphatidylserine Exposure and Cell Viability in Human Embryonic Kidney Cells. Cell Physiol Biochem 38: 2452-2463. 27287741
Schreiber, R., I. Uliyakina, P. Kongsuphol, R. Warth, M. Mirza, J.R. Martins, and K. Kunzelmann. (2010). Expression and function of epithelial anoctamins. J. Biol. Chem. 285: 7838-7845. 20056604
Scudieri, P., E. Sondo, L. Ferrera, and L.J. Galietta. (2012). The anoctamin family: TMEM16A and TMEM16B as calcium-activated chloride channels. Exp Physiol 97: 177-183. 21984732
Scudieri, P., I. Musante, A. Gianotti, O. Moran, and L.J. Galietta. (2016). Intermolecular Interactions in the TMEM16A Dimer Controlling Channel Activity. Sci Rep 6: 38788. 27929144
Shimizu, T., T. Iehara, K. Sato, T. Fujii, H. Sakai, and Y. Okada. (2013). TMEM16F is a component of a Ca2+-activated Cl- channel but not a volume-sensitive outwardly rectifying Cl- channel. Am. J. Physiol. Cell Physiol. 304: C748-759. 23426967
Shiwarski, D.J., C. Shao, A. Bill, J. Kim, D. Xiao, C.A. Bertrand, R.S. Seethala, D. Sano, J.N. Myers, P. Ha, J. Grandis, L.A. Gaither, M.A. Puthenveedu, and U. Duvvuri. (2014). To "Grow" or "Go": TMEM16A Expression as a Switch between Tumor Growth and Metastasis in SCCHN. Clin Cancer Res 20: 4673-4688. 24919570
Sirianant L., Ousingsawat J., Tian Y., Schreiber R. and Kunzelmann K. (2014). TMC8 (EVER2) attenuates intracellular signaling by Zn2+ and Ca2+ and suppresses activation of Cl- currents. Cell Signal. 26(12):2826-33. 25220380
Smith, C.J., J.D. Watson, W.C. Spencer, T. O'Brien, B. Cha, A. Albeg, M. Treinin, and D.M. Miller, 3rd. (2010). Time-lapse imaging and cell-specific expression profiling reveal dynamic branching and molecular determinants of a multi-dendritic nociceptor in C. elegans. Dev Biol 345: 18-33. 20537990
Spalthoff, C. and M.C. Göpfert. (2016). Sensing pH with TMCs. Neuron. 91: 6-8. 27387645
Suzuki T., Suzuki J. and Nagata S. (2014). Functional swapping between transmembrane proteins TMEM16A and TMEM16F. J Biol Chem. 289(11):7438-47. 24478309
Suzuki, J., M. Umeda, P.J. Sims, and S. Nagata. (2010). Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468: 834-838. 21107324
Suzuki, J., T. Fujii, T. Imao, K. Ishihara, H. Kuba, and S. Nagata. (2013). Calcium-dependent Phospholipid Scramblase Activity of TMEM16 Protein Family Members. J. Biol. Chem. 288: 13305-13316. 23532839
Tien, J., H.Y. Lee, D.L. Minor, Jr, Y.N. Jan, and L.Y. Jan. (2013). Identification of a dimerization domain in the TMEM16A calcium-activated chloride channel (CaCC). Proc. Natl. Acad. Sci. USA 110: 6352-6357. 23576756
Truong, E.C., P.W. Phuan, A.L. Reggi, L. Ferrera, L.J.V. Galietta, S.E. Levy, A.C. Moises, O. Cil, E. Diez-Cecilia, S. Lee, A.S. Verkman, and M.O. Anderson. (2017). Substituted 2-acylamino-cycloalkylthiophene-3-carboxylic acid arylamides as inhibitors of the calcium-activated chloride channel transmembrane protein 16A (TMEM16A). J Med Chem. [Epub: Ahead of Print] 28493701
Wang Y., Alam T., Hill-Harfe K., Lopez AJ., Leung CK., Iribarne D., Bruggeman B., Miyamoto MM., Harfe BD. and Choe KP. (2013). Phylogenetic, expression, and functional analyses of anoctamin homologs in Caenorhabditis elegans. Am J Physiol Regul Integr Comp Physiol. 305(11):R1376-89. 24049119
Wang, Q., M.D. Leo, D. Narayanan, K.P. Kuruvilla, and J.H. Jaggar. (2016). Local coupling of TRPC6 to ANO1/TMEM16A channels in smooth muscle cells amplifies vasoconstriction in cerebral arteries. Am. J. Physiol. Cell Physiol. 310: C1001-1009. 27147559
Wang, X., G. Li, J. Liu, J. Liu, and X.Z. Xu. (2016). TMC-1 Mediates Alkaline Sensation in C. elegans through Nociceptive Neuron.s. Neuron. 91: 146-154. 27321925
Winkler M., Kuhner P., Russ U., Ortiz D., Bryan J. and Quast U. (2012). Role of the amino-terminal transmembrane domain of sulfonylurea receptor SUR2B for coupling to K(IR)6.2, ligand binding, and oligomerization. Naunyn Schmiedebergs Arch Pharmacol. 385(3):287-98. 22089636
Winpenny, J.P., L.L. Marsey, and D.W. Sexton. (2009). The CLCA gene family: putative therapeutic target for respiratory diseases. Inflamm Allergy Drug Targets 8: 146-160. 19530997
Wu, Z., N. Grillet, B. Zhao, C. Cunningham, S. Harkins-Perry, B. Coste, S. Ranade, N. Zebarjadi, M. Beurg, R. Fettiplace, A. Patapoutian, and U. Müller. (2016). Mechanosensory hair cells express two molecularly distinct mechanotransduction channels. Nat Neurosci. [Epub: Ahead of Print] 27893727
Xu, J., M. El Refaey, L. Xu, L. Zhao, Y. Gao, K. Floyd, T. Karaze, P.M. Janssen, and R. Han. (2015). Genetic disruption of Ano5 in mice does not recapitulate human ANO5-deficient muscular dystrophy. Skelet Muscle 5: 43. 26693275
Yang, H., A. Kim, T. David, D. Palmer, T. Jin, J. Tien, F. Huang, T. Cheng, S.R. Coughlin, Y.N. Jan, and L.Y. Jan. (2012). TMEM16F forms a Ca2+-activated cation channel required for lipid scrambling in platelets during blood coagulation. Cell 151: 111-122. 23021219
Yang, T., W.A. Hendrickson, and H.M. Colecraft. (2014). Preassociated apocalmodulin mediates Ca2+-dependent sensitization of activation and inactivation of TMEM16A/16B Ca2+-gated Cl- channels. Proc. Natl. Acad. Sci. USA 111: 18213-18218. 25489088
Yang, Y.D., H. Cho, J.Y. Koo, M.H. Tak, Y. Cho, W.S. Shim, S.P. Park, J. Lee, B. Lee, B.M. Kim, R. Raouf, Y.K. Shin, and U. Oh. (2008). TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455: 1210-1215. 18724360
Zhang Y., Wang X., Wang H., Jiao J., Li Y., Fan E., Zhang L. and Bachert C. (2015). TMEM16A-Mediated Mucin Secretion in IL-13-Induced Nasal Epithelial Cells From Chronic Rhinosinusitis Patients. Allergy Asthma Immunol Res. 7(4):367-75. 25749771
Zhang, X.D., J.H. Lee, P. Lv, W.C. Chen, H.J. Kim, D. Wei, W. Wang, C.R. Sihn, K.J. Doyle, J.R. Rock, N. Chiamvimonvat, and E.N. Yamoah. (2015). Etiology of distinct membrane excitability in pre- and posthearing auditory neurons relies on activity of Cl- channel TMEM16A. Proc. Natl. Acad. Sci. USA 112: 2575-2580. 25675481
Zhao, P., A. Torcaso, A. Mariano, L. Xu, S. Mohsin, L. Zhao, and R. Han. (2014). Anoctamin 6 Regulates C2C12 Myoblast Proliferation. PLoS One 9: e92749. 24663380


Kessler, F. and G. Blobel (1996). Interaction of the protein import and folding machineries in the chloroplast. Proc. Natl. Acad. Sci. USA 93: 7684-7689. 8755536
Lübeck, J., J. Soll, M. Akita, E. Nielsen and K. Keegstra (1996). Topology of IEP110, a component of the chloroplastic protein import machinery present in the inner envelope membrane. J. EMBO 15: 4230-4238. 8861951
Tsai JY., Chu CC., Yeh YH., Chen LJ., Li HM. and Hsiao CD. (2013). Structural characterizations of the chloroplast translocon protein Tic110. Plant J. 75(5):847-57. 23711301
van den Wijngaard, P.W.J. and W.J. Vredenberg (1999). The envelope anion channel involved in chloroplast protein import is associated with Tic110. J. Biol. Chem. 274: 25201-25204. 10464239


Acharya, R., V. Carnevale, G. Fiorin, B.G. Levine, A.L. Polishchuk, V. Balannik, I. Samish, R.A. Lamb, L.H. Pinto, W.F. DeGrado, and M.L. Klein. (2010). Structure and mechanism of proton transport through the transmembrane tetrameric M2 protein bundle of the influenza A virus. Proc. Natl. Acad. Sci. USA 107: 15075-15080. 20689043
Andreas, L.B., M. Reese, M.T. Eddy, V. Gelev, Q.Z. Ni, E.A. Miller, L. Emsley, G. Pintacuda, J.J. Chou, and R.G. Griffin. (2015). Structure and Mechanism of the Influenza A M218-60 Dimer of Dimers. J. Am. Chem. Soc. 137: 14877-14886. 26218479
Balannik, V., V. Carnevale, G. Fiorin, B.G. Levine, R.A. Lamb, M.L. Klein, W.F. Degrado, and L.H. Pinto. (2010). Functional studies and modeling of pore-lining residue mutants of the influenza a virus M2 ion channel. Biochemistry 49: 696-708. 20028125
Cady, S.D., C. Goodman, C.D. Tatko, W.F. DeGrado, and M. Hong. (2007). Determining the orientation of uniaxially rotating membrane proteins using unoriented samples: a 2H, 13C, and 15N solid-state NMR investigation of the dynamics and orientation of a transmembrane helical bundle. J. Am. Chem. Soc. 129: 5719-5729. 17417850
Duong-Ly, K.C., V. Nanda, W.F. Degrado, and K.P. Howard. (2005). The conformation of the pore region of the M2 proton channel depends on lipid bilayer environment. Protein Sci. 14: 856-861. 15741338
Fischer, W.B. and H.J. Hsu. (2011). Viral channel forming proteins - modeling the target. Biochim. Biophys. Acta. 1808: 561-571. 20546700
Fischer, W.B. and M.S. Sansom. (2002). Viral ion channels: structure and function. Biochim. Biophys. Acta 1561: 27-45. 11988179
Fischer, W.B., M. Pitkeathly, B.A. Wallace, L.R. Forrest, G.R. Smith, and M.S.P. Sansom. (2000). Transmembrane peptide NB of influenza B: a simulation, structure and conductance study. Biochemistry 41: 12708-12716. 11027151
Fischer, W.B., Y.T. Wang, C. Schindler, and C.P. Chen. (2012). Mechanism of function of viral channel proteins and implications for drug development. Int Rev Cell Mol Biol 294: 259-321. 22364876
Homeyer, N., H. Ioannidis, F. Kolarov, G. Gauglitz, C. Zikos, A. Kolocouris, and H. Gohlke. (2015). Interpreting thermodynamic profiles of aminoadamantane compounds inhibiting the M2 proton channel of influenza A by free energy calculations. J Chem Inf Model. [Epub: Ahead of Print] 26690735
Hong M. and DeGrado WF. (2012). Structural basis for proton conduction and inhibition by the influenza M2 protein. Protein Sci. 21(11):1620-33. 23001990
Ivanovic, T., R. Rozendaal, D.L. Floyd, M. Popovic, A.M. van Oijen, and S.C. Harrison. (2012). Kinetics of proton transport into influenza virions by the viral m2 channel. PLoS One 7: e31566. 22412838
Jing, X., C. Ma, Y. Ohigashi, F.A. Oliveira, T.S. Jardetzky, L.H. Pinto, and R.A. Lamb. (2008). Functional studies indicate amantadine binds to the pore of the influenza A virus M2 proton-selective ion channel. Proc. Natl. Acad. Sci. USA 105: 10967-10972. 18669647
Kalita, M.M. and W.B. Fischer. (2017). Decoupled side chain and backbone dynamics for proton translocation - M2 of influenza A. J Mol Model 23: 212. 28646429
Kukol, A., P.D. Adams, L.M. Rice, A.T. Brunger, and I.T. Arkin. (1999). Experimentally based orientational refinement of membrane protein models: a structure for the influenza A M2 H+ channel. J. Mol. Biol. 286: 951-962. 10024461
Leiding, T., J. Wang, J. Martinsson, W.F. DeGrado, and S.P. Arsköld. (2010). Proton and cation transport activity of the M2 proton channel from influenza A virus. Proc. Natl. Acad. Sci. USA 107: 15409-15414. 20713739
Liang, R., J.M. Swanson, J.J. Madsen, M. Hong, W.F. DeGrado, and G.A. Voth. (2016). Acid activation mechanism of the influenza A M2 proton channel. Proc. Natl. Acad. Sci. USA. [Epub: Ahead of Print] 27791184
Liao, S.Y., Y. Yang, D. Tietze, and M. Hong. (2015). The influenza m2 cytoplasmic tail changes the proton-exchange equilibria and the backbone conformation of the transmembrane histidine residue to facilitate proton conduction. J. Am. Chem. Soc. 137: 6067-6077. 25892574
Ma, C., A.L. Polishchuk, Y. Ohigashi, A.L. Stouffer, A. Schön, E. Magavern, X. Jing, J.D. Lear, E. Freire, R.A. Lamb, W.F. DeGrado, and L.H. Pinto. (2009). Identification of the functional core of the influenza A virus A/M2 proton-selective ion channel. Proc. Natl. Acad. Sci. USA 106: 12283-12288. 19590009
Moffat, J.C., V. Vijayvergiya, P.F. Gao, T.A. Cross, D.J. Woodbury, and D.D. Busath. (2008). Proton transport through influenza A virus M2 protein reconstituted in vesicles. Biophys. J. 94: 434-445. 17827230
Mould, J.A., H. Li, C.S. Dudlak, J.D. Lear, A. Pekosz, R.A. Lamb, and L.H. Pinto. (2000). Mechanism for proton conduction of the M2 ion channel of influenza A virus. J. Biol. Chem. 275: 8592-8599. 10722698
Mould, J.A., J.E. Drury, S.M. Frings, U.B. Kaupp, A. Pekosz, R.A. Lamb, and L.H. Pinto. (2000). Permeation and activation of the M2 ion channel of influenza A virus. J. Biol. Chem. 75: 31038-31050. 10913133
Pielak, R.M. and J.J. Chou. (2010). Flu channel drug resistance: a tale of two sites. Protein Cell 1: 246-258. 21203971
Pinto, L.H., G.R. Dieckmann, C.S. Gandhi, C.G. Papworth, J. Braman, M.A. Shaughnessy. J.D. Lear, R.A. Lamb, and W.F. DeGrado. (1997). A functionally defined model for the M2 proton channel of influenza A virus suggests a mechanism for its ion selectivity. Proc. Natl. Acad. Sci. USA 94: 11301-11306. 9326604
Schnell, J.R., and J.J. Chou (2008). Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451: 591-5. 18235503
Stouffer, A.L., R. Acharya, D. Salom, A.S. Levine, L. Di Costanzo, C.S. Soto, V. Tereshko, V. Nanda, S. Stayrook, and W.F. DeGrado (2008). Structural basis for the function and inhibition of an influenza virus proton channel. Nature 451: 596-9. 18235504
Tang, Y., F. Zaitseva, R.A. Lamb, and L.H. Pinto. (2002). The gate of the influenza virus M2 proton channel is formed by a single tryptophan residue. J. Biol. Chem. 277: 39880-39886. 12183461
Thomaston, J.L., M. Alfonso-Prieto, R.A. Woldeyes, J.S. Fraser, M.L. Klein, G. Fiorin, and W.F. DeGrado. (2015). High-resolution structures of the M2 channel from influenza A virus reveal dynamic pathways for proton stabilization and transduction. Proc. Natl. Acad. Sci. USA 112: 14260-14265. 26578770
Tian, C. K. Tobler, R.A. Lamb, L.H. Pinto, and T.A. Cross. (2002). Expression and initial structural insights from solid-stage NMR of the M2 proton channel from influenza A virus. Biochemistry 41: 11294-11300. 12220196
Wang, T., S.D. Cady, and M. Hong. (2012). NMR determination of protein partitioning into membrane domains with different curvatures and application to the influenza m2 Peptide. Biophys. J. 102: 787-794. 22385849
Wang, Y., S.H. Park, Y. Tian, and S.J. Opella. (2013). Impact of histidine residues on the transmembrane helices of viroporins. Mol. Membr. Biol. 30: 360-369. 24102567
Witter, R., F. Nozirov, U. Sternberg, T.A. Cross, A.S. Ulrich, and R. Fu. (2008). Solid-state 19F NMR spectroscopy reveals that Trp41 participates in the gating mechanism of the M2 proton channel of influenza A virus. J. Am. Chem. Soc. 130: 918-924. 18163621


Bocharov, E.V., Y.E. Pustovalova, K.V. Pavlov, P.E. Volynsky, M.V. Goncharuk, Y.S. Ermolyuk, D.V. Karpunin, A.A. Schulga, M.P. Kirpichnikov, R.G. Efremov, I.V. Maslennikov, and A.S. Arseniev. (2007). Unique dimeric structure of BNip3 transmembrane domain suggests membrane permeabilization as a cell death trigger. J. Biol. Chem. 282: 16256-16266. 17412696


Adams, J.M. and S. Cory. (1998). The Bcl-2 protein family: arbiters of cell survival. Science 281: 1322-1326. 9735050
Andreu-Fernández, V., M. Sancho, A. Genovés, E. Lucendo, F. Todt, J. Lauterwasser, K. Funk, G. Jahreis, E. Pérez-Payá, I. Mingarro, F. Edlich, and M. Orzáez. (2017). Bax transmembrane domain interacts with prosurvival Bcl-2 proteins in biological membranes. Proc. Natl. Acad. Sci. USA 114: 310-315. 28028215
Antonsson, B., S. Montessuit, S. Lauper, R. Eskes, and J. Martinou. (2000). Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem. J. 345: 271-278. 10620504
Arbel, N. and V. Shoshan-Barmatz. (2010). Voltage-dependent anion channel 1-based peptides interact with Bcl-2 to prevent antiapoptotic activity. J. Biol. Chem. 285: 6053-6062. 20037155
Boise, L., M. Gonzalez-Garcia, C. Postema, L. Ding, T. Lindsten, L. Turka, X. Mao, G. Nunez, and C. Thompson. (1993). bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74: 597-608. 8358789
Cosentino, K. and A.J. García-Sáez. (2016). Bax and Bak Pores: Are We Closing the Circle? Trends Cell Biol. [Epub: Ahead of Print] 27932064
Czabotar, P.E., D. Westphal, G. Dewson, S. Ma, C. Hockings, W.D. Fairlie, E.F. Lee, S. Yao, A.Y. Robin, B.J. Smith, D.C. Huang, R.M. Kluck, J.M. Adams, and P.M. Colman. (2013). Bax Crystal Structures Reveal How BH3 Domains Activate Bax and Nucleate Its Oligomerization to Induce Apoptosis. Cell 152: 519-531. 23374347
Czabotar, P.E., E.F. Lee, G.V. Thompson, A.Z. Wardak, W.D. Fairlie, and P.M. Colman. (2011). Mutation to Bax beyond the BH3 domain disrupts interactions with pro-survival proteins and promotes apoptosis. J. Biol. Chem. 286: 7123-7131. 21199865
Faustin, B., Y. Chen, D. Zhai, G. Le Negrate, L. Lartigue, A. Satterthwait, and J.C. Reed. (2009). Mechanism of Bcl-2 and Bcl-X(L) inhibition of NLRP1 inflammasome: loop domain-dependent suppression of ATP binding and oligomerization. Proc. Natl. Acad. Sci. USA 106: 3935-3940. 19223583
Garg P., Nemec KN., Khaled AR. and Tatulian SA. (2013). Transmembrane pore formation by the carboxyl terminus of Bax protein. Biochim Biophys Acta. 1828(2):732-42. 22906710
Gomez-Crisostomo NP., Lopez-Marure R., Zapata E., Zazueta C. and Martinez-Abundis E. (2013). Bax induces cytochrome c release by multiple mechanisms in mitochondria from MCF7 cells. J Bioenerg Biomembr. 45(5):441-8. 23536162
Grinberg, M., M. Schwarz, Y. Zaltsman, T. Eini, H. Niv, S. Pietrokovski, and A. Gross. (2005). Mitochondrial carrier homolog 2 is a target of tBID in cells signaled to die by tumor necrosis factor alpha. Mol. Cell. Biol. 25(11):4579-4590. 15899861
Gross, A. (2005). Mitochondrial carrier homolog 2: a clue to cracking the BCL-2 family riddle? J. Bioenerg. Biomembr. 37(3):113-119.
Hosoi, K.I., N. Miyata, S. Mukai, S. Furuki, K. Okumoto, E.H. Cheng, and Y. Fujiki. (2017). The VDAC2-BAK axis regulates peroxisomal membrane permeability. J. Cell Biol. 216: 709-722. 28174205
Iyer S., Bell F., Westphal D., Anwari K., Gulbis J., Smith BJ., Dewson G. and Kluck RM. (2015). Bak apoptotic pores involve a flexible C-terminal region and juxtaposition of the C-terminal transmembrane domains. Cell Death Differ. 22(10):1665-75. 25744027
Kuwana, T., M.R. Mackey, G. Perkins, M.H. Ellisman, M. Latterich, R. Schneiter, D.R. Green, and D.D. Newmeyer. (2002). Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111: 331-342. 12419244
Monaco, G., E. Decrock, N. Arbel, A.R. van Vliet, R.M. La Rovere, H. De Smedt, J.B. Parys, P. Agostinis, L. Leybaert, V. Shoshan-Barmatz, and G. Bultynck. (2015). The BH4 domain of anti-apoptotic Bcl-XL, but not that of the related Bcl-2, limits the voltage-dependent anion channel 1 (VDAC1)-mediated transfer of pro-apoptotic Ca2+ signals to mitochondria. J. Biol. Chem. 290: 9150-9161. 25681439
Muchmore, S.W., M. Sattler, H. Liang, R.P. Meadows, J.E. Harlan, H.S. Yoon, D. Nettesheim, B.S. Chang, C.B. Thompson, S.L. Wong, S.L. Ng, and S.W. Fesik. (1996). X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381: 335-341. 8692274
Narita, M., S. Shimizu, T. Ito, T. Chittenden, R.J. Lutz, H. Matsuda and Y. Tsujimoto (1998). Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc. Natl. Acad. Sci. USA 95: 14681-14686. 9843949
Pang, X., S.H. Moussa, N.M. Targy, J.L. Bose, N.M. George, C. Gries, H. Lopez, L. Zhang, K.W. Bayles, R. Young, and X. Luo. (2011). Active Bax and Bak are functional holins. Genes Dev. 25: 2278-2290. 22006182
Peng, J., S.M. Lapolla, Z. Zhang, and J. Lin. (2009). The cytosolic domain of Bcl-2 forms small pores in model mitochondrial outer membrane after acidic pH-induced membrane association. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 26: 130-137. 19334571
Qian, S., W. Wang, L. Yang, and H.W. Huang. (2008). Structure of transmembrane pore induced by Bax-derived peptide: evidence for lipidic pores. Proc. Natl. Acad. Sci. USA 105: 17379-17383. 18987313
Setoguchi, K., H. Otera, and K. Mihara. (2006). Cytosolic factor- and TOM-independent import of C-tail-anchored mitochondrial outer membrane proteins. EMBO. J. 25: 5635-5647. 17110923
Shimizu, S., M. Narita, and Y. Tsujimoto. (1999). Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399: 483-487. 10365962
Siskind, L.J., L. Feinstein, T. Yu, J.S. Davis, D. Jones, J. Choi, J.E. Zuckerman, W. Tan, R.B. Hill, J.M. Hardwick, and M. Colombini. (2008). Anti-apoptotic Bcl-2 Family proteins disassemble ceramide channels. J. Biol. Chem. 283: 6622-6630. 18171672
Siskind, L.J., R.N. Kolesnick, and M. Colombini. (2002). Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins. J. Biol. Chem. 277: 26796-26803. 12006562
Siskind, L.J., R.N. Kolesnick, and M. Colombini. (2006). Ceramide forms channels in mitochondrial outer membranes at physiologically relevant concentrations. Mitochondrion 6: 118-125. 16713754
Tsujimoto, T. and S. Shimizu. (2000). Bcl-2 family: life-or-death switch. FEBS Lett. 466: 6-10. 10648802
Vargas-Uribe, M., M.V. Rodnin, and A.S. Ladokhin. (2013). Comparison of membrane insertion pathways of the apoptotic regulator Bcl-xL and the diphtheria toxin translocation domain. Biochemistry 52: 7901-7909. 24134052
Wei, M.C., W.-X. Zong, E.H.-Y. Cheng, T. Lindsten, V. Panoutsakopoulou, A.J. Ross, K.A. Roth, G.R. MacGregor, C.B. Thompson, and S.J. Korsmeyer. (2001). Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292: 727-730. 11326099
Williams, A., T. Hayashi, D. Wolozny, B. Yin, T.C. Su, M.J. Betenbaugh, and T.P. Su. (2016). The non-apoptotic action of Bcl-xL: regulating Ca2+ signaling and bioenergetics at the ER-mitochondrion interface. J. Bioenerg. Biomembr. 48: 211-225. 27155879
Willis, S.N., J.I. Fletcher, T. Kaufmann, M.F. van Delft, L. Chen, P.E. Czabotar, H. Ierino, E.F. Lee, W.D. Fairlie, P. Bouillet, A. Strasser, R.M. Kluck, J.M. Adams, and D.C. Huang. (2007). Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 315: 856-859. 17289999
Zhang, X., C. Weng, Y. Li, X. Wang, C. Jiang, X. Li, Y. Xu, Q. Chen, L. Pan, and H. Tang. (2012). Human Bop is a novel BH3-only member of the Bcl-2 protein family. Protein Cell 3: 790-801. 23055042


Ajouz, B., C. Berrier, A. Garrigues, M. Besnard, and A. Ghazi. (1998). Release of thioredoxin via the mechanosensitive channel MscL during osmotic downshock of Escherichia coli cells. J. Biol. Chem. 273: 26670-26674. 9756908
Andersson, M., G. Okeyo, D. Wilson, H. Keizer, P. Moe, P. Blount, D. Fine, A. Dodabalapur, and R.S. Duran. (2008). Voltage-induced gating of the mechanosensitive MscL ion channel reconstituted in a tethered lipid bilayer membrane. Biosens Bioelectron 23: 919-923. 17996439
Ando C., Liu N. and Yoshimura K. (2015). A cytoplasmic helix is required for pentamer formation of the Escherichia coli MscL mechanosensitive channel. J Biochem. 158(2):109-14. 25697390
Balleza, D., F. Gómez-Lagunas, and C. Quinto. (2010). Cloning and functional expression of an MscL ortholog from Rhizobium etli: characterization of a mechanosensitive channel. J. Membr. Biol. 234: 13-27. 20177670
Bavi, N., O. Bavi, M. Vossoughi, R. Naghdabadi, A.P. Hill, B. Martinac, and Y. Jamali. (2016). Nanomechanical properties of MscL alpha helices: A steered molecular dynamics study. Channels (Austin) 0. [Epub: Ahead of Print] 27753526
Blount, P., M.J. Schroeder, and C. Kung. (1997). Mutations in a bacterial mechanosensitive channel change the cellular response to osmotic stress. J. Biol. Chem. 272: 32150-32157. 9405414
Blount, P., S.I. Sukharev, M.J. Schroeder, S.K. Nangle, and C. Kung. (1996b). Single residue substitutions that change the gating properties of a mechanosensitive channel in Escherichia coli. Proc. Natl. Acad. Sci. USA 93: 11652-11657. 8876191
Blount, P., S.I. Sukharev, P.C. Moe, M.J. Schroeder, H.R. Guy, and C. Kung. (1996a). Membrane topology and multimeric structure of a mechanosensitive channel protein of Escherichia coli. EMBO J. 15: 4798-4805. 8890153
Bucarey, S.A., K. Penn, L. Paul, W. Fenical, and P.R. Jensen. (2012). Genetic Complementation of the Obligate Marine Actinobacterium Salinispora tropica with the Large Mechanosensitive Channel Gene mscL Rescues Cells from Osmotic Downshock. Appl. Environ. Microbiol. 78: 4175-4182. 22492446
Chang, G., R.H. Spencer, A.T. Lee, M.T. Barclay, and D.C. Rees. (1998). Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282: 2220-2226. 9856938
Foo A., Battle AR., Chi G., Hankamer B., Landsberg MJ. and Martinac B. (2015). Inducible release of particulates from liposomes using the mechanosensitive channel of large conductance and L-alpha-lysophosphatidylcholine. Eur Biophys J. 44(7):521-30. 26143502
Hase, C.C., A.C. Le Dain, and B. Martinac. (1995). Purification and functional reconstitution of the recombinant large mechanosensitive ion channel (MscL) of Escherichia coli. J. Biol. Chem. 270: 18329-18334. 7543101
Haswell, E.S., R. Phillips, and D.C. Rees. (2011). Mechanosensitive channels: what can they do and how do they do it? Structure 19: 1356-1369. 22000509
Hoffmann, T., C. Boiangiu, S. Moses, and E. Bremer. (2008). Responses of Bacillus subtilis to hypotonic challenges: physiological contributions of mechanosensitive channels to cellular survival. Appl. Environ. Microbiol. 74: 2454-2460. 18310427
Iscla, I., R. Wray, and P. Blount. (2011). An in vivo screen reveals protein-lipid interactions crucial for gating a mechanosensitive channel. FASEB J. 25: 694-702. 21068398
Iscla, I., R. Wray, and P. Blount. (2011). The oligomeric state of the truncated mechanosensitive channel of large conductance shows no variance in vivo. Protein. Sci. 20: 1638-1642. 21739498
Kloda, A. and Martinac, B. (2002). Common evolutionary origins of mechanosensitive ion channels in archaea, bacteria and cell-walled eukarya. Archaea 1: 35-44. 15803657
Kung, C., B. Martinac, and S. Sukharev. (2010). Mechanosensitive channels in microbes. Annu. Rev. Microbiol. 64: 313-329. 20825352
Li J., Guo J., Ou X., Zhang M., Li Y. and Liu Z. (2015). Mechanical coupling of the multiple structural elements of the large-conductance mechanosensitive channel during expansion. Proc Natl Acad Sci U S A. 112(34):10726-31. 26261325
Liu, Z., C.S. Gandhi, and D.C. Rees. (2009). Structure of a tetrameric MscL in an expanded intermediate state. Nature 461: 120-124. 19701184
Nakamaru, Y., Y. Takahashi, T. Unemoto, and T. Nakamura. (1999). Mechanosensitive channel functions to alleviate the cell lysis of marine bacterium, Vibrio alginolyticus, by osmotic downshock. FEBS Lett. 444: 170-172. 10050752
Perozo, E., A. Kloda, D.M. Cortes, and B. Martinac. (2001). Site-directed spin-labeling analysis of reconstituted Mscl in the closed state. J Gen Physiol 118: 193-206. 11479346
Pivetti, C.D., M.-R. Yen, S. Miller, W. Busch, Y.-H. Tseng, I.R. Booth, and M.H. Saier, Jr. (2003). Two families of mechanosensitive channel proteins. Microbiol. Mol. Biol. Rev. 67: 66-85. 12626684
Price, C.E., A. Kocer, S. Kol, J.P. van der Berg, and A.J. Driessen. (2011). In vitro synthesis and oligomerization of the mechanosensitive channel of large conductance, MscL, into a functional ion channel. FEBS Lett. 585: 249-254. 21134371
Saier, M.H., Jr., B.H. Eng, S. Fard, J. Garg, D.A. Haggerty, W.J. Hutchinson, D.L. Jack, E.C. Lai, H.J. Liu, D.P. Nusinew, A.M. Omar, S.S. Pao, I.T. Paulsen, J.A. Quan, M. Sliwinski, T.-T. Tseng, S. Wachi, and G.B. Young. (1999). Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochim. Biophys. Acta 1422: 1-56. 10082980
Sukharev, S. (1999). Mechanosensitive channels in bacteria as membrane tension reporters. FASEB J. 13: 55-61. 10352145
Sukharev, S., M. Betanzos, C.S. Chiang, and H.R. Guy. (2001). The gating mechanism of the large mechanosensitive channel MscL. Nature 409: 720-724. 11217861
Sukharev, S., M.J. Schroeder, and D.R. McCaslin. (1999). Stoichiometry of the large conductance bacterial mechanosensitive channel of E. coli. A biochemical study. J. Memb. Biol. 171: 183-193. 10501827
Sukharev, S.I., P. Blount, B. Martinac, F.R. Blattner, and C. Kung. (1994). A large-conductance mechanosensitive channel in E. coliencoded by mscL alone. Nature 368: 265-268. 7511799
Sukharev, S.I., P. Blount, B. Martinac, H.R. Guy, and C. Kung. (1996). MscL: a mechanosensitive channel in Escherichia coli. In: Organellar Ion Channels and Transporters, The Rockefeller University Press, pp. 133-141. 8809939
Wahome, P.G., A.E. Cowan, B. Setlow, and P. Setlow. (2009). Levels and localization of mechanosensitive channel proteins in Bacillus subtilis. Arch. Microbiol. 191: 403-414. 19252899
Wang, C.X., H.X. Ge, X.P. Hou, and Y.Q. Li. (2007). Roles of larger conductance mechanosensitive channels (MscL) in sporulation and Act secretion in Streptomyces coelicolor. J Basic Microbiol 47: 518-524. 18072238
Wang, Y., Y. Liu, H.A. Deberg, T. Nomura, M.T. Hoffman, P.R. Rohde, K. Schulten, B. Martinac, and P.R. Selvin. (2014). Single molecule FRET reveals pore size and opening mechanism of a mechano-sensitive ion channel. Elife 3: e01834. 24550255
Yoshimura, K., J. Usukura, and M. Sokabe. (2008). Gating-associated conformational changes in the mechanosensitive channel MscL. Proc. Natl. Acad. Sci. USA 105: 4033-4038. 18310324


Bass, R.B., P. Strop, M. Barclay, and D.C. Rees. (2002). Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298: 1582-1587. 12446901
Becker M. and Kramer R. (2015). MscCG from Corynebacterium glutamicum: functional significance of the C-terminal domain. Eur Biophys J. 44(7):577-88. 26033538
Becker, M., K. Börngen, T. Nomura, A.R. Battle, K. Marin, B. Martinac, and R. Krämer. (2013). Glutamate efflux mediated by Corynebacterium glutamicum MscCG, Escherichia coli MscS, and their derivatives. Biochim. Biophys. Acta. 1828: 1230-1240. 23313454
Biggin, P.C. and M.S. Sansom. (2003). Mechanosensitive channels: stress relief. Curr. Biol. 13: R183-185. 12620208
Booth, I.R. and P. Louis (1999). Managing hypoosmotic stress: aquaporins and mechanosensitive channels in Escherichia coli. Curr. Opin. Microbiol. 2: 166-169. 10322175
Booth, I.R., S. Miller, A. Müller, and L. Lehtovirta-Morley. (2015). The evolution of bacterial mechanosensitive channels. Cell Calcium 57: 140-150. 25591932
Bottcher B., Prazak V., Rasmussen A., Black SS. and Rasmussen T. (2015). The Structure of YnaI Implies Structural and Mechanistic Conservation in the MscS Family of Mechanosensitive Channels. Structure. 23(9):1705-14. 26256535
Caldwell, D.B., H.R. Malcolm, D.E. Elmore, and J.A. Maurer. (2010). Identification and experimental verification of a novel family of bacterial cyclic nucleotide-gated (bCNG) ion channels. Biochim. Biophys. Acta. 1798: 1750-1756. 20529663
Cox CD., Wann KT. and Martinac B. (201). Selectivity mechanisms in MscS-like channels: From structure to function. Channels (Austin). 8(1):5-12. 24262975
Cox, C.D., Y. Nakayama, T. Nomura, and B. Martinac. (2015). The evolutionary ''tinkering'' of MscS-like channels: generation of structural and functional diversity. Pflugers Arch 467: 3-13. 24819593
Edwards, M.D., S. Black, T. Rasmussen, A. Rasmussen, N.R. Stokes, T.L. Stephen, S. Miller, and I.R. Booth. (2012). Characterization of three novel mechanosensitive channel activities in Escherichia coli. Channels (Austin) 6: 272-281. 22874652
Hamilton, E.S., G.S. Jensen, G. Maksaev, A. Katims, A.M. Sherp, and E.S. Haswell. (2015). Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination. Science 350: 438-441. 26494758
Haswell, E.S. and E.M. Meyerowitz. (2006). MscS-like proteins control plastid size and shape in Arabidopsis thaliana. Curr. Biol. 16: 1-11. 16401419
Haswell, E.S., R. Peyronnet, H. Barbier-Brygoo, E.M. Meyerowitz, and J.M. Frachisse. (2008). Two MscS homologs provide mechanosensitive channel activities in the Arabidopsis root. Curr. Biol. 18: 730-734. 18485707
Jensen, G.S. and E.S. Haswell. (2012). Functional analysis of conserved motifs in the mechanosensitive channel homolog MscS-Like2 from Arabidopsis thaliana. PLoS One 7: e40336. 22768278
Kloda, A. and B. Martinac. (2001a). Molecular identification of a mechanosensitive channel in archaea. Biophys. J. 80: 229–240. 11159397
Kloda, A. and B. Martinac. (2001b). Structural and functional differences between two homologous mechanosensitive channels of Methanococcus jannaschii. EMBO J. 20: 1888–1896. 11296222
Koprowski P., Sliwinska MA. and Kubalski A. (2015). Negative and positive temperature dependence of potassium leak in MscS mutants: Implications for understanding thermosensitive channels. Biochim Biophys Acta. 1848(8):1678-86. 25958301
Koprowski, P. and A. Kubalski. (2003). C termini of the Escherichia coli mechanosensitive ion channel (MscS) move apart upon the channel opening. J. Biol. Chem. 278: 11237-11245. 12551944
Koprowski, P., W. Grajkowski, E.Y. Isacoff, and A. Kubalski. (2011). Genetic screen for potassium leaky small mechanosensitive channels (MscS) in Escherichia coli: recognition of cytoplasmic β domain as a new gating element. J. Biol. Chem. 286: 877-888. 20978126
Kung, C., B. Martinac, and S. Sukharev. (2010). Mechanosensitive channels in microbes. Annu. Rev. Microbiol. 64: 313-329. 20825352
Lai JY., Poon YS., Kaiser JT. and Rees DC. (2013). Open and shut: crystal structures of the dodecylmaltoside solubilized mechanosensitive channel of small conductance from Escherichia coli and Helicobacter pylori at 4.4 A and 4.1 A resolutions. Protein Sci. 22(4):502-9. 23339071
Le Dain, A.C., N. Saint, A. Kloda, A. Ghazi and B. Martinac (1998). Mechanosensitive ion channels of the archeon Haloferax volcanii. J. Biol. Chem. 273: 12116-12119. 9575156
Levina, N., S. Tötemeyer, N.R. Stokes, P. Louis, M.A. Jones and I.R. Booth (1999). Protection of E. coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J. 18: 1730-1737. 10202137
Malcolm, H.R., P. Blount, and J.A. Maurer. (2015). The mechanosensitive channel of small conductance (MscS) functions as a Jack-in-the box. Biochim. Biophys. Acta. 1848: 159-166. 25450806
Malcolm, H.R., Y.Y. Heo, D.E. Elmore, and J.A. Maurer. (2011). Defining the role of the tension sensor in the mechanosensitive channel of small conductance. Biophys. J. 101: 345-352. 21767486
Martinac, B., J. Adler and C. Kung (1990). Mechanosensitive channels of E. coli activated by amphipaths. Nature 348: 261-263. 1700306
Martinac, B., M. Buechner, A.H. Delcour, J. Adler and C. Kung (1987). Pressure-sensitive ion channel in Escherichia coli. Proc. Natl. Acad. Sci. USA 84: 2297-2301. 2436228
Miller, S., M.D. Edwards, C. Ozdemir, and I.R. Booth. (2003b). The closed structure of the MscS mechanosensitive channel. Cross-linking of single cysteine mutants. J. Biol. Chem. 278: 32246-32250. 12767977
Miller, S., W. Bartlett, S. Chandrasekaran, S. Simpson, M. Edwards, and I.R. Booth. (2003a). Domain organization of the MscS mechanosensitive channel of Escherichia coli. EMBO J. 22: 36-46. 12505982
Moraes, T.F. and R.A. Reithmeier. (2012). Membrane transport metabolons. Biochim. Biophys. Acta. 1818: 2687-2706. 22705263
Nakayama, Y., K. Fujiu, M. Sokabe, and K. Yoshimura. (2007). Molecular and electrophysiological characterization of a mechanosensitive channel expressed in the chloroplasts of Chlamydomonas. Proc. Natl. Acad. Sci. USA 104: 5883-5888. 17389370
Nomura, T., M. Sokabe, and K. Yoshimura. (2016). Voltage-Dependent Inactivation of MscS Occurs Independently of the Positively Charged Residues in the Transmembrane Domain. Biomed Res Int 2016: 2401657. 28101504
Ochoa de Alda, J. and J. Houmard (2000). Genomic survey of cAMP and cGMP signalling components in the cyanobacterium Synechocystis PCC 6803. Microbiology 146: 3183-3194. 11101676
Perozo, E. and D.C. Rees. (2003). Structure and mechanism in prokaryotic mechanosensitive channels. Curr. Opin. Struct. Biol. 13: 432-442. 12948773
Pivetti, C.D., M.-R. Yen, S. Miller, W. Busch, Y.-H. Tseng, I.R. Booth, and M.H. Saier, Jr. (2003). Two families of mechanosensitive channel proteins. Microbiol. Mol. Biol. Rev. 67: 66-85. 12626684
Pliotas, C., R. Ward, E. Branigan, A. Rasmussen, G. Hagelueken, H. Huang, S.S. Black, I.R. Booth, O. Schiemann, and J.H. Naismith. (2012). Conformational state of the MscS mechanosensitive channel in solution revealed by pulsed electron-electron double resonance (PELDOR) spectroscopy. Proc. Natl. Acad. Sci. USA 109: E2675-2682. 23012406
Rasmussen T., Rasmussen A., Singh S., Galbiati H., Edwards MD., Miller S. and Booth IR. (2015). Properties of the Mechanosensitive Channel MscS Pore Revealed by Tryptophan Scanning Mutagenesis. Biochemistry. 54(29):4519-30. 26126964
Rasmussen, T. (2016). How do mechanosensitive channels sense membrane tension? Biochem Soc Trans 44: 1019-1025. 27528747
Rowe, I., A. Anishkin, K. Kamaraju, K. Yoshimura, and S. Sukharev. (2014). The cytoplasmic cage domain of the mechanosensitive channel MscS is a sensor of macromolecular crowding. J Gen Physiol 143: 543-557. 24778428
Schumann, U., M.D. Edwards, T. Rasmussen, W. Bartlett, P. van West, and I.R. Booth. (2010). YbdG in Escherichia coli is a threshold-setting mechanosensitive channel with MscM activity. Proc. Natl. Acad. Sci. USA 107: 12664-12669. 20616037
Sukharev, S.I., P. Blount, B. Martinac, H.R. Guy and C. King (1996). MscL: a mechanosensitive channel in Escherichia coli. In: Organellar Ion Channels and Transporters (D. E. Clapham and B. E. Ehrlich, eds.). Rockefeller University Press, New York, pp. 133-141. 8809939
Touzé, T., G. Gouesbet, C. Boiangiu, M. Jebbar, S. Bonnassie, and C. Blanco. (2001). Glycine betaine loses its osmoprotective activity in a bspAstrain of Erwinia chrysanthemi. Mol. Microbiol. 42: 87-99. 11679069
Wahome, P.G., A.E. Cowan, B. Setlow, and P. Setlow. (2009). Levels and localization of mechanosensitive channel proteins in Bacillus subtilis. Arch. Microbiol. 191: 403-414. 19252899
Wang, W., S. Black, M.D. Edwards, S. Miller, E.L. Morrision, W. Bartlett, C. Dong, J.H. Naismith, and I.R. Booth. (2008).  The structure of an open form of an E. coli mechanosensitive channel at 3.45 A Resoluton.  Science 321: 1179-1214. 
Wilson, M.E., G. Maksaev, and E.S. Haswell. (2013). MscS-like mechanosensitive channels in plants and microbes. Biochemistry 52: 5708-5722. 23947546
Wilson, M.E., M.R. Basu, G.B. Bhaskara, P.E. Verslues, and E.S. Haswell. (2014). Plastid osmotic stress activates cellular stress responses in Arabidopsis. Plant Physiol. 165: 119-128. 24676856


Alstrom JS., Hansen DB., Nielsen MS. and MacAulay N. (2015). Isoform-specific phosphorylation-dependent regulation of connexin hemichannels. J Neurophysiol. 114(5):3014-22. 26400258
Attwood, M.M., A. Krishnan, V. Pivotti, S. Yazdi, M.S. Almén, and H.B. Schiöth. (2016). Topology based identification and comprehensive classification of four-transmembrane helix containing proteins (4TMs) in the human genome. BMC Genomics 17: 268. 27030248
Ayad, W.A., D. Locke, I.V. Koreen, and A.L. Harris. (2006). Heteromeric, but not homomeric, connexin channels are selectively permeable to inositol phosphates. J. Biol. Chem. 281: 16727-16739. 16601118
Banerjee, D., S. Das, S.A. Molina, D. Madgwick, M.R. Katz, S. Jena, L.K. Bossmann, D. Pal, and D.J. Takemoto. (2011). Investigation of the reciprocal relationship between the expression of two gap junction connexin proteins, connexin46 and connexin43. J. Biol. Chem. 286: 24519-24533. 21606502
Bargiotas, P., H. Monyer, and M. Schwaninger. (2009). Hemichannels in cerebral ischemia. Curr Mol Med 9: 186-194. 19275626
Bevans, C.G., M. Kordel, S.K. Rhee, and A.L. Harris. (1998). Isoform composition of connexin channels determines selectivity among second messengers and uncharged molecules. J. Biol. Chem. 273: 2808-2816. 9446589
Beyer, E.C. and V.M. Berthoud. (2017). Gap junction structure: unraveled, but not fully revealed. F1000Res 6: 568. 28529713
Beyer, E.C., D.L. Paul, and D.A. Goodenough. (1987). Connexin43: a protein from rat heart homologous to a gap junction protein from liver. J. Cell Biol. 105: 2621-2629. 2826492
Bosco, D., J.A. Haefliger, and P. Meda. (2011). Connexins: key mediators of endocrine function. Physiol. Rev. 91: 1393-1445. 22013215
Brennan MJ., Karcz J., Vaughn NR., Woolwine-Cunningham Y., DePriest AD., Escalona Y., Perez-Acle T. and Skerrett IM. (2015). Tryptophan Scanning Reveals Dense Packing of Connexin Transmembrane Domains in Gap Junction Channels Composed of Connexin32. J Biol Chem. 290(28):17074-84. 25969535
Cascella, R., C. Strafella, S. Gambardella, G. Longo, P. Borgiani, F. Sangiuolo, G. Novelli, and E. Giardina. (2016). Two molecular assays for the rapid and inexpensive detection of GJB2 and GJB6 mutations. Electrophoresis 37: 860-864. 26681637
Da, Y., W. Wang, Z. Liu, H. Chen, L. Di, L. Previch, and Z. Chen. (2016). Aberrant trafficking of a Leu89Pro connexin32 mutant associated with X-linked dominant Charcot-Marie-Tooth disease. Neurol Res 38: 897-902. 27367520
Decrock, E., M. De Bock, N. Wang, G. Bultynck, C. Giaume, C.C. Naus, C.R. Green, and L. Leybaert. (2015). Connexin and pannexin signaling pathways, an architectural blueprint for CNS physiology and pathology? Cell Mol Life Sci 72: 2823-2851. 26118660
Derosa, A.M., C.H. Xia, X. Gong, and T.W. White. (2007). The cataract-inducing S50P mutation in Cx50 dominantly alters the channel gating of wild-type lens connexins. J. Cell. Sci. 120:4107-4116. 18003700
Ek Vitorín, J.F., T.K. Pontifex, and J.M. Burt. (2016). Determinants of Cx43 Channel Gating and Permeation: The Amino Terminus. Biophys. J. 110: 127-140. 26745416
Gabriel, L.A., R. Sachdeva, A. Marcotty, E.J. Rockwood, and E.I. Traboulsi. (2011). Oculodentodigital dysplasia: new ocular findings and a novel connexin 43 mutation. Arch Ophthalmol 129: 781-784. 21670345
Gadok, A.K., D.J. Busch, S. Ferrati, B. Li, H.D. Smyth, and J.C. Stachowiak. (2016). Connectosomes for Direct Molecular Delivery to the Cellular Cytoplasm. J. Am. Chem. Soc. 138: 12833-12840. 27607109
Goldberg, G.S., A.P. Moreno, and P.D. Lampe. (2002). Gap junctions between cells expressing connexon 43 or 32 show inverse permselectivity to adenosine and ATP. J. Biol. Chem. 277: 36725-36730. 12119284
Grek, C.L., J.M. Rhett, J.S. Bruce, G.S. Ghatnekar, and E.S. Yeh. (2016). Connexin 43, breast cancer tumor suppressor: Missed connections? Cancer Lett 374: 117-126. 26884256
Hervé, J.C., M. Derangeon, D. Sarrouilhe, B.N. Giepmans, and N. Bourmeyster. (2012). Gap junctional channels are parts of multiprotein complexes. Biochim. Biophys. Acta. 1818: 1844-1865. 22197781
Hervé, J.C., P. Phelan, R. Bruzzone, and T.W. White. (2005). Connexins, innexins and pannexins: bridging the communication gap. Biochim. Biophys. Acta. 1719: 3-5. 16359939
Hong, H.M., J.J. Yang, C.C. Su, J.Y. Chang, T.C. Li, and S.Y. Li. (2010). A novel mutation in the connexin 29 gene may contribute to nonsyndromic hearing loss. Hum Genet 127: 191-199. 19876648
Hua, V.B., A.B. Chang, J.H. Tchieu, P.A. Nielsen, and M.H. Saier, Jr. (2003). Sequence and phylogenetic analysis of 4 TMS junctional proteins: Connexins, innexins, claudins and occludins. J. Mem. Biol. 194: 59-76. 14502443
Iossa, S., E. Marciano, and A. Franzé. (2011). GJB2 Gene Mutations in Syndromic Skin Diseases with Sensorineural Hearing Loss. Curr Genomics 12: 475-785. 22547955
Iovine, M.K., A.M. Gumpert, M.M. Falk, and T.C. Mendelson. (2008). Cx23, a connexin with only four extracellular-loop cysteines, forms functional gap junction channels and hemichannels. FEBS Lett. 582: 165-170. 18068130
Jara O., Acuna R., Garcia IE., Maripillan J., Figueroa V., Saez JC., Araya-Secchi R., Lagos CF., Perez-Acle T., Berthoud VM., Beyer EC. and Martinez AD. (2012). Critical role of the first transmembrane domain of Cx26 in regulating oligomerization and function. Mol Biol Cell. 23(17):3299-311. 22787277
Kang, J., N. Kang, D. Lovatt, A. Torres, Z. Zhao, J. Lin, and M. Nedergaard. (2008). Connexin 43 hemichannels are permeable to ATP. J. Neurosci. 28: 4702-4711. 18448647
Kar, R., N. Batra, M.A. Riquelme, and J.X. Jiang. (2012). Biological role of connexin intercellular channels and hemichannels. Arch Biochem Biophys 524: 2-15. 22430362
Katoch, P., S. Mitra, A. Ray, L. Kelsey, B.J. Roberts, J.K. Wahl, 3rd, K.R. Johnson, and P.P. Mehta. (2015). The carboxyl tail of connexin32 regulates gap junction assembly in human prostate and pancreatic cancer cells. J. Biol. Chem. 290: 4647-4662. 25548281
Kim, D.Y., Y. Kam, S.K. Koo, and C.O. Joe. (1998). Gating connexin 43 channels reconstituted in lipid vesicles by mitogen-activated protein kinase phosphorylation. J. Biol. Chem. 274: 5581-5587. 10026174
Kim, I.S., P. Ganesan, and D.K. Choi. (2016). Cx43 Mediates Resistance against MPP⁺-Induced Apoptosis in SH-SY5Y Neuroblastoma Cells via Modulating the Mitochondrial Apoptosis Pathway. Int J Mol Sci 17:. 27809287
Kopanic, J.L., B. Schlingmann, M. Koval, A.F. Lau, P.L. Sorgen, and V.F. Su. (2015). Degradation of gap junction connexins is regulated by the interaction with Cx43-interacting protein of 75 kDa (CIP75). Biochem. J. 466: 571-585. 25583071
Kovacs, J.A., K.A. Baker, G.A. Altenberg, R. Abagyan, and M. Yeager. (2007). Molecular modeling and mutagenesis of gap junction channels. Prog Biophys Mol Biol 94: 15-28. 17524457
Kronengold, J., M. Srinivas, and V.K. Verselis. (2012). The N-terminal half of the connexin protein contains the core elements of the pore and voltage gates. J. Membr. Biol. 245: 453-463. 22825713
Kyle JW., Berthoud VM., Kurutz J., Minogue PJ., Greenspan M., Hanck DA. and Beyer EC. (2009). The N terminus of connexin37 contains an alpha-helix that is required for channel function. J Biol Chem. 284(30):20418-27. 19478091
Leithe, E. and E. Rivedal. (2007). Ubiquitination of gap junction proteins. J. Membr. Biol. 217: 43-51. 17657522
Liang, W.G., C.C. Su, J.H. Nian, A.S. Chiang, S.Y. Li, and J.J. Yang. (2011). Human connexin30.2/31.3 (GJC3) does not form functional gap junction channels but causes enhanced ATP release in HeLa cells. Cell Biochem Biophys 61: 189-197. 21480002
Liu, F., F.T. Arce, S. Ramachandran, and R. Lal. (2006). Nanmechanics of hemichannel conformations. Connexin flexibility underlying channel opening and closing. J. Biol. Chem. 281: 23207-23217. 16769719
Lohman, A.W., A.C. Straub, and S.R. Johnstone. (2016). Identification of Connexin43 Phosphorylation and S-Nitrosylation in Cultured Primary Vascular Cells. Methods Mol Biol 1437: 97-111. 27207289
Maeda, S., S. Nakagawa, M. Suga, E. Yamashita, A. Oshima, Y. Fujiyoshi, and T. Tsukihara. (2009). Structure of the connexin 26 gap junction channel at 3.5 Å resolution. Nature 458: 597-602. 19340074
Meens MJ., Pfenniger A., Kwak BR. and Delmar M. (2013). Regulation of cardiovascular connexins by mechanical forces and junctions. Cardiovasc Res. 99(2):304-14. 23612582
Misu, A., H. Yamanaka, T. Aramaki, S. Kondo, I.M. Skerrett, M.K. Iovine, and M. Watanabe. (2016). Two Different Functions of Connexin43 Confer Two Different Bone Phenotypes in Zebrafish. J. Biol. Chem. 291: 12601-12611. 27129238
Molica, F., M.J. Meens, S. Morel, and B.R. Kwak. (2014). Mutations in cardiovascular connexin genes. Biol Cell 106: 269-293. 24966059
Nakagawa, S., S. Maeda, and T. Tsukihara. (2010). Structural and functional studies of gap junction channels. Curr. Opin. Struct. Biol. 20: 423-430. 20542681
Orthmann-Murphy, J.L., M. Freidin, E. Fischer, S.S. Scherer, and C.K. Abrams. (2007). Two distinct heterotypic channels mediate gap junction coupling between astrocyte and oligodendrocyte connexins. J. Neurosci. 27: 13949-13957. 18094232
Pfenniger, A., A. Wohlwend, and B.R. Kwak. (2011). Mutations in connexin genes and disease. Eur J Clin Invest 41: 103-116. 20840374
Pinto, B.I., I.E. García, A. Pupo, M.A. Retamal, A.D. Martínez, R. Latorre, and C. González. (2016). Charged residues at the first transmembrane region contribute to the voltage dependence of connexins slow gate. J. Biol. Chem. [Epub: Ahead of Print] 27143357
Press, E.R., Q. Shao, J.J. Kelly, K. Chin, A. Alaga, and D.W. Laird. (2017). Induction of cell death and gain-of-function properties of connexin26 mutants predict severity of skin disorders and hearing loss. J. Biol. Chem. [Epub: Ahead of Print] 28428247
Puebla, C., B.A. Cisterna, D.P. Salas, F. Delgado-López, P.D. Lampe, and J.C. Sáez. (2016). Linoleic acid permeabilizes gastric epithelial cells by increasing connexin 43 levels in the cell membrane via a GPR40- and Akt-dependent mechanism. Biochim. Biophys. Acta. 1861: 439-448. 26869446
Puebla, C., M.A. Retamal, R. Acuña, and J.C. Sáez. (2017). Regulation of Connexin-Based Channels by Fatty Acids. Front Physiol 8: 11. 28174541
Puk, O., J. Löster, C. Dalke, D. Soewarto, H. Fuchs, B. Budde, P. Nürnberg, E. Wolf, M.H. de Angelis, and J. Graw. (2008). Mutation in a novel connexin-like gene (Gjf1) in the mouse affects early lens development and causes a variable small-eye phenotype. Invest Ophthalmol Vis Sci 49: 1525-1532. 18385072
Rash, J.E., K.G. Vanderpool, T. Yasumura, J. Hickman, J.T. Beatty, and J.I. Nagy. (2016). KV1 channels identified in rodent myelinated axons, linked to Cx29 in innermost myelin: support for electrically active myelin in mammalian saltatory conduction. J Neurophysiol 115: 1836-1859. 26763782
Sanchez, H.A., N. Slavi, M. Srinivas, and V.K. Verselis. (2016). Syndromic deafness mutations at Asn 14 differentially alter the open stability of Cx26 hemichannels. J Gen Physiol 148: 25-42. 27353444
Šeda, O., D. Křenová, O. Oliyarnyk, L. Šedová, M. Krupková, F. Liška, B. Chylíková, L. Kazdová, and V. Křen. (2016). Heterozygous connexin 50 mutation affects metabolic syndrome attributes in spontaneously hypertensive rat. Lipids Health Dis 15: 199. 27871290
Stridh, M.H., M. Tranberg, S.G. Weber, F. Blomstrand, and M. Sandberg. (2008). Stimulated efflux of amino acids and glutathione from cultured hippocampal slices by omission of extracellular calcium: likely involvement of connexin hemichannels. J. Biol. Chem. 283(16): 10347-10356. 18272524
Su, C.C., S.Y. Li, Y.C. Yen, J.H. Nian, W.G. Liang, and J.J. Yang. (2013). Mechanism of two novel human GJC3 missense mutations in causing non-syndromic hearing loss. Cell Biochem Biophys 66: 277-286. 23179405
Sugiura, K., M. Arima, K. Matsunaga, and M. Akiyama. (2015). The novel GJB3 mutation p.Thr202Asn in the M4 transmembrane domain underlies erythrokeratodermia variabilis. Br J Dermatol 173: 309-311. 25556823
Tarzemany, R., G. Jiang, H. Larjava, and L. Häkkinen. (2015). Expression and function of connexin 43 in human gingival wound healing and fibroblasts. PLoS One 10: e0115524. 25584940
Teubner B., B. Odermatt, M. Guldenagel, G. Sohl, J. Degen, F. Bukauskas, J. Kronengold, V.K. Verselis, Y.T. Jung, C.A. Kozak, K. Schilling, K. Willecke. (2001). Functional expression of the new gap junction gene connexin47 transcribed in mouse brain and spinal cord neurons. J. Neurosci. 21: 1117-1126. 11160382
Unger, V.M., N.M. Kumar, N.B. Gilula, and M. Yeager. (1999). Three-dimensional structure of a recombinant gap junction membrane channel. Science 283: 1176-1180. 10024245
Valiunas V., R. Mui, E. McLachlan, G. Valdimarsson, P.R. Brink, T.W. White. (2004). Biophysical characterization of zebrafish connexin35 hemichannels. Am J Physiol. Cell Physiol. 287: C1596-1604 15282192
Wang, K.J. and S.Q. Zhu. (2012). A novel p.F206I mutation in Cx46 associated with autosomal dominant congenital cataract. Mol Vis 18: 968-973. 22550389
White, T.W. and D.L. Paul. (1999). Genetic diseases and gene knockouts reveal diverse connexin functions. Annu. Rev. Physiol. 61: 283-310. 10099690
White, T.W., H. Wang, R. Mui, J. Litteral, and P.R. Brink. (2004). Cloning and functional expression of invertebrate connexins from Halocynthia pyriformis. FEBS Lett. 577: 42-48. 15527759
Yeager, M. and N.B. Gilula. (1992). Membrane topology and quaternary structure of cardiac gap junction ion channels. J. Mol. Biol. 223: 929-948. 1371548
Yeager, M., V.M. Unger, and M.M. Falk. (1998). Synthesis, assembly and structure of gap junction intercellular channels. Curr. Opin. Struct. Biol. 8: 517-524. 9729745
Zhou JZ. and Jiang JX. (2014). Gap junction and hemichannel-independent actions of connexins on cell and tissue functions--an update. FEBS Lett. 588(8):1186-92. 24434539


Abascal F. and Zardoya R. (2012). LRRC8 proteins share a common ancestor with pannexins, and may form hexameric channels involved in cell-cell communication. Bioessays. 34(7):551-60. 22532330
Ambrosi, C., O. Gassmann, J.N. Pranskevich, D. Boassa, A. Smock, J. Wang, G. Dahl, C. Steinem, and G.E. Sosinsky. (2010). Pannexin1 and Pannexin2 channels show quaternary similarities to connexons and different oligomerization numbers from each other. J. Biol. Chem. 285: 24420-24431. 20516070
Bao, L., S. Samuels, S. Locovei, E.R. Macagno, K.J. Muller, and G. Dahl. (2007). Innexins form two types of channels. FEBS Lett. 581: 5703-5708. 18035059
Baranova, A., D. Ivanov, N. Petrash, A. Pestova, M. Skoblov, I. Kelmanson, D. Shagin, S. Nazarenko, E. Geraymovych, O. Litvin, A. Tiunova, T.L. Born, N. Usman, D. Staroverov, S. Lukyanov, and Y. Panchin. (2004). The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins. Genomics 83: 706-716. 15028292
Bargiotas, P., A. Krenz, S.G. Hormuzdi, D.A. Ridder, A. Herb, W. Barakat, S. Penuela, J. von Engelhardt, H. Monyer, and M. Schwaninger. (2011). Pannexins in ischemia-induced neurodegeneration. Proc. Natl. Acad. Sci. USA 108: 20772-20777. 22147915
Boyce AK., Prager RT., Wicki-Stordeur LE. and Swayne LA. (201). Pore positioning: current concepts in Pannexin channel trafficking. Channels (Austin). 8(2):110-7. 24300303
Bunse, S., M. Schmidt, S. Hoffmann, K. Engelhardt, G. Zoidl, and R. Dermietzel. (2011). Single cysteines in the extracellular and transmembrane regions modulate pannexin 1 channel function. J. Membr. Biol. 244: 21-33. 21938521
Chen, Y.B., W. Xiao, M. Li, Y. Zhang, Y. Yang, J.S. Hu, and K.J. Luo. (2016). N-TERMINALLY ELONGATED SpliInx2 AND SpliInx3 REDUCE BACULOVIRUS-TRIGGERED APOPTOSIS VIA HEMICHANNEL CLOSURE. Arch Insect Biochem Physiol 92: 24-37. 27030553
Chuang, C.F., M.K. VanHoven, R.D. Fetter, V.K. Verselis and C.I. Bargmann (2007). An Innexin-Dependent Cell Network Establishes Left-Right Neuronal Asymmetry in C. elegans. Cell 129: 787-799 17512411
Curtin, K.D., Z. Zhang and R.J. Wyman (1999). Drosophila has several genes for gap junction proteins. Gene 232: 191-201. 10352230
Firme, C.P., 3rd, R.G. Natan, N. Yazdani, E.R. Macagno, and M.W. Baker. (2012). Ectopic expression of select innexins in individual central neurons couples them to pre-existing neuronal or glial networks that express the same innexin. J. Neurosci. 32: 14265-14270. 23055495
Ganfornina, M.D., D. Sanchez, M. Herrera and M.J. Bastiani (1999). Developmental expression and molecular characterization of two gap junction channel proteins during embryogenesis in the grasshopper Schistocerca americana. Dev. Genet. 24: 137-150. 10079517
Hua, V.B., A.B. Chang, J.H. Tchieu, P.A. Nielsen, and M.H. Saier, Jr. (2003). Sequence and phylogenetic analysis of 4 TMS junctional proteins: Connexins, innexins, claudins and occludins. J. Mem. Biol. 194: 59-76. 14502443
Huang, Y.A. and S.D. Roper. (2010). Intracellular Ca2+ and TRPM5-mediated membrane depolarization produce ATP secretion from taste receptor cells. J. Physiol. 588: 2343-2350. 20498227
Kandarian, B., J. Sethi, A. Wu, M. Baker, N. Yazdani, E. Kym, A. Sanchez, L. Edsall, T. Gaasterland, and E. Macagno. (2012). The medicinal leech genome encodes 21 innexin genes: different combinations are expressed by identified central neurons. Dev Genes Evol 222: 29-44. 22358128
Karatas, H., S.E. Erdener, Y. Gursoy-Ozdemir, S. Lule, E. Eren-Koçak, Z.D. Sen, and T. Dalkara. (2013). Spreading depression triggers headache by activating neuronal Panx1 channels. Science 339: 1092-1095. 23449592
Kienitz, M.C., K. Bender, R. Dermietzel, L. Pott, and G. Zoidl. (2011). Pannexin 1 constitutes the large conductance cation channel of cardiac myocytes. J. Biol. Chem. 286: 290-298. 21041301
Landesman, Y., T.W. White, T.A. Starich, J.E. Shaw, D.A. Goodenough and D.L. Paul (1999). Innexin-3 forms connexin-like intercellular channels. J. Cell Sci. 112: 2391-2396. 10381394
Llobet, E., J.M. Tomás, and J.A. Bengoechea. (2008). Capsule polysaccharide is a bacterial decoy for antimicrobial peptides. Microbiology 154: 3877-3886. 19047754
Locovei, S., E. Scemes, F. Qiu, D.C. Spray, and G. Dahl. (2007). Pannexin1 is part of the pore forming unit of the P2X(7) receptor death complex. FEBS Lett. 581: 483-488. 17240370
Maes, M., M.R. McGill, T.C. da Silva, C. Abels, M. Lebofsky, J.L. Weemhoff, T. Tiburcio, I. Veloso Alves Pereira, J. Willebrords, S. Crespo Yanguas, A. Farhood, A. Beschin, J.A. Van Ginderachter, S. Penuela, H. Jaeschke, B. Cogliati, and M. Vinken. (2016). Inhibition of pannexin1 channels alleviates acetaminophen-induced hepatotoxicity. Arch Toxicol. [Epub: Ahead of Print] 27826632
Ohbuchi, T., F. Takenaga, N. Hohchi, T. Wakasugi, Y. Ueta, and H. Suzuki. (2014). Possible contribution of pannexin-1 to ATP release in human upper airway epithelia. Physiol Rep 2: e00227. 24744896
Oshima, A., K. Tani, and Y. Fujiyoshi. (2016). Atomic structure of the innexin-6 gap junction channel determined by cryo-EM. Nat Commun 7: 13681. 27905396
Oshima, A., T. Matsuzawa, K. Murata, K. Tani, and Y. Fujiyoshi. (2016). Hexadecameric structure of an invertebrate gap junction channel. J. Mol. Biol. [Epub: Ahead of Print] 26883891
Oviedo, N.J., and M. Levin. (2007). Gap junctions provide new links in left-right patterning. Cell. 129: 787-799. 17512395
Penuela, S., R. Bhalla, X.Q. Gong, K.N. Cowan, S.J. Celetti, B.J. Cowan, D. Bai, Q. Shao, and D.W. Laird. (2007). Pannexin 1 and pannexin 3 are glycoproteins that exhibit many distinct characteristics from the connexin family of gap junction proteins. J. Cell Sci. 120: 3772-3783. 17925379
Scemes, E. (2012). Nature of plasmalemmal functional "hemichannels". Biochim. Biophys. Acta. 1818: 1880-1883. 21703226
Shestopalov, V.I. and Y. Panchin. (2008). Pannexins and gap junction protein diversity. Cell Mol Life Sci 65: 376-394. 17982731
Silverman, W., S. Locovei, and G. Dahl. (2008). Probenecid, a gout remedy, inhibits pannexin 1 channels. Am. J. Physiol. Cell Physiol. 295: C761-767. 18596212
Spagnol G., Sorgen PL. and Spray DC. (201). Structural order in Pannexin 1 cytoplasmic domains. Channels (Austin). 8(2):157-66. 24751934
Suadicani, S.O., R. Iglesias, J. Wang, G. Dahl, D.C. Spray, and E. Scemes. (2012). ATP signaling is deficient in cultured Pannexin1-null mouse astrocytes. Glia 60: 1106-1116. 22499153
Ullrich, F., S.M. Reincke, F.K. Voss, T. Stauber, and T.J. Jentsch. (2016). Inactivation and Anion Selectivity of Volume-Regulated VRAC Channels Depend on Carboxy-Terminal Residues of the First Extracellular Loop. J. Biol. Chem. [Epub: Ahead of Print] 27325695
Voss, F.K., F. Ullrich, J. Münch, K. Lazarow, D. Lutter, N. Mah, M.A. Andrade-Navarro, J.P. von Kries, T. Stauber, and T.J. Jentsch. (2014). Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC. Science 344: 634-638. 24790029
White, T.W. and D.L. Paul (1999). Genetic diseases and gene knockouts reveal diverse connexin functions. Annu. Rev. Physiol. 61: 283-310. 10099690
Yen, M.R. and M.H. Saier, Jr. (2007). Gap junctional proteins of animals: the innexin/pannexin superfamily. Prog. Biophys. Mol. Biol. (945-14). 17507077


de Baaij, J.H., M.J. Groot Koerkamp, M. Lavrijsen, F. van Zeeland, H. Meijer, F.C. Holstege, R.J. Bindels, and J.G. Hoenderop. (2013). Elucidation of the distal convoluted tubule transcriptome identifies new candidate genes involved in renal Mg2+ handling. Am. J. Physiol. Renal Physiol 305: F1563-1573. 24089412
Fleig, A., M. Schweigel-Röntgen, and M. Kolisek. (2013). Solute Carrier Family SLC41, what do we really know about it? Wiley Interdiscip Rev Membr Transp Signal 2:. 24340240
Hattori, M., N. Iwase, N. Furuya, Y. Tanaka, T. Tsukazaki, R. Ishitani, M.E. Maguire, K. Ito, A. Maturana, and O. Nureki. (2009). Mg2+-dependent gating of bacterial MgtE channel underlies Mg2+ homeostasis. EMBO. J. 28: 3602-3612. 19798051
Hattori, M., Y. Tanaka, S. Fukai, R. Ishitani, and O. Nureki. (2007). Crystal structure of the MgtE Mg2+ transporter. Nature 448: 1072-1075. 17700703
Hurd TW., Otto EA., Mishima E., Gee HY., Inoue H., Inazu M., Yamada H., Halbritter J., Seki G., Konishi M., Zhou W., Yamane T., Murakami S., Caridi G., Ghiggeri G., Abe T. and Hildebrandt F. (2013). Mutation of the Mg2+ transporter SLC41A1 results in a nephronophthisis-like phenotype. J Am Soc Nephrol. 24(6):967-77. 23661805
Ishitani, R., Y. Sugita, N. Dohmae, N. Furuya, M. Hattori, and O. Nureki. (2008). Mg2+-sensing mechanism of Mg2+ transporter MgtE probed by molecular dynamics study. Proc. Natl. Acad. Sci. USA 105: 15393-15398. 18832160
Kehres, D.G. and M.E. Maguire. (2002). Structure, properties and regulation of magnesium transport proteins. Biometals 15: 261-270. 12206392
Kolisek, M., P. Launay, A. Beck, G. Sponder, N. Serafini, M. Brenkus, E.M. Froschauer, H. Martens, A. Fleig, and M. Schweigel. (2008). SLC41A1 is a novel mammalian Mg2+ carrier. J. Biol. Chem. 283: 16235-16247. 18367447
Mandt, T., Y. Song, A.M. Scharenberg, and J. Sahni. (2011). SLC41A1 Mg2+ transport is regulated via Mg2+-dependent endosomal recycling through its N-terminal cytoplasmic domain. Biochem. J. 439: 129-139. 21696366
Maruyama, T., S. Imai, M. Osawa, M. Hattori, R. Ishitani, O. Nureki, and I. Shimada. (2013). Backbone resonance assignments for the cytoplasmic region of the Mg2+ transporter MgtE in the Mg (2+)-unbound state. Biomol NMR Assign 7: 93-96. 22477092
Merino, S., R. Gavín, M. Altarriba, L. Izquierdo, M.E. Maguire, and J.M. Tomás. (2001). The MgtE Mg2+ transport protein is involved in Aeromonas hydrophila adherence. FEMS Microbiol. Lett. 198: 189-195. 11430413
Moomaw, A.S. and M.E. Maguire. (2008). The unique nature of mg2+ channels. Physiology (Bethesda) 23: 275-285. 18927203
Payandeh, J., R. Pfoh, and E.F. Pai. (2013). The structure and regulation of magnesium selective ion channels. Biochim. Biophys. Acta. 1828: 2778-2792. 23954807
Sahni, J. and A.M. Scharenberg. (2013). The SLC41 family of MgtE-like magnesium transporters. Mol Aspects Med 34: 620-628. 23506895
Sahni, J., B. Nelson, and A.M. Scharenberg. (2007). SLC41A2 encodes a plasma-membrane Mg2+ transporter. Biochem. J. 401: 505-513. 16984228
Sahni, J., Y. Song, and A.M. Scharenberg. (2012). The B. subtilis MgtE magnesium transporter can functionally compensate TRPM7-deficiency in vertebrate B-cells. PLoS One 7: e44452. 22970223
Schmitz, C., F. Deason, and A.L. Perraud. (2007). Molecular components of vertebrate Mg2+-homeostasis regulation. Magnes Res 20: 6-18. 17536484
Smith, R.L., L.J. Thompson, and M.E. Maguire. (1995). Cloning and characterization of MgtE, a putative new class of Mg2+ transporter from Bacillus firmus OF4. J. Bacteriol. 177: 1233-1238. 7868596
Sponder, G., K. Rutschmann, and M. Kolisek. (2013). "Inside-in" or "inside-out"? The membrane topology of SLC41A1. Magnes Res 26: 176-181. 24491491
Takeda, H., M. Hattori, T. Nishizawa, K. Yamashita, S.T. Shah, M. Caffrey, A.D. Maturana, R. Ishitani, and O. Nureki. (2014). Structural basis for ion selectivity revealed by high-resolution crystal structure of Mg2+ channel MgtE. Nat Commun 5: 5374. 25367295
Wabakken, T., E. Rian, M. Kveine, and H.C. Aasheim. (2003). The human solute carrier SLC41A1 belongs to a novel eukaryotic subfamily with homology to prokaryotic MgtE Mg2+ transporters. Biochem. Biophys. Res. Commun. 306: 718-724. 12810078
Wijekoon, C.J., T.R. Young, A.G. Wedd, and Z. Xiao. (2015). CopC protein from Pseudomonas fluorescens SBW25 features a conserved novel high-affinity Cu(II) binding site. Inorg Chem 54: 2950-2959. 25710712


Attali B., H. Latter, N. Rachamim, H. Garty. (1995). A corticosteroid-induced gene expressing an 'IsK-like' K+ channel activity in Xenopus oocytes. Proc. Natl. Acad. Sci. U.S.A. 92: 6092-6096 7597086
Bibert, S., S. Roy, D. Schaer, E. Felley-Bosco, and K. Geering. (2006). Structural and functional properties of two human FXYD3 (Mat-8) isoforms. J. Biol. Chem. 281: 39142-39151. 17077088
Chen, L.S.K., C.F. Lo, R. Numann and M. Cuddy (1997). Characterization of the human and rat phospholemman (PLM) cDNAs and localization of the human PLM gene to chromosome 19q13.1. Genomics 41: 435-443. 9169143
Cheung, J.Y., X.Q. Zhang, J. Song, E. Gao, T.O. Chan, J.E. Rabinowitz, W.J. Koch, A.M. Feldman, and J. Wang. (2013). Coordinated Regulation of Cardiac Na+/Ca (2+) Exchanger and Na (+)-K (+)-ATPase by Phospholemman (FXYD1). Adv Exp Med Biol 961: 175-190. 23224879
Delprat, B., J.L. Puel, and K. Geering. (2007). Dynamic expression of FXYD6 in the inner ear suggests a role of the protein in endolymph homeostasis and neuronal activity. Dev Dyn 236: 2534-2540. 17676640
Foskett, J.K. (1998). ClC and CFTR chloride channel gating. Annu. Rev. Physiol. 60: 689-717. 9558482
Kirk, K. and K. Strange (1998). Functional properties and physiological roles of organic solute channels. Annu. Rev. Physiol. 60: 719-739. 9558483
Lifshitz, Y., M. Lindzen, H. Garty, and S.J. Karlish. (2006). Functional interactions of phospholemman (PLM) (FXYD1) with Na+,K+-ATPase. Purification of alpha1/beta1/PLM complexes expressed in Pichia pastoris. J. Biol. Chem. 281: 15790-15799. 16608841
Lubarski, I., K. Pihakaski-Maunsbach, S.J. Karlish, A.B. Maunsbach, and H. Garty. (2005). Interaction with the Na,K-ATPase and tissue distribution of FXYD5 (related to ion channel). J. Biol. Chem. 280: 37717-37724. 16148001
Lubarski, I., S.J. Karlish, and H. Garty. (2007). Structural and functional interactions between FXYD5 and the Na+-K+-ATPase. Am. J. Physiol. Renal Physiol 293: F1818-1826. 17881459
Pirkmajer, S., H. Kirchner, L. Lundell, P.V. Zelenin, J.R. Zierath, K.S. Makarova, Y.I. Wolf, and A.V. Chibalin. (2017). Early vertebrate origin and diversification of small transmembrane regulators of cellular ion transport. J. Physiol. [Epub: Ahead of Print] 28436536
Sha, Q., W. Pearson, L.C. Burcea, D.A. Wigfall, P.H. Schlesinger, C.G. Nichols, and R.W. Mercer. (2008). Human FXYD2 G41R mutation responsible for renal hypomagnesemia behaves as an inward-rectifying cation channel. Am. J. Physiol. Renal Physiol 295: F91-99. 18448590
Shindo, Y., K. Morishita, E. Kotake, H. Miura, P. Carninci, J. Kawai, Y. Hayashizaki, A. Hino, T. Kanda, and Y. Kusakabe. (2011). FXYD6, a Na,K-ATPase regulator, is expressed in type II taste cells. Biosci. Biotechnol. Biochem. 75: 1061-1066. 21670532
Wang, J., X.Q. Zhang, B.A. Ahlers, L.L. Carl, J. Song, L.I. Rothblum, R.C. Stahl, D.J. Carey, and J.Y. Cheung. (2006). Cytoplasmic tail of phospholemman interacts with the intracellular loop of the cardiac Na+/Ca2+ exchanger. J. Biol. Chem. 281: 32004-32014. 16921169
Zhang XQ., Wang J., Song J., Rabinowitz J., Chen X., Houser SR., Peterson BZ., Tucker AL., Feldman AM. and Cheung JY. (2015). Regulation of L-type calcium channel by phospholemman in cardiac myocytes. J Mol Cell Cardiol. 84:104-11. 25918050


Bagnasco, S.M. (2006). The erythrocyte urea transporter UT-B. J. Membr. Biol. 212: 133-138. 17264984
Bosse, J.T., H.D. Gilmour, and J.I. MacInnes. (2001). Novel genes affecting urease activity in Actinobacillus pleuropneumoniae. J. Bacteriol. 183: 1242-1247. 11157936
Couriaud, C., C. Leroy, M. Simon, C. Silberstein, P. Bailly, P. Ripoche, and G. Rousselet. (1999). Molecular and functional characterization of an amphibian urea transporter. Biochim. Biophys. Acta 1421: 347-352. 10518704
Couriaud, C., P. Ripoche, and G. Rousselet. (1998). Cloning and functional characterization of a rat urea transporter-expression in the brain. Biochim. Biophys. Acta 1309: 197-199. 8982255
Esteva-Font, C., M.O. Anderson, and A.S. Verkman. (2015). Urea transporter proteins as targets for small-molecule diuretics. Nat Rev Nephrol 11: 113-123. 25488859
Jiang, T., Y. Li, A.T. Layton, W. Wang, Y. Sun, M. Li, H. Zhou, and B. Yang. (2016). Generation and phenotypic analysis of mice lacking all urea transporters. Kidney Int. [Epub: Ahead of Print] 27914708
Levin EJ., Quick M. and Zhou M. (2009). Crystal structure of a bacterial homologue of the kidney urea transporter. Nature. 462(7274):757-61. 19865084
Lucien, N. F. Sidoux-Walter, N. Roudier, P. Ripoche, M. Huet, M.-M. Trinh-Trang-Tan, J.-P. Cartron, and P. Bailly. (2002). Antigenic and functional properties of the human red blood cell urea transporter hUT-B1. J. Biol. Chem. 277: 34101-34108. 12093813
Lucien, N., F. Sidoux-Walter, B. Olives, J. Moulds, P.-Y. Le Pennec, J.-P. Cartron, and P. Bailly. (1998). Characterization of the gene encoding the human Kidd blood group/urea transporter protein. J. Biol. Chem. 273: 12973-12980. 9582331
Minocha, R., K. Studley, and M.H. Saier, Jr. (2003). The urea transporter (UT) family: bioinformatic analyses leading to structural, functional, and evolutionary predictions. Receptors & Channels 9: 345-352. 14698962
Mistry, A.C., R. Mallick, O. Fröhlich, J.D. Klein, A. Rehm, G. Chen, and J.M. Sands. (2007). The UT-A1 urea transporter interacts with snapin, a SNARE-associated protein. J. Biol. Chem. 282: 30097-30106. 17702749
Olives, B., P. Neau, P. Bailly, M.A. Hediger, G. Rousselet, J.P. Cartron, and P. Ripoche. (1994). Cloning and functional expression of a urea transporter from human bone marrow cells. J. Biol. Chem. 269: 31649-31652. 7989337
Ran, J.H., M. Li, W.I. Tou, T.L. Lei, H. Zhou, C.Y. Chen, and B.X. Yang. (2016). Phenylphthalazines as small-molecule inhibitors of urea transporter UT-B and their binding model. Acta Pharmacol Sin. [Epub: Ahead of Print] 27238209
Raunser, S., J.C. Mathai, P.D. Abeyrathne, A.J. Rice, M.L. Zeidel, and T. Walz. (2009). Oligomeric structure and functional characterization of the urea transporter from Actinobacillus pleuropneumoniae. J. Mol. Biol. 387: 619-627. 19361419
Sands, J.M. (2003). Molecular mechanisms of urea transport. J. Membrane Biol. 191: 149-163. 12571750
Schilling, F., S. Ros, D.E. Hu, P. D''Santos, S. McGuire, R. Mair, A.J. Wright, E. Mannion, R.J. Franklin, A.A. Neves, and K.M. Brindle. (2016). MRI measurements of reporter-mediated increases in transmembrane water exchange enable detection of a gene reporter. Nat Biotechnol. [Epub: Ahead of Print] 27918546
Shayakul, C., A. Steel, and M.A. Hediger. (1996). Molecular cloning and characterization of the vasopressin-regulated urea transporter of rat kidney collecting ducts. J. Clin. Invest. 98: 2580-2587. 8958221
Smith, C.P. and G. Rousselet. (2001). Facilitative urea transporters. J. Membrane Biol. 183: 1-14. 11547347
Yang, B. and A.S. Verkman. (1998). Urea transporter UT3 functions as an efficient water channel. J. Bacteriol. 272: 9369-9372. 9545259
Yang, B. and A.S. Verkman. (2002). Analysis of double knockout mice lacking aquaporin-1 and urea transporter UT-B. Evidence for UT-B-facilitated water transport in erythrocytes. J. Biol. Chem. 277: 36782-36786. 12133842
Zhang, H.T., Z. Wang, T. Yu, J.P. Sang, X.W. Zou, and X. Zou. (2017). Modeling of flux, binding and substitution of urea molecules in the urea transporter dvUT. J Mol Graph Model. [Epub: Ahead of Print] 28506671
Zhao, D., N.D. Sonawane, M.H. Levin, and B. Yang. (2007). Comparative transport efficiencies of urea analogues through urea transporter UT-B. Biochim. Biophys. Acta. 1768: 1815-1821. 17506977


Gray, L.R., S.X. Gu, M. Quick, and S. Khademi. (2011). Transport kinetics and selectivity of HpUreI, the urea channel from Helicobacter pylori. Biochemistry 50: 8656-8663. 21877689
Huysmans GH., Chan N., Baldwin JM., Postis VL., Tzokov SB., Deacon SE., Yao SY., Young JD., McPherson MJ., Bullough PA. and Baldwin SA. (2012). A urea channel from Bacillus cereus reveals a novel hexameric structure. Biochem J. 445(2):157-66. 22553922
Sachs, G., J.A. Kraut, Y. Wen, J. Feng, and D.R. Scott. (2006). Urea transport in bacteria: acid acclimation by gastric Helicobacter spp. J. Membr. Biol. 212: 71-82. 17264989
Scott, D.R., E.A. Marcus, Y. Wen, S. Singh, J. Feng, and G. Sachs. (2010). Cytoplasmic histidine kinase (HP0244)-regulated assembly of urease with UreI, a channel for urea and its metabolites, CO2, NH3, and NH4+, is necessary for acid survival of Helicobacter pylori. J. Bacteriol. 192: 94-103. 19854893
Strugatsky D., McNulty R., Munson K., Chen CK., Soltis SM., Sachs G. and Luecke H. (2013). Structure of the proton-gated urea channel from the gastric pathogen Helicobacter pylori. Nature. 493(7431):255-8. 23222544
Weeks, D.L. and G. Sachs. (2001). Sites of pH regulation of the urea channel of Helicobacter pylori. Mol. Microbiol. 40: 1249-1259. 11442825
Weeks, D.L., G. Gushansky, D.R. Scott, and G. Sachs. (2004). Mechanism of proton gating of a urea channel. J. Biol. Chem. 279: 9944-9950. 14701805
Weeks, D.L., S. Eskandari, D.R. Scott, and G. Sachs. (2000). A H+-gated urea channel: the link between Helicobacter pylori urease and gastric colonization. Science 287: 482-485. 10642549
Wilson, S.A., R.J. Williams, L.H. Pearl, and R.E. Drew. (1995). Identification of two new genes in the Pseudomonas aeruginosa amidase operon, encoding an ATPase (AmiB) and a putative integral membrane protein (AmiS). J. Biol. Chem. 270: 18818-18824. 7642533


Bulathsinghala, C.M., B. Jana, K.R. Baker, and K. Postle. (2013). ExbB cytoplasmic loop deletions cause immediate, proton motive force-independent growth arrest. J. Bacteriol. 195: 4580-4591. 23913327
Castillo, D.J., S. Nakamura, Y.V. Morimoto, Y.S. Che, N. Kami-Ike, S. Kudo, T. Minamino, and K. Namba. (2013). The C-terminal periplasmic domain of MotB is responsible for load-dependent control of the number of stators of the bacterial flagellar motor. Biophysics (Nagoya-shi) 9: 173-181. 27493556
Hosking, E.R., C. Vogt, E.P. Bakker, and M.D. Manson. (2006). The Escherichia coli MotAB proton channel unplugged. J. Mol. Biol. 364: 921-937. 17052729
Ito, M., D.B. Hicks, T.M. Henkin, A.A. Guffanti, B.D. Powers, L. Zvi, K. Uematsu, and T.A. Krulwich. (2004). MotPS is the stator-force generator for motility of alkaliphilic Bacillus, and its homologue is a second functional Mot in Bacillus subtilis. Mol. Microbiol. 53: 1035-1049. 15306009
Kitao, A. and Y. Nishihara. (2017). Structure of the MotA/B Proton Channel. Methods Mol Biol 1593: 133-145. 28389950
Klebba, P.E. (2016). ROSET Model of TonB Action in Gram-Negative Bacterial Iron Acquisition. J. Bacteriol. 198: 1013-1021. 26787763
Koerdt, A., A. Paulick, M. Mock, K. Jost, and K.M. Thormann. (2009). MotX and MotY are required for flagellar rotation in Shewanella oneidensis MR-1. J. Bacteriol. 191: 5085-5093. 19502394
Kojima, S., K. Imada, M. Sakuma, Y. Sudo, C. Kojima, T. Minamino, M. Homma, and K. Namba. (2009). Stator assembly and activation mechanism of the flagellar motor by the periplasmic region of MotB. Mol. Microbiol. 73: 710-718. 19627504
Lo, C.J., Y. Sowa, T. Pilizota, and R.M. Berry. (2013). Mechanism and kinetics of a sodium-driven bacterial flagellar motor. Proc. Natl. Acad. Sci. USA 110: E2544-2551. 23788659
Nan, B., J. Chen, J.C. Neu, R.M. Berry, G. Oster, and D.R. Zusman. (2011). Myxobacteria gliding motility requires cytoskeleton rotation powered by proton motive force. Proc. Natl. Acad. Sci. USA 108: 2498-2503. 21248229
Nishihara Y. and Kitao A. (2015). Gate-controlled proton diffusion and protonation-induced ratchet motion in the stator of the bacterial flagellar motor. Proc Natl Acad Sci U S A. 112(25):7737-42. 26056313
O'Neill, J., M. Xie, M. Hijnen, and A. Roujeinikova. (2011). Role of the MotB linker in the assembly and activation of the bacterial flagellar motor. Acta Crystallogr D Biol Crystallogr 67: 1009-1016. 22120737
O'Neill, J., M. Xie, M. Hijnen, and A. Roujeinikova. (2011). Role of the MotB linker in the assembly and activation of the bacterial flagellar motor. Acta Crystallogr D Biol Crystallogr 67: 1009-1016. 18540076
Okabe, M., T. Yakushi, and M. Homma. (2005). Interactions of MotX with MotY and with the PomA/PomB sodium ion channel complex of the Vibrio alginolyticus polar flagellum. J. Biol. Chem. 280: 25659-25664. 15866878
Takekawa, N., N. Terahara, T. Kato, M. Gohara, K. Mayanagi, A. Hijikata, Y. Onoue, S. Kojima, T. Shirai, K. Namba, and M. Homma. (2016). The tetrameric MotA complex as the core of the flagellar motor stator from hyperthermophilic bacterium. Sci Rep 6: 31526. 27531865
Wille T., Wagner C., Mittelstadt W., Blank K., Sommer E., Malengo G., Dohler D., Lange A., Sourjik V., Hensel M. and Gerlach RG. (2014). SiiA and SiiB are novel type I secretion system subunits controlling SPI4-mediated adhesion of Salmonella enterica. Cell Microbiol. 16(2):161-78. 24119191
Yonekura, K., S. Maki-Yonekura, and M. Homma. (2011). Structure of the flagellar motor protein complex PomAB: implications for the torque-generating conformation. J. Bacteriol. 193: 3863-3870. 21642461
Zhu S., Homma M. and Kojima S. (2012). Intragenic suppressor of a plug deletion nonmotility mutation in PotB, a chimeric stator protein of sodium-driven flagella. J Bacteriol. 194(24):6728-35. 23024347


De Seranno, S., C. Benaud, N. Assard, S. Khediri, V. Gerke, J. Baudier, and C. Delphin. (2006). Identification of an AHNAK binding motif specific for the Annexin2/S100A10 tetramer. J. Biol. Chem. 281: 35030-35038. 16984913
Isas, J.M., J.P. Cartailler, Y. Sokolov, D.R. Patel, R. Langen, H. Luecke, J.E. Hall and H.T. Haigler (2000). Annexins V and XII insert into bilayers at mildly acidic pH and form ion channels. Biochem. 39:3015-3022. 10715122
Kodavali, P.K., K. Skowronek, I. Koszela-Piotrowska, A. Strzelecka-Kiliszek, K. Pawlowski, and S. Pikula. (2013). Structural and functional characterization of annexin 1 from Medicago truncatula. Plant Physiol. Biochem 73: 56-62. 24056127
Kourie, J.I. and H.B. Wood (2000). Biophysical and molecular properties of annexin-formed channels. Prog. Biophys. Mol. Biol. 73: 91-134. 10958928
Langen, R., J.M. Isas, W.L. Hubbell and H.T. Haigler (1998). A transmembrane form of annexin XII detected by site-directed spin labeling. Proc. Natl. Acad. Sci. USA 95: 14060-14065. 9826653
Leow CY., Willis C., Osman A., Mason L., Simon A., Smith BJ., Gasser RB., Jones MK. and Hofmann A. (2014). Crystal structure and immunological properties of the first annexin from Schistosoma mansoni: insights into the structural integrity of the schistosomal tegument. FEBS J. 281(4):1209-25. 24428567
Markoff, A., N. Bogdanova, M. Knop, C. Rüffer, H. Kenis, P. Lux, C. Reutelingsperger, V. Todorov, B. Dworniczak, J. Horst, and V. Gerke. (2007). Annexin A5 interacts with polycystin-1 and interferes with the polycystin-1 stimulated recruitment of E-cadherin into adherens junctions. J. Mol. Biol. 369: 954-966. 17451746
McNeil, A.K., U. Rescher, V. Gerke, and P.L. McNeil. (2006). Requirement for annexin A1 in plasma membrane repair. J. Biol. Chem. 281: 35202-35207. 16984915
Oling, F., J. Sopkova-de Oliviera Santos, N. Govorukhina, C. Mazères-Dubut, W. Bergsma-Schutter, G. Oostergetel, W. Keegstra, O. Lambert, A. Lewit-Bentley and A. Brisson (2000). Structure of membrane-bound annexin A5 trimers: a hybrid cryo-EM - X-ray crystallography study. J. Mol. Bio. 304: 561-573. 11099380
Pompa, A., F. De Marchis, M.T. Pallotta, Y. Benitez-Alfonso, A. Jones, K. Schipper, K. Moreau, V. Žárský, G.P. Di Sansebastiano, and M. Bellucci. (2017). Unconventional Transport Routes of Soluble and Membrane Proteins and Their Role in Developmental Biology. Int J Mol Sci 18:. 28346345
Riquelme, G., P. Llanos, E. Tischner., J. Neil, and B. Campos. (2004). Annexin 6 modulates the maxi-chloride channel of the apical membrane of syncytiotrophoblast isolated from human placenta. J. Biol. Chem. 279: 50601-50608. 15355961
Seaton, B.A. (1996). Annexins: Molecular structure to cellular function. R.G. Landes Company, Austin, Texas.


Fischer, W.B. and H.J. Hsu. (2011). Viral channel forming proteins - modeling the target. Biochim. Biophys. Acta. 1808: 561-571. 20546700
Fischer, W.B. and M.S. Sansom. (2002). Viral ion channels: structure and function. Biochim. Biophys. Acta 1561: 27-45. 11988179
Fischer, W.B., M. Pitkeathly, B.A. Wallace, L.R. Forrest, G.R. Smith, and M.S. Sansom. (2000). Transmembrane peptide NB of influenza B: a simulation, structure, and conductance study. Biochemistry 41: 12708-12716. 11027151
Fischer, W.B., Y.T. Wang, C. Schindler, and C.P. Chen. (2012). Mechanism of function of viral channel proteins and implications for drug development. Int Rev Cell Mol Biol 294: 259-321. 22364876


Arispe, N. and A. DeMaio. (2000). ATP and ADP modulate a cation channel formed by Hsc70 in acidic phospholipid membranes. J. Biol. Chem. 275: 30839-30843. 10899168
Gross, C., W. Koelch, A. DeMaio, N. Arispe, and G. Multhoff. (2003). Cell surface-bound heat shock protein 70 (Hsp70) mediates perforin-independent apoptosis by specific binding and uptake of granzyme B. J. Biol. Chem. 278: 41173-41181. 12874291
van der Woude, A.D., K.R. Mahendran, R. Ummels, S.R. Piersma, T.V. Pham, C.R. Jiménez, K. de Punder, N.N. van der Wel, M. Winterhalter, J. Luirink, W. Bitter, and E.N. Houben. (2013). Differential detergent extraction of mycobacterium marinum cell envelope proteins identifies an extensively modified threonine-rich outer membrane protein with channel activity. J. Bacteriol. 195: 2050-2059. 23457249


Camp, A.H. and R. Losick. (2008). A novel pathway of intercellular signalling in Bacillus subtilis involves a protein with similarity to a component of type III secretion channels. Mol. Microbiol. 69: 402-417. 18485064
Camp, A.H. and R. Losick. (2009). A feeding tube model for activation of a cell-specific transcription factor during sporulation in Bacillus subtilis. Genes Dev. 23: 1014-1024. 19390092
Flanagan, K.A., J.D. Comber, E. Mearls, C. Fenton, A.F. Wang Erickson, and A.H. Camp. (2016). A membrane-embedded amino acid couples the SpoIIQ channel protein to anti-sigma factor transcriptional repression during Bacillus subtilis sporulation. J. Bacteriol. [Epub: Ahead of Print] 26929302
Kroos, L. (2009). Bacterial development: evidence for very short umbilical cords. Curr. Biol. 19: R452-453. 19515352
Meisner, J., T. Maehigashi, I. André, C.M. Dunham, and C.P. Moran, Jr. (2012). Structure of the basal components of a bacterial transporter. Proc. Natl. Acad. Sci. USA 109: 5446-5451. 22431613
Meisner, J., X. Wang, M. Serrano, A.O. Henriques, and C.P. Moran, Jr. (2008). A channel connecting the mother cell and forespore during bacterial endospore formation. Proc. Natl. Acad. Sci. USA 105: 15100-15105. 18812514


Bui, D.M., J. Gregan, E. Jarosch, A. Ragnini and R.J. Schweyen. (1999). The bacterial magnesium transporter CorA can functionally substitute for its putative homologue Mrs2p in the yeast inner mitochondrial membrane. J. Biol. Chem. 274: 20438-20443. 10400670
Cleverley, R.M., J. Kean, C.A. Shintre, C. Baldock, J.P. Derrick, R.C. Ford, and S.M. Prince. (2015). The Cryo-EM structure of the CorA channel from Methanocaldococcus jannaschii in low magnesium conditions. Biochim. Biophys. Acta. 1848: 2206-2215. 26051127
Da Costa, B.M., K. Cornish, and J.D. Keasling. (2007). Manipulation of intracellular magnesium levels in Saccharomyces cerevisiae with deletion of magnesium transporters. Appl. Microbiol. Biotechnol. 77: 411-425. 17926032
Dalmas, O., P. Sompornpisut, F. Bezanilla, and E. Perozo. (2014). Molecular mechanism of Mg2+-dependent gating in CorA. Nat Commun 5: 3590. 24694723
Graschopf, A., J.A. Stadler, M.K. Hoellerer, S. Eder, M. Sieghardt, S.D. Kohlwein, and R.J. Schweyen. (2001). The yeast plasma membrane protein Alr1 controls Mg2+ homeostasis and is subject to Mg2+-dependent control of its synthesis and degradation. J. Biol. Chem. 276: 16216-16222. 11279208
Guskov, A. and S. Eshaghi. (2012). The Mechanisms of Mg2+ and Co2+ Transport by the CorA Family of Divalent Cation Transporters. Curr Top Membr 69: 393-414. 23046658
Hantke, K. (1997). Ferrous iron uptake by a magnesium transport system is toxic for Escherichia coli and Salmonella typhimurium. J. Bacteriol. 179: 6201-6204. 9324273
Hu, J., M. Sharma, H. Qin, F.P. Gao, and T.A. Cross. (2009). Ligand binding in the conserved interhelical loop of CorA, a magnesium transporter from Mycobacterium tuberculosis. J. Biol. Chem. 284: 15619-15628. 19346249
Ishijima, S., M. Uda, T. Hirata, M. Shibata, N. Kitagawa, and I. Sagami. (2015). Magnesium uptake of Arabidopsis transporters, AtMRS2-10 and AtMRS2-11, expressed in Escherichia coli mutants: Complementation and growth inhibition by aluminum. Biochim. Biophys. Acta. 1848: 1376-1382. 25772503
Kehres, D.G., C.H. Lawyer, and M.E. Maguire. (1998). The CorA magnesium transporter gene family. Microbial Comp. Genom. 3: 151-169. 9775386
Kolisek, M., G. Zsurka, J. Samaj, J. Weghuber, R.J. Schweyen, and M. Schweigel. (2003). Mrs2p is an essential component of the major electrophoretic Mg2+ influx system in mitochondria. EMBO J. 22: 1235-1244. 12628916
Lunin, V.V., E. Dobrovetsky, G. Khutoreskaya, R. Zhang, A. Joachimiak, D.A. Doyle, A. Bochkarev, M.E. Maguire, A.M. Edwards, and C.M. Koth. (2006). Crystal structure of the CorA Mg2+ transporter. Nature 440: 833-837. 16598263
MacDiarmid, C.W. and R.C. Gardner. (1998). Overexpression of the Saccharomyces cerevisiae magnesium transport system confers resistance to aluminum ion. J. Biol. Chem. 273: 1727-1732. 9430719
Moomaw, A.S. and M.E. Maguire. (2010). Cation selectivity by the CorA Mg2+ channel requires a fully hydrated cation. Biochemistry 49: 5998-6008. 20568735
Nordin, N., A. Guskov, T. Phua, N. Sahaf, Y. Xia, S. Lu, H. Eshaghi, and S. Eshaghi. (2013). Exploring the structure and function of Thermotoga maritima CorA reveals the mechanism of gating and ion selectivity in Co2+/Mg2+ transport. Biochem. J. 451: 365-374. 23425532
Papp, K.M. and M.E. Maguire. (2004). The CorA Mg2+ transporter does not transport Fe2+. J. Bacteriol. 186: 7653-7658. 15516579
Payandeh, J., C. Li, M. Ramjeesingh, E. Poduch, C.E. Bear, and E.F. Pai. (2008). Probing structure-function relationships and gating mechanisms in the CorA Mg2+ transport system. J. Biol. Chem. 283: 11721-11733. 18276588
Payandeh, J., R. Pfoh, and E.F. Pai. (2013). The structure and regulation of magnesium selective ion channels. Biochim. Biophys. Acta. 1828: 2778-2792. 23954807
Schindl, R., J. Weghuber, C. Romanin, and R.J. Schweyen. (2007). Mrs2p forms a high conductance Mg2+ selective channel in mitochondria. Biophys. J. 93: 3872-3883. 17827224
Schmitz J., Tierbach A., Lenz H., Meschenmoser K. and Knoop V. (2013). Membrane protein interactions between different Arabidopsis thaliana MRS2-type magnesium transporters are highly permissive. Biochim Biophys Acta. 1828(9):2032-40. 23732234
Smith, R.L. and M.E. Maguire. (1998). Microbial magnesium transport: unusual transporters searching for identity. Mol. Microbiol. 28: 217-226. 9622348
Smith, R.L., E. Gottlieb, L.M. Kucharski, and M.E. Maguire. (1998). Functional similarity between archaeal and bacterial CorA magnesium transporters. J. Bacteriol. 180: 2788-2791. 9573171
Smith, R.L., J.L. Banks, M.D. Snavely, and M.E. Maguire. (1993). Sequence and topology of the CorA magnesium transport systems of Salmonella typhimurium and Escherichia coli. Identification of a new class of transport protein. J. Biol. Chem. 268: 14071-14080. 8314774
Smith, R.L., M.A. Szegedy, L.M. Kucharski, C. Walker, R.M. Wiet, A. Redpath, M.T. Kaczmarek, and M.E. Maguire. (1998). The CorA Mg2+ transport protein of Salmonella typhimurium. Mutagenesis of conserved residues in the third membrane domain identifies a Mg2+ pore. J. Biol. Chem. 273: 28663-28669. 9786860
Tan, K., A. Sather, J.L. Robertson, S. Moy, B. Roux, and A. Joachimiak. (2009). Structure and electrostatic property of cytoplasmic domain of ZntB transporter. Protein. Sci. 18: 2043-2052. 19653298
ter Huurne, A.A., S. Muir, M. van Houten, B.A. van der Zeijst, W. Gaastra, and J.G. Kusters. (1994). Characterization of three putative Serpulina hyodysenteriae hemolysins. Microb Pathog. 16: 269-282. 7968456
Wan, Q., M.F. Ahmad, J. Fairman, B. Gorzelle, M. de la Fuente, C. Dealwis, and M.E. Maguire. (2011). X-ray crystallography and isothermal titration calorimetry studies of the Salmonella zinc transporter ZntB. Structure 19: 700-710. 21565704
Wang, S.Z., Y. Chen, Z.H. Sun, Q. Zhou, and S.F. Sui. (2006). Escherichia coli CorA periplasmic domain functions as a homotetramer to bind substrate. J. Biol. Chem. 281: 26813-26820. 16835234
Warren, M.A., L.M. Kucharski, A. Veenstra, L. Shi, P.F. Grulich, and M.E. Maguire. (2004). The CorA Mg2+ transporter is a homotetramer. J. Bacteriol. 186: 4605-4612. 15231793
Worlock, A.J. and R.L. Smith. (2002). ZntB is a novel Zn2+ transporter in Salmonella enterica serovar typhimurium. J. Bacteriol. 184: 4369-4373. 12142406
Zhu, Y., A. Davis, B.J. Smith, J. Curtis, and E. Handman. (2009). Leishmania major CorA-like magnesium transporters play a critical role in parasite development and virulence. Int J Parasitol 39: 713-723. 19136005


Al Khamici, H., L.J. Brown, K.R. Hossain, A.L. Hudson, A.A. Sinclair-Burton, J.P. Ng, E.L. Daniel, J.E. Hare, B.A. Cornell, P.M. Curmi, M.W. Davey, and S.M. Valenzuela. (2015). Members of the chloride intracellular ion channel protein family demonstrate glutaredoxin-like enzymatic activity. PLoS One 10: e115699. 25581026
Basham, S.E. and L.S. Rose. (1999). Mutations in ooc-5 and ooc-3 disrupt oocyte formation and the reestablishment of asymmetric PAR protein localization in two-cell Caenorhabditis elegans embryos. Dev Biol 215: 253-263. 10545235
Giannotta, M., G. Fragassi, A. Tamburro, C. Vanessa, A. Luini, and M. Sallese. (2015). Prohibitin: A Novel Molecular Player in KDEL Receptor Signalling. Biomed Res Int 2015: 319454. 26064897
Jia, Y., T.J. Jucius, S.A. Cook, and S.L. Ackerman. (2015). Loss of Clcc1 Results in ER Stress, Misfolded Protein Accumulation, and Neurodegeneration. J. Neurosci. 35: 3001-3009. 25698737
Leanza, L., L. Biasutto, A. Managò, E. Gulbins, M. Zoratti, and I. Szabò. (2013). Intracellular ion channels and cancer. Front Physiol 4: 227. 24027528
Nagasawa, M., M. Kanzaki, Y. Iino, Y. Morishita, and I. Kojima. (2001). Identification of a novel chloride channel expressed in the endoplasmic reticulum, Golgi apparatus, and nucleus. J. Biol. Chem. 276: 20413-20418. 11279057
Pichler, S., P. Gönczy, H. Schnabel, A. Pozniakowski, A. Ashford, R. Schnabel, and A.A. Hyman. (2000). OOC-3, a novel putative transmembrane protein required for establishment of cortical domains and spindle orientation in the P(1) blastomere of C. elegans embryos. Development 127: 2063-2073. 10769231


Boulay, A.C., B. Saubaméa, S. Cisternino, V. Mignon, A. Mazeraud, L. Jourdren, C. Blugeon, and M. Cohen-Salmon. (2015). The Sarcoglycan complex is expressed in the cerebrovascular system and is specifically regulated by astroglial Cx30 channels. Front Cell Neurosci 9: 9. 25698924
Brown, A.A., J. Jensen, Y.S. Nikolova, S. Djurovic, I. Agartz, A. Server, R.E. Ferrell, S.B. Manuck, M. Mattingsdal, I. Melle, A.R. Hariri, A. Frigessi, and O.A. Andreassen. (2012). Genetic variants affecting the neural processing of human facial expressions: evidence using a genome-wide functional imaging approach. Transl Psychiatry 2: e143. 22828495
Bubien, J.K., L.J. Zhou, P.D. Bell, R.A. Frizzell, and T.F. Tedder. (1993). Transfection of the CD20 cell surface molecule into ectopic cell types generates a Ca2+ conductance found constitutively in B lymphocytes. J. Cell Biol. 121: 1121-1132. 7684739
Cohn, R.D., M. Durbeej, S.A. Moore, R. Coral-Vazquez, S. Prouty, and K.P. Campbell. (2001). Prevention of cardiomyopathy in mouse models lacking the smooth muscle sarcoglycan-sarcospan complex. J Clin Invest 107: R1-7. 11160141
Kanzaki, M., L. Nie, H. Shibata, and I. Kojima. (1997a). Activation of a calcium-permeable cation channel CD20 expressed in Balb/c3T3 cells by insulin-like growth factor-I. J. Biol. Chem. 272: 4964-4969. 9030557
Kanzaki, M., M.A. Lindorfer, J.C. Garrison, and I. Kojima. (1997b). Activation of the calcium-permeable cation channel CD20 by alpha subunits of the Gi protein. J. Biol. Chem. 272: 14733-14739. 9169438
Liu, W.B., F. Han, X. Jiang, H.Q. Chen, H. Zhao, Y. Liu, Y.H. Li, C. Huang, J. Cao, and J.Y. Liu. (2015). TMEM196 acts as a novel functional tumour suppressor inactivated by DNA methylation and is a potential prognostic biomarker in lung cancer. Oncotarget 6: 21225-21239. 26056045
Parolini D., Cassinelli L., Razini P., Sitzia C., Tonna N., Erratico S., Colleoni F., Angeloni V., Maffioli E., Farini A., Maciotta S., Porretti L., Belicchi M., Bianco F., Tedeschi G., Meregalli M. and Torrente Y. (2012). Expression of CD20 reveals a new store-operated calcium entry modulator in skeletal muscle. Int J Biochem Cell Biol. 44(12):2095-105. 22982241
Penhallow, R.C., K. Class, H. Sonoda, J.B. Bolen, and R.B. Rowley. (1995). Temporal activation of nontransmembrane protein-tyrosine kinases following mast cell Fc epsilon RI engagement. J. Biol. Chem. 270: 23362-23365. 7559493
Tedder, T.F., G. Klejman, S.F. Schlossman, and H. Saito. (1989). Structure of the gene encoding the human B lymphocyte differentiation antigen CD20 (B1). J. Immunol. 142: 2560-2568. 2466899


Edwards JC. and Kahl CR. (2010). Chloride channels of intracellular membranes. FEBS Lett. 584(10):2102-11. 20100480
Maeda, Y., T. Ide, M. Koike, Y. Uchiyama, and T. Kinoshita. (2008). GPHR is a novel anion channel critical for acidification and functions of the Golgi apparatus. Nat. Cell Biol. 10: 1135-1145. 18794847


Fischer, W.B. and H.J. Hsu. (2011). Viral channel forming proteins - modeling the target. Biochim. Biophys. Acta. 1808: 561-571. 20546700
Fischer, W.B. and M.S. Sansom. (2002). Viral ion channels: structure and function. Biochim. Biophys. Acta 1561: 27-45. 11988179
Fischer, W.B., Y.T. Wang, C. Schindler, and C.P. Chen. (2012). Mechanism of function of viral channel proteins and implications for drug development. Int Rev Cell Mol Biol 294: 259-321. 22364876
Stewart, S.M. and A. Pekosz. (2012). The influenza C virus CM2 protein can alter intracellular pH, and its transmembrane domain can substitute for that of the influenza A virus M2 protein and support infectious virus production. J. Virol. 86: 1277-1281. 21917958


Becker, C.F.W., M. Oblatt-Montal, G.G. Kochendoerfer, and M. Montal. (2004). Chemical synthesis and single channel properties of tetrameric and pentameric TASPs (template-assembled synthetic proteins) derived from the transmembrane domain of HIV virus protein u (Vpu). J. Biol. Chem. 279: 17483-17489. 14752102
Bolduan, S., J. Votteler, V. Lodermeyer, T. Greiner, H. Koppensteiner, M. Schindler, G. Thiel, and U. Schubert. (2011). Ion channel activity of HIV-1 Vpu is dispensable for counteraction of CD317. Virology 416: 75-85. 21601230
Fischer, W.B. and H.J. Hsu. (2011). Viral channel forming proteins - modeling the target. Biochim. Biophys. Acta. 1808: 561-571. 20546700
Fischer, W.B. and M.S. Sansom. (2002). Viral ion channels: structure and function. Biochim. Biophys. Acta 1561: 27-45. 11988179
Fischer, W.B., Y.T. Wang, C. Schindler, and C.P. Chen. (2012). Mechanism of function of viral channel proteins and implications for drug development. Int Rev Cell Mol Biol 294: 259-321. 22364876
González, M.E. (2015). Vpu Protein: The Viroporin Encoded by HIV-1. Viruses 7: 4352-4368. 26247957
Greiner, T., S. Bolduan, B. Hertel, C. Groß, K. Hamacher, U. Schubert, A. Moroni, and G. Thiel. (2016). Ion Channel Activity of Vpu Proteins Is Conserved throughout Evolution of HIV-1 and SIV. Viruses 8:. 27916968
Grin I., Hartmann MD., Sauer G., Hernandez Alvarez B., Schutz M., Wagner S., Madlung J., Macek B., Felipe-Lopez A., Hensel M., Lupas A. and Linke D. (2014). A trimeric lipoprotein assists in trimeric autotransporter biogenesis in enterobacteria. J Biol Chem. 289(11):7388-98. 24369174
Hsu, K., J. Seharaseyon, P. Dong, S. Bour, and E. Marbán. (2004). Mutual functional destruction of HIB-1 Vpu and host TASK-1 channel. Mol. Cell 14: 259-267. 15099524
Li, L.H., H.J. Hsu, and W.B. Fischer. (2013). Qualitative computational bioanalytics: Assembly of viral channel-forming peptides around mono and divalent ions. Biochem. Biophys. Res. Commun. 442: 85-91. 24239548
Lin, M.H., C.P. Chen, and W.B. Fischer. (2016). Patch formation of a viral channel forming protein within a lipid membrane - Vpu of HIV-1. Mol Biosyst 12: 1118-1127. 26899411
Lu, J.X., S. Sharpe, R. Ghirlando, W.M. Yau, and R. Tycko. (2010). Oligomerization state and supramolecular structure of the HIV-1 Vpu protein transmembrane segment in phospholipid bilayers. Protein. Sci. 19: 1877-1896. 20669237
Mehnert, T., Y.H. Lam, P.J. Judge, A. Routh, D. Fischer, A. Watts, and W.B. Fischer. (2007). Towards a mechanism of function of the viral ion channel Vpu from HIV-1. J Biomol Struct Dyn 24: 589-596. 17508781
Padhi, S., N. Khan, S. Jameel, and U.D. Priyakumar. (2013). Molecular Dynamics Simulations Reveal the HIV-1 Vpu Transmembrane Protein to Form Stable Pentamers. PLoS One 8: e79779. 24223193
Padhi, S., R.R. Burri, S. Jameel, and U.D. Priyakumar. (2014). Atomistic detailed mechanism and weak cation-conducting activity of HIV-1 Vpu revealed by free energy calculations. PLoS One 9: e112983. 25392993
Sharma, M., C. Li, D.D. Busath, H.X. Zhou, and T.A. Cross. (2011). Drug sensitivity, drug-resistant mutations, and structures of three conductance domains of viral porins. Biochim. Biophys. Acta. 1808: 538-546. 20655872
Wang, Y., S.H. Park, Y. Tian, and S.J. Opella. (2013). Impact of histidine residues on the transmembrane helices of viroporins. Mol. Membr. Biol. 30: 360-369. 24102567


Bodelón, G., L. Labrada, J. Martínez-Costas, and J. Benavente. (2002). Modification of late membrane permeability in avian reovirus-infected cells. J. Biol. Chem. 277: 17789-17796. 11893756
Fung, T.S., J. Torres, and D.X. Liu. (2015). The Emerging Roles of Viroporins in ER Stress Response and Autophagy Induction during Virus Infection. Viruses 7: 2834-2857. 26053926
Largo, E., C. Verdiá-Báguena, V.M. Aguilella, J.L. Nieva, and A. Alcaraz. (2016). Ion channel activity of the CSFV p7 viroporin in surrogates of the ER lipid bilayer. Biochim. Biophys. Acta. 1858: 30-37. 26464198
Martinez-Gil, L. and I. Mingarro. (2015). Viroporins, Examples of the Two-Stage Membrane Protein Folding Model. Viruses 7: 3462-3482. 26131957
Nieto-Torres, J.L., C. Verdiá-Báguena, C. Castaño-Rodriguez, V.M. Aguilella, and L. Enjuanes. (2015). Relevance of Viroporin Ion Channel Activity on Viral Replication and Pathogenesis. Viruses 7: 3552-3573. 26151305
Sze, C.W. and Y.J. Tan. (2015). Viral Membrane Channels: Role and Function in the Virus Life Cycle. Viruses 7: 3261-3284. 26110585


Coeytaux, E., D. Coulaud, E. Le Cam, O. Danos, and A. Kichler. (2003). The cationic amphipathic α-helix of HIV-1 viral protein R (Vpr) binds to nucleic acids, permeabilizes membranes, and efficiently transfects cells. J. Biol. Chem. 278: 18110-18116. 12639957
Fischer, W.B. and H.J. Hsu. (2011). Viral channel forming proteins - modeling the target. Biochim. Biophys. Acta. 1808: 561-571. 20546700
Fischer, W.B., Y.T. Wang, C. Schindler, and C.P. Chen. (2012). Mechanism of function of viral channel proteins and implications for drug development. Int Rev Cell Mol Biol 294: 259-321. 22364876


Hu, K.H., E. Liu, K. Dean, M. Gingras, W. DeGraff, and N.J. Trun. (1996). Overproduction of three genes leads to camphor resistance and chromosome condensation in Escherichia coli. Genetics 143: 1521-1532. 8844142
Ji, C., R.B. Stockbridge, and C. Miller. (2014). Bacterial fluoride resistance, Fluc channels, and the weak acid accumulation effect. J Gen Physiol 144: 257-261. 25156118
Last, N.B., L. Kolmakova-Partensky, T. Shane, and C. Miller. (2016). Mechanistic signs of double-barreled structure in a fluoride ion channel. Elife 5:. 27449280
Li, S., K.D. Smith, J.H. Davis, P.B. Gordon, R.R. Breaker, and S.A. Strobel. (2013). Eukaryotic resistance to fluoride toxicity mediated by a widespread family of fluoride export proteins. Proc. Natl. Acad. Sci. USA 110: 19018-19023. 24173035
Pornillos, O. and G. Chang. (2006). Inverted repeat domains in membrane proteins. FEBS Lett. 580: 358-362. 16406365
Pornillos, O., Y.J. Chen, A.P. Chen, and G. Chang. (2005). X-ray structure of the EmrE multidrug transporter in complex with a substrate. Science 310: 1950-1953. 16373573
Sand, O., M. Gingras, N. Beck, C. Hall, and N. Trun. (2003). Phenotypic characterization of overexpression or deletion of the Escherichia coli crcA, cspE and crcB genes. Microbiology 149: 2107-2117. 12904550
Smith, K.D., P.B. Gordon, A. Rivetta, K.E. Allen, T. Berbasova, C. Slayman, and S.A. Strobel. (2015). Yeast Fex1p Is a Constitutively Expressed Fluoride Channel with Functional Asymmetry of Its Two Homologous Domains. J. Biol. Chem. 290: 19874-19887. 26055717
Stockbridge, R.B., A. Koide, C. Miller, and S. Koide. (2014). Proof of dual-topology architecture of Fluc F(-) channels with monobody blockers. Nat Commun 5: 5120. 25290819
Stockbridge, R.B., J.L. Robertson, L. Kolmakova-Partensky, and C. Miller. (2013). A family of fluoride-specific ion channels with dual-topology architecture. Elife 2: e01084. 23991286
Stockbridge, R.B., L. Kolmakova-Partensky, T. Shane, A. Koide, S. Koide, C. Miller, and S. Newstead. (2015). Crystal structures of a double-barrelled fluoride ion channel. Nature 525: 548-551. 26344196


Boulanger, P., P. Jacquot, L. Plançon, M. Chami, A. Engel, C. Parquet, C. Herbeuval, and L. Letellier. (2008). Phage T5 straight tail fiber is a multifunctional protein acting as a tape measure and carrying fusogenic and muralytic activities. J. Biol. Chem. 283: 13556-13564. 18348984
Feucht, A., A. Schmid, R. Benz, H. Schwarz, and K.J. Heller. (1990). Pore formation associated with the tail-tip protein pb2 of bacteriophage T5. J. Biol. Chem. 265: 18561-18567. 1698788
Poranen, M.M., R. Daugelavicius, and D.H. Bamford. (2002). Common principles in viral entry. Annu. Rev. Microbiol. 56: 521-538. 12142475


Israel, V. (1977). E proteins of bacteriophage P22. I. Identification and ejection from wild-type and defective particles. J. Virol. 23: 91-97. 328927
Perez, G.L. and S. Maloy, personal communication.
Perez, G.L., B. Huynh, M. Slater, and S. Maloy. (2009). Transport of phage P22 DNA across the cytoplasmic membrane. J. Bacteriol. 191: 135-140. 18978055


Bharill, S., Z. Fu, R. Palty, and E.Y. Isacoff. (2014). Stoichiometry and specific assembly of Best ion channels. Proc. Natl. Acad. Sci. USA 111: 6491-6496. 24748110
Burgess, R., I.D. Millar, B.P. Leroy, J.E. Urquhart, I.M. Fearon, E. De Baere, P.D. Brown, A.G. Robson, G.A. Wright, P. Kestelyn, G.E. Holder, A.R. Webster, F.D. Manson, and G.C. Black. (2008). Biallelic mutation of BEST1 causes a distinct retinopathy in humans. Am. J. Hum. Genet. 82: 19-31. 18179881
Carter, D.A., M.J. Smart, W.V. Letton, C.M. Ramsden, B. Nommiste, L.L. Chen, K. Fynes, M.N. Muthiah, P. Goh, A. Lane, M.B. Powner, A.R. Webster, L. da Cruz, A.T. Moore, P.J. Coffey, and A.F. Carr. (2016). Mislocalisation of BEST1 in iPSC-derived retinal pigment epithelial cells from a family with autosomal dominant vitreoretinochoroidopathy (ADVIRC). Sci Rep 6: 33792. 27653836
Chen, C.J., S. Kaufman, K. Packo, H. Stöhr, B.H. Weber, and M.F. Goldberg. (2016). Long-Term Macular Changes in the First Proband of Autosomal Dominant Vitreoretinochoroidopathy (ADVIRC) Due to a Newly Identified Mutation in BEST1. Ophthalmic Genet 37: 102-108. 26849243
Hagen, A.R., R.D. Barabote, and M.H. Saier. (2005). The bestrophin family of anion channels: identification of prokaryotic homologues. Mol. Membr. Biol. 22: 291-302. 16154901
Herdean, A., E. Teardo, A.K. Nilsson, B.E. Pfeil, O.N. Johansson, R. Ünnep, G. Nagy, O. Zsiros, S. Dana, K. Solymosi, G. Garab, I. Szabó, C. Spetea, and B. Lundin. (2016). A voltage-dependent chloride channel fine-tunes photosynthesis in plants. Nat Commun 7: 11654. 27216227
Kane Dickson, V., L. Pedi, and S.B. Long. (2014). Structure and insights into the function of a Ca2+-activated Cl- channel. Nature 516: 213-218. 25337878
Mladenova, K., S.D. Petrova, T.D. Andreeva, V. Moskova-Doumanova, T. Topouzova-Hristova, Y. Kalvachev, K. Balashev, S.S. Bhattacharya, C. Chakarova, Z. Lalchev, and J.A. Doumanov. (2016). Effects of Ca2+ ions on bestrophin-1 surface films. Colloids Surf B Biointerfaces 149: 226-232. [Epub: Ahead of Print] 27768912
O'Driscoll, K.E., W.J. Hatton, H.R. Burkin, N. Leblanc, and F.C. Britton. (2008). Expression, localization, and functional properties of Bestrophin 3 channel isolated from mouse heart. Am. J. Physiol. Cell Physiol. 295: C1610-1624. 18945938
Petrukhin, K., M.J. Koisti, B. Bakall, W. Li, G. Xie, T. Marknell, O. Sandgren, K. Forsman, G. Holmgren, S. Andreasson, M. Vujic, A.A. Bergen, V. McGarty-Dugan, D. Figueroa, C.P. Austin, M.L. Metzker, C.T. Caskey, and C. Wadelius. (1998). Identification of the gene responsible for Best macular dystrophy. Nat. Genet. 19: 241-247. 9662395
Qu, Z. and H.C. Hartzell. (2008). Bestrophin Cl- channels are highly permeable to HCO3-. Am. J. Physiol. Cell Physiol. 294: C1371-1377. 18400985
Qu, Z., W. Cheng, Y. Cui, Y. Cui, and J. Zheng. (2009). Human disease-causing mutations disrupt an N-C-terminal interaction and channel function of bestrophin 1. J. Biol. Chem. 284: 16473-16481. 19372599
Qu, Z., Y. Cui, and C. Hartzell. (2006). A short motif in the C-terminus of mouse bestrophin 3 [corrected] inhibits its activation as a Cl channel. FEBS Lett. 580: 2141-2146. 16563389
Roberts, S.K., J. Milnes, and M. Caddick. (2011). Characterisation of AnBEST1, a functional anion channel in the plasma membrane of the filamentous fungus, Aspergillus nidulans. Fungal Genet Biol 48: 928-938. 21596151
Stotz, S.C. and D.E. Clapham. (2012). Anion-sensitive fluorophore identifies the Drosophila swell-activated chloride channel in a genome-wide RNA interference screen. PLoS One 7: e46865. 23056495
Sun, H., T. Tsunenari, K.-W. Yau, and J. Nathans. (2002). The vitelliform macular dystrophy protein defines a new family of chloride channels. Proc. Natl. Acad. Sci. USA 99: 4008-4013. 11904445
Tsunenari, T., H. Sun, J. Williams, H. Cahill, P. Smallwood, K.-W. Yau, and J. Nathans. (2003). Structure-function analysis of the Bestrophin family of anion channels. J. Biol. Chem. 278: 41114-41125. 12907679
Woo, D.H., K.S. Han, J.W. Shim, B.E. Yoon, E. Kim, J.Y. Bae, S.J. Oh, E.M. Hwang, A.D. Marmorstein, Y.C. Bae, J.Y. Park, and C.J. Lee. (2012). TREK-1 and Best1 channels mediate fast and slow glutamate release in astrocytes upon GPCR activation. Cell 151: 25-40. 23021213
Xiao, Q., A. Prussia, K. Yu, Y.Y. Cui, and H.C. Hartzell. (2008). Regulation of bestrophin Cl channels by calcium: role of the C terminus. J Gen Physiol 132: 681-692. 19029375
Xiao, Q., K. Yu, Y.Y. Cui, and H.C. Hartzell. (2009). Dysregulation of human bestrophin-1 by ceramide-induced dephosphorylation. J. Physiol. 587: 4379-4391. 19635817
Yang, T., Q. Liu, B. Kloss, R. Bruni, R.C. Kalathur, Y. Guo, E. Kloppmann, B. Rost, H.M. Colecraft, and W.A. Hendrickson. (2014). Structure and selectivity in bestrophin ion channels. Science 346: 355-359. 25324390
Yu, K., Q. Xiao, G. Cui, A. Lee, and H.C. Hartzell. (2008). The best disease-linked Cl- channel hBest1 regulates Ca V 1 (L-type) Ca2+ channels via src-homology-binding domains. J. Neurosci. 28: 5660-5670. 18509027
Yu, K., Y. Cui, and H.C. Hartzell. (2006). The bestrophin mutation A243V, linked to adult-onset vitelliform macular dystrophy, impairs its chloride channel function. Invest Ophthalmol Vis Sci 47: 4956-4961. 17065513


Ritter, M., A. Ravasio, M. Jakab, S. Chwatal, J. Fürst, A. Laich, M. Gschwenter, S. Signorelli, C. Burtscher, S. Eichmüller, and M. Paulmichl. (2003). Cell swelling stimulates cytosol to membrane transposition of ICln. J. Biol. Chem. 278: 50163-50174. 12970357


He, Y., A.J. Ramsay, M.L. Hunt, A.K. Whitbread, S.A. Myers, and J.D. Hooper. (2008). N-glycosylation analysis of the human Tweety family of putative chloride ion channels supports a penta-spanning membrane arrangement: impact of N-glycosylation on cellular processing of Tweety homologue 2 (TTYH2). Biochem. J. 412: 45-55. 18260827
Suzuki, M. and A. Mizuno. (2004). A novel human Cl- channel family related to Drosophila flightless locus. J. Biol. Chem. 279: 22461-22468. 15010458


Zhang R., Wang K., Ping X., Yu W., Qian Z., Xiong S. and Sun B. (2015). The ns12.9 Accessory Protein of Human Coronavirus OC43 Is a Viroporin Involved in Virion Morphogenesis and Pathogenesis. J Virol. 89(22):11383-95. 26339053


Akin, B.L., T.D. Hurley, Z. Chen, and L.R. Jones. (2013). The structural basis for phospholamban inhibition of the calcium pump in sarcoplasmic reticulum. J. Biol. Chem. 288: 30181-30191. 23996003
Anderson, D.M., K.M. Anderson, C.L. Chang, C.A. Makarewich, B.R. Nelson, J.R. McAnally, P. Kasaragod, J.M. Shelton, J. Liou, R. Bassel-Duby, and E.N. Olson. (2015). A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell 160: 595-606. 25640239
Aneiros, A., I. García, J.R. Martínez, A.L. Harvey, A.J. Anderson, D.L. Marshall, A. Engström, U. Hellman, and E. Karlsson. (1993). A potassium channel toxin from the secretion of the sea anemone Bunodosoma granulifera. Isolation, amino acid sequence and biological activity. Biochim. Biophys. Acta. 1157: 86-92. 8098956
Asahi, M., N.M. Green, K. Kurzydlowski, M. Tada, and D.H. MacLennan. (2001). Phospholamban domain IB forms an interaction site with the loop between transmembrane helices M6 and M7 of sarco(endo)plasmic reticulum Ca2+ ATPases. Proc. Natl. Acad. Sci. USA 98: 10061-10066. 11526231
Asahi, M., Y. Kimura, K. Kurzydlowski, M. Tada and D.H. MacLennan (1999). Transmembrane helix M6 in Sarco(endo)plasmic reticulum Ca2+-ATPase forms a functional interaction site. J. Biol. Chem. 274: 32855-32862. 10551848
Autry, J.M., J.E. Rubin, S.D. Pietrini, D.L. Winters, S.L. Robia, and D.D. Thomas. (2011). Oligomeric interactions of sarcolipin and the Ca-ATPase. J. Biol. Chem. 286: 31697-31706. 21737843
Babu, G.J., P. Bhupathy, N.N. Petrashevskaya, H. Wang, S. Raman, D. Wheeler, G. Jagatheesan, D. Wieczorek, A. Schwartz, P.M. Janssen, M.T. Ziolo, and M. Periasamy. (2006). Targeted overexpression of sarcolipin in the mouse heart decreases sarcoplasmic reticulum calcium transport and cardiac contractility. J. Biol. Chem. 281: 3972-3979. 16365042
Becucci, L., A. Cembran, C.B. Karim, D.D. Thomas, R. Guidelli, J. Gao, and G. Veglia. (2009). On the function of pentameric phospholamban: ion channel or storage form? Biophys. J. 96: L60-62. 19450461
Cao, Y., X. Wu, I. Lee, and X. Wang. (2015). Molecular dynamics of water and monovalent-ions transportation mechanisms of pentameric sarcolipin. Proteins. [Epub: Ahead of Print] 26522287
Cao, Y., X. Wu, X. Wang, H. Sun, and I. Lee. (2016). Transmembrane dynamics of the Thr-5 phosphorylated sarcolipin pentameric channel. Arch Biochem Biophys 604: 143-151. 27378083
Chu, G., L. Li, Y. Sato, J.M. Harrer, V.J. Kadambi, B.D. Hoit, D.M. Bers and E.G. Kranias (1998). Pentameric assembly of phospholamban facilitates inhibition of cardiac function in vivo. J. Biol. Chem. 273: 33674-33680. 9837953
Desmond, P.F., A. Labuza, J. Muriel, M.L. Markwardt, A.E. Mancini, M.A. Rizzo, and R.J. Bloch. (2017). Interactions between Small Ankyrin 1 and Sarcolipin Coordinately Regulate Activity of the Sarco(endo)plasmic Reticulum Ca2+-ATPase (SERCA1). J. Biol. Chem. [Epub: Ahead of Print] 28487373
Fujii, J., A. Zarain-Herzberg, H.F. Willard, M. Tada and D.H. MacLennan (1991). Structure of the rabbit phospholamban gene, cloning of the human cDNA, and assignment of the gene to human chromosome 6. J. Biol. Chem. 266: 11669-11675. 1828805
Hughes, E. and D.A. Middleton. (2003). Solid-state NMR reveals structural changes in phospholamban accompanying the functional regulation of Ca2+-ATPase. J. Biol. Chem. 278: 20835-20842. 12556441
Hughes, E., J.C. Clayton, A. Kitmitto, M. Esmann, and D.A. Middleton. (2007). Beta-sheet pore-forming peptides selected from a rational combinatorial library: mechanism of pore formation in lipid vesicles and activity in biological membranes. J. Biol. Chem. 282(36):26603-26613.
Hughes, E., R. Edwards, and D.A. Middleton. (2010). Heparin-derived oligosaccharides interact with the phospholamban cytoplasmic domain and stimulate SERCA function. Biochem. Biophys. Res. Commun. 401: 370-375. 20851101
Kovacs, R.J., M.T. Nelson, H.K. Simmerman, and L.R. Jones. (1988). Phospholamban forms Ca2+-selective channels in lipid bilayers. J. Biol. Chem. 263: 18364-18368. 2848034
Maffeo, C. and A. Aksimentiev. (2009). Structure, dynamics, and ion conductance of the phospholamban pentamer. Biophys. J. 96: 4853-4865. 19527644
Mall, S., R. Broadbridge, S.L. Harrison, M.G. Gore, A.G. Lee, and J.M. East. (2006). The presence of sarcolipin results in increased heat production by Ca2+-ATPase. J. Biol. Chem. 281: 36597-36602. 17018526
Minamisawa, S., M. Hoshijima, G. Chu, C.A. Ward, K. Frank, Y. Gu, M.E. Martone, Y. Wang, J. Ross, Jr., E.G. Kranias, W.R. Giles and K.R. Chien (1999). Chronic phospholamban-sarcoplasmic reticulum calcium ATPase interaction is the critical calcium cycling defect in dilated cardiomyopathy. Cell 99: 313-322. 10555147
Nelson, B.R., C.A. Makarewich, D.M. Anderson, B.R. Winders, C.D. Troupes, F. Wu, A.L. Reese, J.R. McAnally, X. Chen, E.T. Kavalali, S.C. Cannon, S.R. Houser, R. Bassel-Duby, and E.N. Olson. (2016). Muscle physiology. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science 351: 271-275. 26816378
Nesmelov, Y.E., C.B. Karim, L. Song, P.G. Fajer, and D.D. Thomas. (2007). Rotational dynamics of phospholamban determined by multifrequency electron paramagnetic resonance. Biophys. J. 93: 2805-2812. 17573437
Sahoo, S.K., S.A. Shaikh, D.H. Sopariwala, N.C. Bal, and M. Periasamy. (2013). Sarcolipin protein interaction with sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) is distinct from phospholamban protein, and only sarcolipin can promote uncoupling of the SERCA pump. J. Biol. Chem. 288: 6881-6889. 23341466
Shannon, T.R., G. Chu, E.G. Kranias and D.M. Bers (2001). Phospholamban decreases the energetic efficiency of the sarcoplasmic reticulum Ca pump. J. Biol. Chem. 276: 7195-7201. 11087739
Smeazzetto, S., A. Sacconi, A.L. Schwan, G. Margheri, and F. Tadini-Buoninsegni. (2014). Binding of a monoclonal antibody to the phospholamban cytoplasmic domain interferes with the channel activity of phospholamban reconstituted in a tethered bilayer lipid membrane. Langmuir 30: 10384-10388. 25121716
Smeazzetto, S., A. Saponaro, H.S. Young, M.R. Moncelli, and G. Thiel. (2013). Structure-function relation of phospholamban: modulation of channel activity as a potential regulator of SERCA activity. PLoS One 8: e52744. 23308118


and DeCoursey TE. (2015). The Voltage-Gated Proton Channel: A Riddle, Wrapped in a Mystery, inside an Enigma. Biochemistry. 54(21):3250-68. 25964989
Castillo K., Pupo A., Baez-Nieto D., Contreras GF., Morera FJ., Neely A., Latorre R. and Gonzalez C. (2015). Voltage-gated proton (Hv1) channels, a singular voltage sensing domain. FEBS Lett. 589(22):3471-8. 26296320
Chamberlin A., Qiu F., Rebolledo S., Wang Y., Noskov SY. and Larsson HP. (2014). Hydrophobic plug functions as a gate in voltage-gated proton channels. Proc Natl Acad Sci U S A. 111(2):E273-82. 24379371
Chanda, B., and F. Bezanilla (2008). A common pathway for charge transport through voltage-sensing domains. Neuron 57: 345-51. 18255028
Chaves, G., C. Derst, A. Franzen, Y. Mashimo, R. Machida, and B. Musset. (2016). Identification of an HV 1 Voltage-Gated Proton Channel in Insects. FEBS J. [Epub: Ahead of Print] 26866814
Cherny, V.V., D. Morgan, B. Musset, G. Chaves, S.M. Smith, and T.E. DeCoursey. (2015). Tryptophan 207 is crucial to the unique properties of the human voltage-gated proton channel, hHV1. J Gen Physiol 146: 343-356. 26458876
DeCoursey, T.E. (2008). Voltage-gated proton channels: what's next? J. Physiol. 586: 5305-5324. 18801839
Demaurex, N. and A. El Chemaly. (2010). Physiological roles of voltage-gated proton channels in leukocytes. J. Physiol. 588: 4659-4665. 20693294
Fujiwara, Y., T. Kurokawa, and Y. Okamura. (2014). Long α helices projecting from the membrane as the dimer interface in the voltage-gated H+ channel. J Gen Physiol 143: 377-386. 24567511
Gianti, E., L. Delemotte, M.L. Klein, and V. Carnevale. (2016). On the role of water density fluctuations in the inhibition of a proton channel. Proc. Natl. Acad. Sci. USA 113: E8359-E8368. 27956641
Gonzalez, C., H.P. Koch, B.M. Drum, and H.P. Larsson. (2010). Strong cooperativity between subunits in voltage-gated proton channels. Nat Struct Mol Biol 17: 51-56. 20023639
Gonzalez, C., S. Rebolledo, M.E. Perez, and H.P. Larsson. (2013). Molecular mechanism of voltage sensing in voltage-gated proton channels. J Gen Physiol 141: 275-285. 23401575
Hong, L., V. Singh, H. Wulff, and F. Tombola. (2015). Interrogation of the intersubunit interface of the open Hv1 proton channel with a probe of allosteric coupling. Sci Rep 5: 14077. 26365828
Koch, H.P., T. Kurokawa, Y. Okochi, M. Sasaki, Y. Okamura, and H.P. Larsson. (2008). Multimeric nature of voltage-gated proton channels. Proc. Natl. Acad. Sci. USA 105: 9111-9116. 18583477
Lee, S.Y., J.A. Letts, and R. Mackinnon. (2008). Dimeric subunit stoichiometry of the human voltage-dependent proton channel Hv1. Proc. Natl. Acad. Sci. USA 105: 7692-7695. 18509058
Lee, S.Y., J.A. Letts, and R. MacKinnon. (2009). Functional reconstitution of purified human Hv1 H+ channels. J. Mol. Biol. 387: 1055-1060. 19233200
Li, Q., R. Shen, J.S. Treger, S.S. Wanderling, W. Milewski, K. Siwowska, F. Bezanilla, and E. Perozo. (2015). Resting state of the human proton channel dimer in a lipid bilayer. Proc. Natl. Acad. Sci. USA 112: E5926-5935. 26443860
Lishko, P.V., I.L. Botchkina, A. Fedorenko, and Y. Kirichok. (2010). Acid extrusion from human spermatozoa is mediated by flagellar voltage-gated proton channel. Cell 140: 327-337. 20144758
Morgan, D., B. Musset, K. Kulleperuma, S.M. Smith, S. Rajan, V.V. Cherny, R. Pomès, and T.E. Decoursey. (2013). Peregrination of the selectivity filter delineates the pore of the human voltage-gated proton channel hHV1. J Gen Physiol 142: 625-640. 24218398
Musset, B., M. Capasso, V.V. Cherny, D. Morgan, M. Bhamrah, M.J. Dyer, and T.E. DeCoursey. (2010). Identification of Thr29 as a critical phosphorylation site that activates the human proton channel Hvcn1 in leukocytes. J. Biol. Chem. 285: 5117-5121. 20037153
Nelson, R.D., G. Kuan, M.H. Saier, Jr., and M. Montal. (1999). Modular assembly of voltage-gated channel proteins: a sequence analysis and phylogenetic study. J. Mol. Microbiol. Biotechnol. 2: 281-287. 10943557
Okamura, Y., Y. Fujiwara, and S. Sakata. (2015). Gating mechanisms of voltage-gated proton channels. Annu. Rev. Biochem. 84: 685-709. 26034892
Okuda, H., Y. Yonezawa, Y. Takano, Y. Okamura, and Y. Fujiwara. (2016). Direct Interaction between the Voltage Sensors Produces Cooperative Sustained Deactivation in Voltage-gated H+ Channel Dimers. J. Biol. Chem. 291: 5935-5947. 26755722
Pathak, M.M., T. Tran, L. Hong, B. Joós, C.E. Morris, and F. Tombola. (2016). The Hv1 proton channel responds to mechanical stimuli. J Gen Physiol 148: 405-418. 27799320
Ramsey, I.S., M.M. Moran, J.A. Chong, and D.E. Clapham. (2006). A voltage-gated proton-selective channel lacking the pore domain. Nature 440: 1213-1216. 16554753
Ramsey, I.S., Y. Mokrab, I. Carvacho, Z.A. Sands, M.S. Sansom, and D.E. Clapham. (2010). An aqueous H+ permeation pathway in the voltage-gated proton channel Hv1. Nat Struct Mol Biol 17: 869-875. 20543828
Sakata, S., N. Miyawaki, T.J. McCormack, H. Arima, A. Kawanabe, N. Özkucur, T. Kurokawa, Y. Jinno, Y. Fujiwara, and Y. Okamura. (2016). Comparison between mouse and sea urchin orthologs of voltage-gated proton channel suggests role of S3 segment in activation gating. Biochim. Biophys. Acta. 1858: 2972-2983. [Epub: Ahead of Print] 27637155
Sasaki, M., M. Takagi, and Y. Okamura. (2006). A voltage sensor-domain protein is a voltage-gated proton channel. Science 312: 589-592. 16556803
Smith, S.M., D. Morgan, B. Musset, V.V. Cherny, A.R. Place, J.W. Hastings, and T.E. Decoursey. (2011). Voltage-gated proton channel in a dinoflagellate. Proc. Natl. Acad. Sci. USA 108: 18162-18167. 22006335
Tombola, F., M.H. Ulbrich, and E.Y. Isacoff. (2008). The voltage-gated proton channel Hv1 has two pores, each controlled by one voltage sensor. Neuron. 58: 546-556. 18498736
Tombola, F., M.H. Ulbrich, and E.Y. Isacoff. (2009). Architecture and gating of Hv1 proton channels. J. Physiol. 587: 5325-5329. 19915215
Villalba-Galea, C.A. (2014). Hv1 Proton Channel Opening Is Preceded by a Voltage-independent Transition. Biophys. J. 107: 1564-1572. 25296308


and Trebak M. (2012). STIM/Orai signalling complexes in vascular smooth muscle. J Physiol. 590(Pt 17):4201-8. 22641780
Alansary, D., B. Schmidt, K. Dörr, I. Bogeski, H. Rieger, A. Kless, and B.A. Niemeyer. (2016). Thiol dependent intramolecular locking of Orai1 channels. Sci Rep 6: 33347. 27624281
Ali, S., T. Xu, and X. Xu. (2016). CRAC channel gating and its modulation by STIM1 and 2-APB. J. Physiol. [Epub: Ahead of Print] 27753099
Amcheslavsky, A., O. Safrina, and M.D. Cahalan. (2014). State-dependent block of Orai3 TM1 and TM3 cysteine mutants: Insights into 2-APB activation. J Gen Physiol 143: 621-631. 24733836
Baba, Y., K. Hayashi, Y. Fujii, A. Mizushima, H. Watarai, M. Wakamori, T. Numaga, Y. Mori, M. Iino, M. Hikida, and T. Kurosaki. (2006). Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum. Proc. Natl. Acad. Sci. U.S.A. 103(45):16704-16709.
Ben-Kasus Nissim, T., X. Zhang, A. Elazar, S. Roy, J.A. Stolwijk, Y. Zhou, R.K. Motiani, M. Gueguinou, N. Hempel, M. Hershfinkel, D.L. Gill, M. Trebak, and I. Sekler. (2017). Mitochondria control store-operated Ca2+ entry through Na+ and redox signals. EMBO. J. [Epub: Ahead of Print] 28219928
Bergsmann, J., I. Derler, M. Muik, I. Frischauf, M. Fahrner, P. Pollheimer, C. Schwarzinger, H.J. Gruber, K. Groschner, and C. Romanin. (2011). Molecular determinants within N terminus of Orai3 protein that control channel activation and gating. J. Biol. Chem. 286: 31565-31575. 21724845
Bird, G.S., S.Y. Hwang, J.T. Smyth, M. Fukushima, R.R. Boyles, and J.W. Putney, Jr. (2009). STIM1 is a calcium sensor specialized for digital signaling. Curr. Biol. 19: 1724-1729. 19765994
Bolotina, V.M. (2008). Orai, STIM1 and iPLA2beta: a view from a different perspective. J. Physiol. 586: 3035-3042. 18499724
Cahalan, M.D. (2009). STIMulating store-operated Ca2+ entry. Nat. Cell Biol. 11: 669-677. 19488056
Cheng, K.T., X. Liu, H.L. Ong, and I.S. Ambudkar. (2008). Functional requirement for Orai1 in store-operated TRPC1-STIM1 channels. J. Biol. Chem. 283: 12935-12940. 18326500
Clapham, D.E. (2009). A STIMulus Package puts orai calcium channels to work. Cell 136: 814-816. 19269360
DeHaven, W.I., J.T. Smyth, R.R. Boyles, G.S. Bird, and J.W. Putney, Jr. (2008). Complex actions of 2-aminoethyldiphenyl borate on store-operated calcium entry. J. Biol. Chem. 283: 19265-19273. 18487204
Demuro, A., A. Penna, O. Safrina, A.V. Yeromin, A. Amcheslavsky, M.D. Cahalan, and I. Parker. (2011). Subunit stoichiometry of human Orai1 and Orai3 channels in closed and open states. Proc. Natl. Acad. Sci. USA 108: 17832-17837. 21987805
Derler I., Plenk P., Fahrner M., Muik M., Jardin I., Schindl R., Gruber HJ., Groschner K. and Romanin C. (2013). The extended transmembrane Orai1 N-terminal (ETON) region combines binding interface and gate for Orai1 activation by STIM1. J Biol Chem. 288(40):29025-34. 23943619
Desai, P.N., X. Zhang, S. Wu, A. Janoshazi, S. Bolimuntha, J.W. Putney, and M. Trebak. (2015). Multiple types of calcium channels arising from alternative translation initiation of the Orai1 message. Sci Signal 8: ra74. 26221052
Feske, S., Y. Gwack, M. Prakriya, S. Srikanth, S.H. Puppel, B. Tanasa, P.G. Hogan, R.S. Lewis, M. Daly, and A. Rao. (2006). A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441: 179-185. 16582901
Garcia-Alvarez, G., B. Lu, K.A. Yap, L.C. Wong, J.V. Thevathasan, L. Lim, F. Ji, K.W. Tan, J.J. Mancuso, W. Tang, S.Y. Poon, G.J. Augustine, and M. Fivaz. (2015). STIM2 regulates PKA-dependent phosphorylation and trafficking of AMPARs. Mol. Biol. Cell 26: 1141-1159. 25609091
Gross, S.A., U. Wissenbach, S.E. Philipp, M. Freichel, A. Cavalié, and V. Flockerzi. (2007). Murine ORAI2 splice variants form functional Ca2+ release-activated Ca2+ (CRAC) channels. J. Biol. Chem. 282: 19375-19384. 17463004
Hogan, P.G., and A. Rao. (2007). Dissecting ICRAC, a store-operated calcium current. Trends Biochem. Sci. 32: 235-245. 17434311
Hou, X., L. Pedi, M.M. Diver, and S.B. Long. (2012). Crystal structure of the calcium release-activated calcium channel Orai. Science 338: 1308-1313. 23180775
How, J., A. Zhang, M. Phillips, A. Reynaud, S.Y. Lu, L.X. Pan, H.T. Ho, Y.H. Yau, A. Guskov, K. Pervushin, S.G. Shochat, and S. Eshaghi. (2013). Comprehensive Analysis and Identification of the Human STIM1 Domains for Structural and Functional Studies. PLoS One 8: e53979. 23320111
Hull, J.J., J.M. Lee, and S. Matsumoto. (2010). Functional role of STIM1 and Orai1 in silkmoth (Bombyx mori) sex pheromone production. Commun Integr Biol 3: 240-242. 20714403
Ji, W., P. Xu, Z. Li, J. Lu, L. Liu, Y. Zhan, Y. Chen, B. Hille, T. Xu, and L. Chen. (2008). Functional stoichiometry of the unitary calcium-release-activated calcium channel. Proc. Natl. Acad. Sci. USA 105: 13668-13673. 18757751
Lee, K.P., J.P. Yuan, W. Zeng, I. So, P.F. Worley, and S. Muallem. (2009). Molecular determinants of fast Ca2+-dependent inactivation and gating of the Orai channels. Proc. Natl. Acad. Sci. USA 106: 14687-14692. 19706554
Lis, A., C. Peinelt, A. Beck, S. Parvez, M. Monteilh-Zoller, A. Fleig, and R. Penner. (2007). CRACM1, CRACM2, and CRACM3 are store-operated Ca2+ channels with distinct functional properties. Curr. Biol. 17: 794-800. 17442569
Lis, A., S. Zierler, C. Peinelt, A. Fleig, and R. Penner. (2010). A single lysine in the N-terminal region of store-operated channels is critical for STIM1-mediated gating. J Gen Physiol 136: 673-686. 21115697
Ma, G., M. Wei, L. He, C. Liu, B. Wu, S.L. Zhang, J. Jing, X. Liang, A. Senes, P. Tan, S. Li, A. Sun, Y. Bi, L. Zhong, H. Si, Y. Shen, M. Li, M.S. Lee, W. Zhou, J. Wang, Y. Wang, and Y. Zhou. (2015). Inside-out Ca2+ signalling prompted by STIM1 conformational switch. Nat Commun 6: 7826. 26184105
Maruyama, Y., T. Ogura, K. Mio, K. Kato, T. Kaneko, S. Kiyonaka, Y. Mori, and C. Sato. (2009). Tetrameric Orai1 Is a Teardrop-shaped Molecule with a Long, Tapered Cytoplasmic Domain. J. Biol. Chem. 284: 13676-13685. 19289460
Matias, M.G., K.M. Gomolplitinant, D.G. Tamang, and M.H. Saier, Jr. (2010). Animal Ca2+ release-activated Ca2+ (CRAC) channels appear to be homologous to and derived from the ubiquitous cation diffusion facilitators. BMC Res Notes 3: 158-159. 20525303
McNally, B.A., M. Yamashita, A. Engh, and M. Prakriya. (2009). Structural determinants of ion permeation in CRAC channels. Proc. Natl. Acad. Sci. USA 106: 22516-22521. 20018736
Mercer, J.C., W.I. Dehaven, J.T. Smyth, B. Wedel, R.R. Boyles, G.S. Bird, and J.W. Putney, Jr. (2006). Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J. Biol. Chem. 281: 24979-24990. 16807233
Mignen O., Thompson JL. and Shuttleworth TJ. (2009). The molecular architecture of the arachidonate-regulated Ca2+-selective ARC channel is a pentameric assembly of Orai1 and Orai3 subunits. J Physiol. 587(Pt 17):4181-97. 19622606
Mignen, O., J.L. Thompson, and T.J. Shuttleworth. (2008a). Orai1 subunit stoichiometry of the mammalian CRAC channel pore. J. Physiol. 586: 419-425. 18006576
Mignen, O., J.L. Thompson, and T.J. Shuttleworth. (2008b). Both Orai1 and Orai3 are essential components of the arachidonate-regulated Ca2+-selective (ARC) channels. J. Physiol. 586: 185-195. 17991693
Motiani, R.K., I.F. Abdullaev, and M. Trebak. (2010). A novel native store-operated calcium channel encoded by Orai3: selective requirement of Orai3 versus Orai1 in estrogen receptor-positive versus estrogen receptor-negative breast cancer cells. J. Biol. Chem. 285: 19173-19183. 20395295
Palty, R., A. Raveh, I. Kaminsky, R. Meller, and E. Reuveny. (2012). SARAF Inactivates the Store Operated Calcium Entry Machinery to Prevent Excess Calcium Refilling. Cell 149: 425-438. 22464749
Park, C.Y., P.J. Hoover, F.M. Mullins, P. Bachhawat, E.D. Covington, S. Raunser, T. Walz, K.C. Garcia, R.E. Dolmetsch, and R.S. Lewis. (2009). STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136: 876-890. 19249086
Peinelt, C., A. Lis, A. Beck, A. Fleig, and R. Penner. (2008). 2-Aminoethoxydiphenyl borate directly facilitates and indirectly inhibits STIM1-dependent gating of CRAC channels. J. Physiol. 586: 3061-3073. 18403424
Peinelt, C., M. Vig, D.L. Koomoa, A. Beck, M.J. Nadler, M. Koblan-Huberson, A. Lis, A. Fleig, R. Penner, and J.P. Kinet. (2006). Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nat. Cell. Biol. 8: 771-773. 16733527
Penna, A., A. Demuro, A.V. Yeromin, S.L. Zhang, O. Safrina, I. Parker, and M.D. Cahalan. (2008). The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimers. Nature 456: 116-120. 18820677
Quintana A., Rajanikanth V., Farber-Katz S., Gudlur A., Zhang C., Jing J., Zhou Y., Rao A. and Hogan PG. (2015). TMEM110 regulates the maintenance and remodeling of mammalian ER-plasma membrane junctions competent for STIM-ORAI signaling. Proc Natl Acad Sci U S A. 112(51):E7083-92. 26644574
Schindl, R., J. Bergsmann, I. Frischauf, I. Derler, M. Fahrner, M. Muik, R. Fritsch, K. Groschner, and C. Romanin. (2008). 2-aminoethoxydiphenyl borate alters selectivity of Orai3 channels by increasing their pore size. J. Biol. Chem. 283: 20261-20267. 18499656
Soboloff, J., M.A. Spassova, X.D. Tang, T. Hewavitharana, W. Xu, and D.L. Gill. (2006). Orai1 and STIM reconstitute store-operated calcium channel function. J. Biol. Chem. 281: 20661-20665. 16766533
Srikanth, S., H.J. Jung, B. Ribalet, and Y. Gwack. (2010). The intracellular loop of Orai1 plays a central role in fast inactivation of Ca2+ release-activated Ca2+ channels. J. Biol. Chem. 285: 5066-5075. 20007711
Vig, M., A. Beck, J.M. Billingsley, A. Lis, S. Parvez, C. Peinelt, D.L. Koomoa, J. Soboloff, D.L. Gill, A. Fleig, J.P. Kinet, and R. Penner. (2006). CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr. Biol. 16: 2073-2079. 16978865
Vig, M., C. Peinelt, A. Beck, D.L. Koomoa, D. Rabah, M. Koblan-Huberson, S. Kraft, H. Turner, A. Fleig, R Penner, and J.P. Kinet. (2006). CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312: 1220-1223. 16645049
Yamashita, M., L. Navarro-Borelly, B.A. McNally, and M. Prakriya. (2007). Orai1 mutations alter ion permation and Ca2+-dependent fast inactivation of CRAC channels: evidence for coupling of permeation and gating. J. Gen. Physiol. 130(5):525-540.
Yarkoni, Y. and J.C. Cambier. (2011). Differential STIM1 expression in T and B cell subsets suggests a role in determining antigen receptor signal amplitude. Mol Immunol 48: 1851-1858. 21663969
Yeromin, A.V., S.L. Zhang, W. Jiang, Y. Yu, O. Safrina, and M.D. Cahalan. (2006). Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443: 226-229. 16921385
Zhang, S.L., A.V. Yeromin, J. Hu, A. Amcheslavsky, H. Zheng, and M.D. Cahalan. (2011). Mutations in Orai1 transmembrane segment 1 cause STIM1-independent activation of Orai1 channels at glycine 98 and channel closure at arginine 91. Proc. Natl. Acad. Sci. USA 108: 17838-17843. 21987804
Zhang, S.L., J.A. Kozak, W. Jiang, A.V. Yeromin, J. Chen, Y. Yu, A. Penna, W. Shen, V. Chi, and M.D. Cahalan. (2008). Store-dependent and -independent modes regulating Ca2+ release-activated Ca2+ channel activity of human Orai1 and Orai3. J. Biol. Chem. 283: 17662-17671. 18420579
Zhou, Y., S. Ramachandran, M. Oh-Hora, A. Rao, and P.G. Hogan. (2010). Pore architecture of the ORAI1 store-operated calcium channel. Proc. Natl. Acad. Sci. USA 107: 4896-4901. 20194792


Atoom, A.M., N.G. Taylor, and R.S. Russell. (2014). The elusive function of the hepatitis C virus p7 protein. Virology 462-463: 377-387. 25001174
Clarke, D., Griffin, S., Beales, L., Gelais, C.S., Burgess, S., Harris, M., and Rowlands, D. (2006). Evidence for the formation of a heptameric ion channel complex by the hepatitis C virus p7 protein in vitro. J. Biol. Chem. 281: 37057-37068. 17032656
Fischer, W.B. and H.J. Hsu. (2011). Viral channel forming proteins - modeling the target. Biochim. Biophys. Acta. 1808: 561-571. 20546700
Fischer, W.B., Y.T. Wang, C. Schindler, and C.P. Chen. (2012). Mechanism of function of viral channel proteins and implications for drug development. Int Rev Cell Mol Biol 294: 259-321. 22364876
Gan, S.W., W. Surya, A. Vararattanavech, and J. Torres. (2014). Two Different Conformations in Hepatitis C Virus p7 Protein Account for Proton Transport and Dye Release. PLoS One 9: e78494. 24409277
Gladue, D.P., L.G. Holinka, E. Largo, I. Fernandez Sainz, C. Carrillo, V. O'Donnell, R. Baker-Branstetter, Z. Lu, X. Ambroggio, G.R. Risatti, J.L. Nieva, and M.V. Borca. (2012). Classical swine fever virus p7 protein is a viroporin involved in virulence in swine. J. Virol. 86: 6778-6791. 22496228
Guo, H.C., S.Q. Sun, D.H. Sun, Y.Q. Wei, J. Xu, M. Huang, X.T. Liu, Z.X. Liu, J.X. Luo, H. Yin, and D.X. Liu. (2013). Viroporin activity and membrane topology of classic swine fever virus p7 protein. Int J Biochem. Cell Biol. 45: 1186-1194. 23583663
Hyser, J.M. and M.K. Estes. (2015). Pathophysiological Consequences of Calcium-Conducting Viroporins. Annu Rev Virol 2: 473-496. 26958925
Khaliq, S., S. Jahan, and S. Hassan. (2011). Hepatitis C virus p7: molecular function and importance in hepatitis C virus life cycle and potential antiviral target. Liver Int 31: 606-617. 21457434
Largo, E., C. Verdiá-Báguena, V.M. Aguilella, J.L. Nieva, and A. Alcaraz. (2016). Ion channel activity of the CSFV p7 viroporin in surrogates of the ER lipid bilayer. Biochim. Biophys. Acta. 1858: 30-37. 26464198
Lin, Z., W. Liang, K. Kang, H. Li, Z. Cao, and Y. Zhang. (2014). Classical swine fever virus and p7 protein induce secretion of IL-1β in macrophages. J Gen Virol 95: 2693-2699. 25146005
Luik, P., C. Chew, J. Aittoniemi, J. Chang, P. Wentworth, Jr, R.A. Dwek, P.C. Biggin, C. Vénien-Bryan, and N. Zitzmann. (2009). The 3-dimensional structure of a hepatitis C virus p7 ion channel by electron microscopy. Proc. Natl. Acad. Sci. USA 106: 12712-12716. 19590017
Madan, V. and R. Bartenschlager. (2015). Structural and Functional Properties of the Hepatitis C Virus p7 Viroporin. Viruses 7: 4461-4481. 26258788
Madan, V., S. Sánchez-Martínez, N. Vedovato, G. Rispoli, L. Carrasco, and J.L. Nieva. (2007). Plasma membrane-porating domain in poliovirus 2B protein. A short peptide mimics viroporin activity. J. Mol. Biol. 374(4):951-964. 17963782
Mathew, S., K. Fatima, M.Q. Fatmi, G. Archunan, M. Ilyas, N. Begum, E. Azhar, G. Damanhouri, and I. Qadri. (2015). Computational Docking Study of p7 Ion Channel from HCV Genotype 3 and Genotype 4 and Its Interaction with Natural Compounds. PLoS One 10: e0126510. 26030803
Montserret, R., N. Saint, C. Vanbelle, A.G. Salvay, J.P. Simorre, C. Ebel, N. Sapay, J.G. Renisio, A. Böckmann, E. Steinmann, T. Pietschmann, J. Dubuisson, C. Chipot, and F. Penin. (2010). NMR structure and ion channel activity of the p7 protein from hepatitis C virus. J. Biol. Chem. 285: 31446-31461. 20667830
Popescu, C.I., N. Callens, D. Trinel, P. Roingeard, D. Moradpour, V. Descamps, G. Duverlie, F. Penin, L. Héliot, Y. Rouillé, and J. Dubuisson. (2011). NS2 protein of hepatitis C virus interacts with structural and non-structural proteins towards virus assembly. PLoS Pathog 7: e1001278. 21347350
Scull, M.A., W.M. Schneider, B.R. Flatley, R. Hayden, C. Fung, C.T. Jones, M. van de Belt, F. Penin, and C.M. Rice. (2015). The N-terminal Helical Region of the Hepatitis C Virus p7 Ion Channel Protein Is Critical for Infectious Virus Production. PLoS Pathog 11: e1005297. 26588073
Walter, S., A. Bollenbach, J. Doerrbecker, S. Pfaender, R.J. Brown, G. Vieyres, C. Scott, R. Foster, A. Kumar, N. Zitzmann, S. Griffin, F. Penin, T. Pietschmann, and E. Steinmann. (2016). Ion-channel function and cross-species determinants in viral assembly of nonprimate hepacivirus p7. J. Virol. [Epub: Ahead of Print] 26962224
Wang YT., Schilling R., Fink RH. and Fischer WB. (2014). Ion-dynamics in hepatitis C virus p7 helical transmembrane domains--a molecular dynamics simulation study. Biophys Chem. 192:33-40. 24997299


Annaert, W. and B. De Strooper. (2002). A cell biological perspective on Alzheimer's disease. Annu. Rev. Cell Dev. Biol. 18: 25-51. 12142279
Bezprozvanny, I. (2012). Presenilins: a novel link between intracellular calcium signaling and lysosomal function? J. Cell Biol. 198: 7-10. 22778275
Cheung, K.H., D. Shineman, M. Müller, C. Cárdenas, L. Mei, J. Yang, T. Tomita, T. Iwatsubo, V.M. Lee, and J.K. Foskett. (2008). Mechanism of Ca2+ disruption in Alzheimer's disease by presenilin regulation of InsP3 receptor channel gating. Neuron. 58: 871-883. 18579078
Cipolat, S., T. Rudka, D. Hartmann, V. Costa, L. Serneels, K. Craessaerts, K. Metzger, C. Frezza, W. Annaert, L. D'Adamio, C. Derks, T. Dejaegere, L. Pellegrini, R. D'Hooge, L. Scorrano, and B. De Strooper. (2006). Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 126: 163-175. 16839884
Coen, K., R.S. Flannagan, S. Baron, L.R. Carraro-Lacroix, D. Wang, W. Vermeire, C. Michiels, S. Munck, V. Baert, S. Sugita, F. Wuytack, P.R. Hiesinger, S. Grinstein, and W. Annaert. (2012). Lysosomal calcium homeostasis defects, not proton pump defects, cause endo-lysosomal dysfunction in PSEN-deficient cells. J. Cell Biol. 198: 23-35. 22753898
Eckert, G.P. and W.E. Müller. (2009). Presenilin 1 modifies lipid raft composition of neuronal membranes. Biochem. Biophys. Res. Commun. 382: 673-677. 19292975
Hu, J., Y. Xue, S. Lee, and Y. Ha. (2011). The crystal structure of GXGD membrane protease FlaK. Nature 475: 528-531. 21765428
Kim, J. and R. Schekman. (2004). The ins and outs of presenilin 1 membrane topology. Proc. Natl. Acad. Sci. USA 101: 905-906. 14732690
Kuo, I.Y., J. Hu, Y. Ha, and B.E. Ehrlich. (2015). Presenilin-like GxGD membrane proteases have dual roles as proteolytic enzymes and ion channels. J. Biol. Chem. 290: 6419-6427. 25609250
Laudon, H., E.M. Hansson, K. Melen, A. Bergman, M.R. Farmery, B. Winblad, U. Lendahl, G. von Heijne, and J. Naslund. (2005). A nine-transmembrane domain topology for presenilin 1. J. Biol. Chem. 280: 35352-35360. 16046406
Li, X., S. Dang, C. Yan, X. Gong, J. Wang, and Y. Shi. (2013). Structure of a presenilin family intramembrane aspartate protease. Nature 493: 56-61. 23254940
Nelson, O., C. Supnet, A. Tolia, K. Horré, B. De Strooper, and I. Bezprozvanny. (2011). Mutagenesis mapping of the presenilin 1 calcium leak conductance pore. J. Biol. Chem. 286: 22339-22347. 21531718
Sato, C., Y. Morohashi, T. Tomita, and T. Iwatsubo. (2006). Structure of the catalytic pore of γ-secretase probed by the accessibility of substituted cysteines. J. Neurosci. 26: 12081-12088. 17108181
Smith, I.F., K.N. Green, and F.M. LaFerla. ((2005)). Calcium dysregulation in Alzheimer's disease: recent advances gained from genetically modified animals. Cell Calcium 38: 427-437. 16125228
Spasic, D., A. Tolia, K. Dillen, V. Baert, B. De Strooper, S. Vrijens, and W. Annaert. (2006). Presenilin-1 maintains a nine-transmembrane topology throughout the secretory pathway. J. Biol. Chem. 281: 26569-26577. 16846981
Takagi, S., A. Tominaga, C. Sato, T. Tomita, and T. Iwatsubo. (2010). Participation of transmembrane domain 1 of presenilin 1 in the catalytic pore structure of the γ-secretase. J. Neurosci. 30: 15943-15950. 21106832
Tandon, A. and P. Fraser. (2002). The presenilins. Genome Biol. 3: (E-pub). 12429067
Tu, H., O. Nelson, A. Bezprozvanny, Z. Wang, S.F. Lee, Y.H. Hao, L. Serneels, B. De Strooper, G. Yu, and I. Bezprozvanny. (2006). Presenilins form ER Ca2+ leak channels, a function disrupted by familial Alzheimer's disease-linked mutations. Cell 126: 981-993. 16959576
Wolfe, M.S. and R. Kopan. (2004). Intramembrane proteolysis: theme and variations. Science 305: 1119-1123. 15326347


Yao, C.K., Y.Q. Lin, C.V. Ly, T. Ohyama, C.M. Haueter, V.Y. Moiseenkova-Bell, T.G. Wensel, and H.J. Bellen. (2009). A synaptic vesicle-associated Ca2+ channel promotes endocytosis and couples exocytosis to endocytosis. Cell 138: 947-960. 19737521


Aller, S.G. and V.M. Unger. (2006). Projection structure of the human copper transporter CTR1 at 6 Å resolution reveals a compact trimer with a novel channel-like architecture. Proc. Natl. Acad. Sci. USA 103: 3627-3632. 16501047
Andrés-Colás, N., A. Perea-García, S. Puig, and L. Peñarrubia. (2010). Deregulated copper transport affects Arabidopsis development especially in the absence of environmental cycles. Plant Physiol. 153: 170-184. 20335405
Andrews, N.C. (2001). Mining copper transport genes. Proc. Natl. Acad. Sci. USA 98: 6543-6545. 11390990
Barhoom, S., M. Kupiec, X. Zhao, J.R. Xu, and A. Sharon. (2008). Functional characterization of CgCTR2, a putative vacuole copper transporter that is involved in germination and pathogenicity in Colletotrichum gloeosporioides. Eukaryot. Cell. 7: 1098-1108. 18456860
Barresi, V., A. Trovato-Salinaro, G. Spampinato, N. Musso, S. Castorina, E. Rizzarelli, and D.F. Condorelli. (2016). Transcriptome analysis of copper homeostasis genes reveals coordinated upregulation of SLC31A1,SCO1, and COX11 in colorectal cancer. FEBS Open Bio 6: 794-806. 27516958
Beaudoin J., Thiele DJ., Labbe S. and Puig S. (2011). Dissection of the relative contribution of the Schizosaccharomyces pombe Ctr4 and Ctr5 proteins to the copper transport and cell surface delivery functions. Microbiology. 157(Pt 4):1021-31. 21273250
Beaudoin, J., S. Ekici, F. Daldal, S. Ait-Mohand, B. Guérin, and S. Labbé. (2013). Copper transport and regulation in Schizosaccharomyces pombe. Biochem Soc Trans 41: 1679-1686. 24256274
Bellemare, D.R., L. Shaner, K.A. Morano, J. Beaudoin, R. Langlois, and S. Labbé. (2002). Ctr6, a vacuolar membrane copper transporter in Schizosaccharomyces pombe. J. Biol. Chem. 277: 46676-46686. 12244050
Bertinato, J., E. Swist, L.J. Plouffe, S.P. Brooks, and M.R. L'abbé. (2008). Ctr2 is partially localized to the plasma membrane and stimulates copper uptake in COS-7 cells. Biochem. J. 409(3): 731-740. 17944601
Bertinato, J., N. Hidiroglou, R. Peace, K.A. Cockell, K.D. Trick, P. Jee, A. Giroux, R. Madère, G. Bonacci, M. Iskandar, S. Hayward, N. Giles, and M.R. L'Abbé. (2007). Sparing effects of selenium and ascorbic acid on vitamin C and E in guinea pig tissues. Nutr J 6: 7. 17386096
Choveaux, D.L., J.M. Przyborski, and J.D. Goldring. (2012). A Plasmodium falciparum copper-binding membrane protein with copper transport motifs. Malar J 11: 397. 23190769
Dancis, A., D. Haile, D.S. Yuan, and R.D. Klausner. (1994a). The Saccharomyces cerevisiae copper transport protein (Ctrlp). Biochemical characterization, regulation by copper, and physiologic role in copper uptake. J. Biol. Chem. 269: 25660-25667. 7929270
Dancis, A., D.S. Yuan, D. Haile, C. Askwith, D. Eide, C. Moehle, J. Kaplan, and R.D. Klausner. (1994b). Molecular characterization of a copper transport protein in S. cerevisiae: An unexpected role for copper in iron transport. Cell 76: 393-402. 8293472
De Feo, C.J., S. Mootien, and V.M. Unger. (2010). Tryptophan scanning analysis of the membrane domain of CTR-copper transporters. J. Membr. Biol. 234: 113-123. 20224886
De Feo, C.J., S.G. Aller, and V.M. Unger. (2007). A structural perspective on copper uptake in eukaryotes. Biometals 20: 705-716. 17211682
De Feo, C.J., S.G. Aller, G.S. Siluvai, N.J. Blackburn, and V.M. Unger. (2009). Three-dimensional structure of the human copper transporter hCTR1. Proc. Natl. Acad. Sci. USA 106: 4237-4242. 19240214
Dong Z., Wang Y., Wang C., Xu H., Guan L., Li Z. and Li F. (2015). Self-Assembly of the Second Transmembrane Domain of hCtr1 in Micelles and Interaction with Silver Ion. J Phys Chem B. 119(26):8302-12. 26061257
Du X., Wang X., Li H. and Sun H. (2012). Comparison between copper and cisplatin transport mediated by human copper transporter 1 (hCTR1). Metallomics. 4(7):679-85. 22552365
Dumay, Q.C., A.J. Debut, N.M. Mansour, and M.H. Saier, Jr. (2006). The copper transporter (Ctr) family of Cu+ uptake systems. J. Mol. Microbiol. Biotechnol. 11: 10-19. 16825786
Eide, D. and M. L. Guerinot. (1997). Metal ion uptake in eukaryotes. ASM News 63: 199-205.
Eisses, J.F. and J.H. Kaplan. (2002). Molecular characterization of hCTR1, the human copper uptake protein. J. Biol. Chem. 277: 29162-29171. 12034741
Eisses, J.F. and Kaplan, J.H. (2005). The mechanism of copper uptake mediated by human CTR1: a mutational analysis. J. Biol. Chem. 280: 37159-37168. 16135512
Garcia-Molina, A., N. Andrés-Colás, A. Perea-García, S. Del Valle-Tascón, L. Peñarrubia, and S. Puig. (2011). The intracellular Arabidopsis COPT5 transport protein is required for photosynthetic electron transport under severe copper deficiency. Plant J. 65: 848-860. 21281364
Guo, Y., K. Smith, and M.J. Petris. (2004). Cisplatin stabilizes a multimeric complex of the human Ctr1 copper transporter. Requirement for the extracellular methionine-rich clusters. J. Biol. Chem. 279: 46393-46399. 15326162
Harris, E.D. (2000). Cellular copper transport and metabolism. Annu. Rev. Nutr. 20: 291-310. 10940336
Jung, H.I., S.R. Gayomba, M.A. Rutzke, E. Craft, L.V. Kochian, and O.K. Vatamaniuk. (2012). COPT6 Is a Plasma Membrane Transporter That Functions in Copper Homeostasis in Arabidopsis and Is a Novel Target of SQUAMOSA Promoter-binding Protein-like 7. J. Biol. Chem. 287: 33252-33267. 22865877
Kadioglu, O., J. Serly, E.J. Seo, I. Vincze, C. Somlai, M.E. Saeed, J. Molnár, and T. Efferth. (2015). Molecular Docking Analysis of Steroid-based Copper Transporter 1 Inhibitors. Anticancer Res 35: 6505-6508. 26637863
Kaplan, J.H. and S. Lutsenko. (2009). Copper transport in mammalian cells: special care for a metal with special needs. J. Biol. Chem. 284: 25461-25465. 19602511
Klaumann, S., S.D. Nickolaus, S.H. Fürst, S. Starck, S. Schneider, H. Ekkehard Neuhaus, and O. Trentmann. (2011). The tonoplast copper transporter COPT5 acts as an exporter and is required for interorgan allocation of copper in Arabidopsis thaliana. New Phytol 192: 393-404. 21692805
Kuo, Y.-M., B. Zhou, D. Cosco, and J. Gitschier. (2001). The copper transporter CTR1 provides an essential function in mammalian embryonic development. Proc. Natl. Acad. Sci. USA 98: 6836-6841. 11391004
Larson, C.A., P.L. Adams, B.G. Blair, R. Safaei, and S.B. Howell. (2010). The role of the methionines and histidines in the transmembrane domain of mammalian copper transporter 1 in the cellular accumulation of cisplatin. Mol Pharmacol 78: 333-339. 20519567
Lee, J., J.R. Prohaska, and D.J. Thiele. (2001). Essential role for mammalian copper transporter Ctr1 in copper homeostasis and embryonic development. Proc. Natl. Acad. Sci. USA 98: 6842-6847. 11391005
Lee, J., M.M.O. Peña, Y. Nose, and D.J. Thiele. (2002). Biochemical characterization of the human copper transporter Ctr1. J. Biol. Chem. 277: 4380-4387. 11734551
Lee, S., S.B. Howell, and S.J. Opella. (2007). NMR and mutagenesis of human copper transporter 1 (hCtr1) show that Cys-189 is required for correct folding and dimerization. Biochim. Biophys. Acta. 1768: 3127-3134. 17959139
Martins, V., M. Hanana, E. Blumwald, and H. Gerós. (2012). Copper transport and compartmentation in grape cells. Plant Cell Physiol. 53: 1866-1880. 22952251
Marvin, M.E., R.P. Mason, and A.M. Cashmore. (2004). The CaCTR1 gene is required for high-affinity iron uptake and is transcriptionally controlled by a copper-sensing transactivator encoded by CaMAC1. Microbiology 150: 2197-2208. 15256562
Maryon EB., Molloy SA., Ivy K., Yu H. and Kaplan JH. (2013). Rate and regulation of copper transport by human copper transporter 1 (hCTR1). J Biol Chem. 288(25):18035-46. 23658018
Molloy, S.A. and J.H. Kaplan. (2009). Copper-dependent recycling of hCTR1, the human high affinity copper transporter. J. Biol. Chem. 284: 29704-29713. 19740744
Nose, Y., E.M. Rees, and D.J. Thiele. (2006). Structure of the Ctr1 copper trans'PORE'ter reveals novel architecture. Trends Biochem. Sci. 31: 604-607. 16982196
Page, M.D., J. Kropat, P.P. Hamel, and S.S. Merchant. (2009). Two Chlamydomonas CTR Copper Transporters with a Novel Cys-Met Motif Are Localized to the Plasma Membrane and Function in Copper Assimilation. Plant Cell 21: 928-943. 19318609
Park YS., Lian H., Chang M., Kang CM. and Yun CW. (2014). Identification of high-affinity copper transporters in Aspergillus fumigatus. Fungal Genet Biol. 73:29-38. 25281782
Puig, S., J. Lee, M. Lau, and D.J. Thiele. (2002). Biochemical and genetic analyses of yeast and human high affinity copper transporters suggest a conserved mechanism for copper uptake. J. Biol. Chem. 277: 26021-26030. 11983704
Rees, E.M. and D.J. Thiele. (2007). Identification of a vacuole-associated metalloreductase and its role in Ctr2-mediated intracellular copper mobilization. J. Biol. Chem. 282: 21629-21638. 17553781
Rubino, J.T., M.P. Chenkin, M. Keller, P. Riggs-Gelasco, and K.J. Franz. (2011). A comparison of methionine, histidine and cysteine in copper(I)-binding peptides reveals differences relevant to copper uptake by organisms in diverse environments. Metallomics 3: 61-73. 21553704
Rubino, J.T., P. Riggs-Gelasco, and K.J. Franz. (2010). Methionine motifs of copper transport proteins provide general and flexible thioether-only binding sites for Cu(I) and Ag(I). J Biol Inorg Chem 15: 1033-1049. 20437064
Sancenón, V., S. Puig, I. Nateu-Andrés, E. Dorcey, D.J. Thiele, and L. Peñarrubia. (2004). The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development. J. Biol. Chem. 279: 15348-15355. 14726516
Sinani, D., D.J. Adle, H. Kim, and J. Lee. (2007). Distinct mechanisms for Ctr1-mediated copper and cisplatin transport. J. Biol. Chem. 282: 26775-26785. 17627943
Soll, S.J., S.J. Neil, and P.D. Bieniasz. (2010). Identification of a receptor for an extinct virus. Proc. Natl. Acad. Sci. USA 107: 19496-19501. 20974973
Turski, M.L., and D.J. Thiele. (2007). Drosophila Ctr1A functions as a copper transporter essential for development. J. Biol. Chem. 282: 24017-24026. 17573340
Vatansever, R., I.I. Ozyigit, and E. Filiz. (2016). Genome-Wide Identification and Comparative Analysis of Copper Transporter Genes in Plants. Interdiscip Sci. [Epub: Ahead of Print] 26857867
Wang, X., P. Jiang, P. Wang, C.S. Yang, X. Wang, and Q. Feng. (2015). EGCG Enhances Cisplatin Sensitivity by Regulating Expression of the Copper and Cisplatin Influx Transporter CTR1 in Ovary Cancer. PLoS One 10: e0125402. 25927922
Wee, N.K., D.C. Weinstein, S.T. Fraser, and S.J. Assinder. (2013). The mammalian copper transporters CTR1 and CTR2 and their roles in development and disease. Int J Biochem. Cell Biol. 45: 960-963. 23391749
Wu, X., D. Sinani, H. Kim, and J. Lee. (2009). Copper transport activity of yeast Ctr1 is down-regulated via its C terminus in response to excess copper. J. Biol. Chem. 284: 4112-4122. 19088072
Yang L., Huang Z. and Li F. (2012). Structural insights into the transmembrane domains of human copper transporter 1. J Pept Sci. 18(7):449-55. 22615137
Zhang H., Yang J., Wang W., Li D., Hu X., Wang H., Wei M., Liu Q., Wang Z. and Li C. (2015). Genome-wide identification and expression profiling of the copper transporter gene family in Populus trichocarpa. Plant Physiol Biochem. 97:451-60. 26581045
Zhou H., K.M. Cadigan, D.J. Thiele. (2003) A copper-regulated transporter required for copper acquisition, pigmentation, and specific stages of development in Drosophila melanogaster. J. Biol. Chem. 278:48210-48218. 12966081
Zhou, B. and J. Gitschier. (1997). hCTR1: a human gene for copper uptake identified by complementation in yeast. Proc. Natl. Acad. Sci. USA 94: 7481-7486. 9207117
Zhou, H. and D.J. Thiele. (2001). Identification of a novel high affinity copper transport complex in the fission yeast Schizosaccharomyces pombe. J. Biol. Chem. 276: 20529-20535. 11274192
Zimnicka, A.M., E.B. Maryon, and J.H. Kaplan. (2007). Human copper transporter hCTR1 mediates basolateral uptake of copper into enterocytes: implications for copper homeostasis. J. Biol. Chem. 282: 26471-26480. 17627945


Chan, C.M., H. Tsoi, W.M. Chan, S. Zhai, C.O. Wong, X. Yao, W.Y. Chan, S.K. Tsui, and H.Y. Chan. (2009). The ion channel activity of the SARS-coronavirus 3a protein is linked to its pro-apoptotic function. Int J Biochem. Cell Biol. 41: 2232-2239. 19398035
Chien, T.H., Y.L. Chiang, C.P. Chen, P. Henklein, K. Hänel, I.S. Hwang, D. Willbold, and W.B. Fischer. (2013). Assembling an ion channel: ORF 3a from SARS-CoV. Biopolymers 99: 628-635. 23483519
Lu, W., B.J. Zheng, K. Xu, W. Schwarz, L. Du, C.K. Wong, J. Chen, S. Duan, V. Deubel, and B. Sun. (2006). Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release. Proc. Natl. Acad. Sci. USA 103: 12540-12545. 16894145
Schindler, C. and W.B. Fischer. (2012). Sequence alignment of viral channel proteins with cellular ion channels. J Comput Biol 19: 1060-1072. 22891808
Schwarz, S., K. Wang, W. Yu, B. Sun, and W. Schwarz. (2011). Emodin inhibits current through SARS-associated coronavirus 3a protein. Antiviral Res 90: 64-69. 21356245


Balannik, V., R.A. Lamb, and L.H. Pinto. (2008). The oligomeric state of the active BM2 ion channel protein of influenza B virus. J. Biol. Chem. 283(8): 4895-4904. 18073201
Fischer, W.B. and H.J. Hsu. (2011). Viral channel forming proteins - modeling the target. Biochim. Biophys. Acta. 1808: 561-571. 20546700
Fischer, W.B., Y.T. Wang, C. Schindler, and C.P. Chen. (2012). Mechanism of function of viral channel proteins and implications for drug development. Int Rev Cell Mol Biol 294: 259-321. 22364876
Hyser, J.M. and M.K. Estes. (2015). Pathophysiological Consequences of Calcium-Conducting Viroporins. Annu Rev Virol 2: 473-496. 26958925
Imai, M., K. Kawasaki, and T. Odagiri. (2008). Cytoplasmic domain of influenza B virus BM2 protein plays critical roles in production of infectious virus. J. Virol. 82: 728-739. 17989175
Ma, C., C.S. Soto, Y. Ohigashi, A. Taylor, V. Bournas, B. Glawe, M.K. Udo, W.F. Degrado, R.A. Lamb, and L.H. Pinto. (2008). Identification of the Pore-lining Residues of the BM2 Ion Channel Protein of Influenza B Virus. J. Biol. Chem. 283: 15921-15931. 18408016
Mould J.A., R.G. Paterson, M. Takeda, Y. Ohigashi, P. Venkataraman, R.A. Lamb, L.H. Pinto. (2003). Influenza B virus BM2 protein has ion channel activity that conducts protons across membranes. Dev Cell. 5: 175-184. 12852861
Nieto-Torres, J.L., C. Verdiá-Báguena, C. Castaño-Rodriguez, V.M. Aguilella, and L. Enjuanes. (2015). Relevance of Viroporin Ion Channel Activity on Viral Replication and Pathogenesis. Viruses 7: 3552-3573. 26151305
Paterson R.G., M. Takeda, Y. Ohigashi, L.H. Pinto, R.A. Lamb. (2003). Influenza B virus BM2 protein is an oligomeric integral membrane protein expressed at the cell surface. Virology. 306: 7-17. 12620792
Pielak, R.M. and J.J. Chou. (2010). Flu channel drug resistance: a tale of two sites. Protein Cell 1: 246-258. 21203971
Pielak, R.M., K. Oxenoid, and J.J. Chou. (2011). Structural investigation of rimantadine inhibition of the AM2-BM2 chimera channel of influenza viruses. Structure 19: 1655-1663. 22078564
Wang, J., R.M. Pielak, M.A. McClintock, and J.J. Chou. (2009). Solution structure and functional analysis of the influenza B proton channel. Nat Struct Mol Biol 16: 1267-1271. 19898475


Galloux, M., S. Libersou, I.D. Alves, R. Marquant, G.F. Salgado, H. Rezaei, J. Lepault, B. Delmas, S. Bouaziz, and N. Morellet. (2010). NMR structure of a viral peptide inserted in artificial membranes: a view on the early steps of the birnavirus entry process. J. Biol. Chem. 285: 19409-19421. 20385550
Galloux, M., S. Libersou, N. Morellet, S. Bouaziz, B. Da Costa, M. Ouldali, J. Lepault, and B. Delmas. (2007). Infectious bursal disease virus, a non-enveloped virus, possesses a capsid-associated peptide that deforms and perforates biological membranes. J. Biol. Chem. 282: 20774-20784. 17488723


Agosto, M.A., T. Ivanovic, and M.L. Nibert. (2006). Mammalian reovirus, a nonfusogenic nonenveloped virus, forms size-selective pores in a model membrane. Proc. Natl. Acad. Sci. U.S.A. 103: 16496-16501. 17053074


Bong D.T., C. Steinem, A. Janshoff, J.E. Johnson, M. Reza Ghadiri. (1999). A Highly Membrane-Active Peptide in Flock House Virus: Implications for the Mechanism of Nodavirus Infection. Chem Biol. 6(7):473-481. 10381406
Janshoff A., D.T. Bong, C. Steinem, J.E. Johnson, and M.R. Ghadiri. (1999). An Animal Virus-Derived Peptide Switches Membrane Morphology: Possible Relevance to Nodaviral Transfection Processes. Biochemistry. 38(17):5328-5336. 10220319


Cabral, W.A., M. Ishikawa, M. Garten, E.N. Makareeva, B.M. Sargent, M. Weis, A.M. Barnes, E.A. Webb, N.J. Shaw, L. Ala-Kokko, F.L. Lacbawan, W. Högler, S. Leikin, P.S. Blank, J. Zimmerberg, D.R. Eyre, Y. Yamada, and J.C. Marini. (2016). Absence of the ER Cation Channel TMEM38B/TRIC-B Disrupts Intracellular Calcium Homeostasis and Dysregulates Collagen Synthesis in Recessive Osteogenesis Imperfecta. PLoS Genet 12: e1006156. 27441836
Kasuya, G., M. Hiraizumi, A.D. Maturana, K. Kumazaki, Y. Fujiwara, K. Liu, Y. Nakada-Nakura, S. Iwata, K. Tsukada, T. Komori, S. Uemura, Y. Goto, T. Nakane, M. Takemoto, H.E. Kato, K. Yamashita, M. Wada, K. Ito, R. Ishitani, M. Hattori, and O. Nureki. (2016). Crystal structures of the TRIC trimeric intracellular cation channel orthologues. Cell Res 26: 1288-1301. 27909292
Lv, F., X.J. Xu, J.Y. Wang, Y. Liu, Asan, J.W. Wang, L.J. Song, Y.W. Song, Y. Jiang, O. Wang, W.B. Xia, X.P. Xing, and M. Li. (2016). Two novel mutations in TMEM38B result in rare autosomal recessive osteogenesis imperfecta. J Hum Genet. [Epub: Ahead of Print] 26911354
Matyjaszkiewicz, A., E. Venturi, F. O''Brien, T. Iida, M. Nishi, H. Takeshima, K. Tsaneva-Atanasova, and R. Sitsapesan. (2015). Subconductance gating and voltage sensitivity of sarcoplasmic reticulum K+ channels: a modeling approach. Biophys. J. 109: 265-276. 26200862
Ou, X., J. Guo, L. Wang, H. Yang, X. Liu, J. Sun, and Z. Liu. (2017). Ion- and water-binding sites inside an occluded hourglass pore of a trimeric intracellular cation (TRIC) channel. BMC Biol 15: 31. 28431535
Shin, S.K., H.S. Park, H.J. Kwon, H.J. Yoon, and J.W. Suh. (2007). Genetic characterization of two S-adenosylmethionine-induced ABC transporters reveals their roles in modulations of secondary metabolism and sporulation in Streptomyces coelicolor M145. J Microbiol Biotechnol 17: 1818-1825. 18092466
Silverio, A.L. and M.H. Saier, Jr. (2011). Bioinformatic characterization of the trimeric intracellular cation-specific channel protein family. J. Membr. Biol. 241: 77-101. 21519847
Su, M., F. Gao, Q. Yuan, Y. Mao, D.L. Li, Y. Guo, C. Yang, X.H. Wang, R. Bruni, B. Kloss, H. Zhao, Y. Zeng, F.B. Zhang, A.R. Marks, W.A. Hendrickson, and Y.H. Chen. (2017). Structural basis for conductance through TRIC cation channels. Nat Commun 8: 15103. 28524849
Yang, H., M. Hu, J. Guo, X. Ou, T. Cai, and Z. Liu. (2016). Pore architecture of TRIC channels and insights into their gating mechanism. Nature. [Epub: Ahead of Print] 27698420
Yazawa M., C. Ferrante, J. Feng, K. Mio, T. Ogura, M. Zhang, P. Lin, Z. Pan, S. Komazaki, K. Kato, M. Nishi, X. Zhao, N. Weisleder, C. Sato., J. Ma and H. Takeshima. (2007). TRIC channels are essential for Ca2+ handling in intracellular stores. Nature. 448:78-82. 17611541


Burghardt, T., D.J. Näther, B. Junglas, H. Huber, and R. Rachel. (2007). The dominating outer membrane protein of the hyperthermophilic Archaeum Ignicoccus hospitalis: a novel pore-forming complex. Mol. Microbiol. 63: 166-176. 17163971


Carmosino, M., F. Rizzo, G. Procino, D. Basco, G. Valenti, B. Forbush, N. Schaeren-Wiemers, M.J. Caplan, and M. Svelto. (2010). MAL/VIP17, a New Player in the Regulation of NKCC2 in the Kidney. Mol. Biol. Cell 21: 3985-3997. 20861303
Cui W., L. Yu, H. He, Y. Chu, J. Gao, B. Wan, L. Tang, S. Zhao. (2001). Cloning of human myeloid-associated differentiation marker (MYADM) gene whose expression was up-regulated in NB4 cells induced by all-trans retinoic acid. Mol Biol Rep. 28(3): 123-138.
Fischer I. and V.S. Sapirstein. (1994). Molecular cloning of plasmolipin. Characterization of a novel proteolipid restricted to brain and kidney. J. Biol. Chem. 269: 24912-24919. 7929173
Hartzell, H.C., Z. Qu, K. Yu, Q. Xiao, and L.T. Chien. (2008). Molecular physiology of bestrophins: multifunctional membrane proteins linked to best disease and other retinopathies. Physiol. Rev. 88: 639-672. 18391176
Li, D., C. Jin, C. Yin, Y. Zhang, B. Pang, L. Tian, W. Han, D. Ma, and Y. Wang. (2007). An alternative splice form of CMTM8 induces apoptosis. Int J Biochem. Cell Biol. 39: 2107-2119. 17681841
Miyazaki, A., S. Yogosawa, A. Murakami, and D. Kitamura. (2012). Identification of CMTM7 as a transmembrane linker of BLNK and the B-cell receptor. PLoS One 7: e31829. 22363743
Steed, E., N.T. Rodrigues, M.S. Balda, and K. Matter. (2009). Identification of MarvelD3 as a tight junction-associated transmembrane protein of the occludin family. BMC Cell Biol 10: 95. 20028514
Tosteson, M.T. and V.S. Sapirstein. (1981). Protein interactions with lipid bilayers: the channels of kidney plasma membrane proteolipids. J. Membr. Biol. 63: 77-84. 6273572
Yaffe, Y., I. Hugger, I.N. Yassaf, J. Shepshelovitch, E.H. Sklan, Y. Elkabetz, A. Yeheskel, M. Pasmanik-Chor, C. Benzing, A. Macmillan, K. Gaus, Y. Eshed-Eisenbach, E. Peles, and K. Hirschberg. (2015). The myelin proteolipid plasmolipin forms oligomers and induces liquid-ordered membranes in the Golgi complex. J Cell Sci 128: 2293-2302. 26002055


Madan, V., J. García Mde, M.A. Sanz, and L. Carrasco. (2005). Viroporin activity of murine hepatitis virus E protein. FEBS Lett. 579(17):3607-3612. 15963987
Nieto-Torres JL., Verdia-Baguena C., Jimenez-Guardeno JM., Regla-Nava JA., Castano-Rodriguez C., Fernandez-Delgado R., Torres J., Aguilella VM. and Enjuanes L. (2015). Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome. Virology. 485:330-9. 26331680
Ruch, T.R. and C.E. Machamer. (2012). A single polar residue and distinct membrane topologies impact the function of the infectious bronchitis coronavirus e protein. PLoS Pathog 8: e1002674. 22570613
Surya W., Li Y., Verdia-Baguena C., Aguilella VM. and Torres J. (2015). MERS coronavirus envelope protein has a single transmembrane domain that forms pentameric ion channels. Virus Res. 201:61-6. 25733052
Takano T., Nakano K., Doki T. and Hohdatsu T. (2015). Differential effects of viroporin inhibitors against feline infectious peritonitis virus serotypes I and II. Arch Virol. 160(5):1163-70. 25701212
To, J., W. Surya, T.S. Fung, Y. Li, C. Verdià-Bàguena, M. Queralt-Martin, V.M. Aguilella, D.X. Liu, and J. Torres. (2016). Channel inactivating mutations and their revertant mutants in the envelope protein of the infectious bronchitis virus. J. Virol. [Epub: Ahead of Print] 27974570
Torres, J., U. Maheswari, K. Parthasarathy, L. Ng, D.X. Liu, and X. Gong. (2007). Conductance and amantadine binding of a pore formed by a lysine-flanked transmembrane domain of SARS coronavirus envelope protein. Protein. Sci. 16: 2065-2071. 17766393
Verdia-Baguena C., Nieto-Torres JL., Alcaraz A., Dediego ML., Enjuanes L. and Aguilella VM. (2013). Analysis of SARS-CoV E protein ion channel activity by tuning the protein and lipid charge. Biochim Biophys Acta. 1828(9):2026-31. 23688394
Verdiá-Báguena, C., J.L. Nieto-Torres, A. Alcaraz, M.L. Dediego, J. Torres, V.M. Aguilella, and L. Enjuanes. (2012). Coronavirus E protein forms ion channels with functionally and structurally-involved membrane lipids. Virology 432: 485-494. 22832120


Bhunia, A., P.N. Domadia, J. Torres, K.J. Hallock, A. Ramamoorthy, and S. Bhattacharjya. (2010). NMR structure of pardaxin, a pore-forming antimicrobial peptide, in lipopolysaccharide micelles: mechanism of outer membrane permeabilization. J. Biol. Chem. 285: 3883-3895. 19959835


Goytain, A. and G.A. Quamme. (2008). Identification and characterization of a novel family of membrane magnesium transporters, MMgT1 and MMgT2. Am. J. Physiol. Cell Physiol. 294(2): C495-502. 18057121
Saier, M.H., Jr. (2003). Tracing pathways of transport protein evolution. Mol. Microbiol. 48: 1145-1156. 12787345


Araujo, G.C., R.H. Silva, L.P. Scott, A.S. Araujo, F.P. Souza, and R.J. de Oliveira. (2016). Structure and functional dynamics characterization of the ion channel of the human respiratory syncytial virus (hRSV) small hydrophobic protein (SH) transmembrane domain by combining molecular dynamics with excited normal modes. J Mol Model 22: 286. 27817112
Gan SW., Tan E., Lin X., Yu D., Wang J., Tan GM., Vararattanavech A., Yeo CY., Soon CH., Soong TW., Pervushin K. and Torres J. (2012). The small hydrophobic protein of the human respiratory syncytial virus forms pentameric ion channels. J Biol Chem. 287(29):24671-89. 22621926
Gan, S.W., L. Ng, X. Lin, X. Gong, and J. Torres. (2008). Structure and ion channel activity of the human respiratory syncytial virus (hRSV) small hydrophobic protein transmembrane domain. Protein. Sci. 17: 813-820. 18369195
Hyser, J.M. and M.K. Estes. (2015). Pathophysiological Consequences of Calcium-Conducting Viroporins. Annu Rev Virol 2: 473-496. 26958925
Karger, A., U. Schmidt, and U.J. Buchholz. (2001). Recombinant bovine respiratory syncytial virus with deletions of the G or SH genes: G and F proteins bind heparin. J Gen Virol 82: 631-640. 11172105
Li, Y., J. To, C. Verdià-Baguena, S. Dossena, W. Surya, M. Huang, M. Paulmichl, D.X. Liu, V.M. Aguilella, and J. Torres. (2014). Inhibition of the human respiratory syncytial virus small hydrophobic protein and structural variations in a bicelle environment. J. Virol. 88: 11899-11914. 25100835
Russell, R.F., J.U. McDonald, M. Ivanova, Z. Zhong, A. Bukreyev, and J.S. Tregoning. (2015). Partial Attenuation of Respiratory Syncytial Virus with a Deletion of a Small Hydrophobic Gene Is Associated with Elevated Interleukin-1β Responses. J. Virol. 89: 8974-8981. 26085154
Sancho, D., O.P. Joffre, A.M. Keller, N.C. Rogers, D. Martínez, P. Hernanz-Falcón, I. Rosewell, and C. Reis e Sousa. (2009). Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 458: 899-903. 19219027
Surya, W. and J. Torres. (2015). Sedimentation Equilibrium of a Small Oligomer-forming Membrane Protein: Effect of Histidine Protonation on Pentameric Stability. J Vis Exp. 25867485


Carraher C., Dalziel J., Jordan MD., Christie DL., Newcomb RD. and Kralicek AV. (2015). Towards an understanding of the structural basis for insect olfaction by odorant receptors. Insect Biochem Mol Biol. 66:31-41. 26416146
Carraher, C., A. Authier, B. Steinwender, and R.D. Newcomb. (2012). Sequence Comparisons of Odorant Receptors among Tortricid Moths Reveal Different Rates of Molecular Evolution among Family Members. PLoS One 7: e38391. 22701634
Carraher, C., A.R. Nazmi, R.D. Newcomb, and A. Kralicek. (2013). Recombinant expression, detergent solubilisation and purification of insect odorant receptor subunits. Protein Expr Purif 90: 160-169. 23770557
Harini, K. and R. Sowdhamini. (2012). Molecular Modelling of Oligomeric States of DmOR83b, an Olfactory Receptor in D. Melanogaster. Bioinform Biol Insights 6: 33-47. 22493562
Jacquin-Joly, E. and C. Merlin. (2004). Insect olfactory receptors: contributions of molecular biology to chemical ecology. J Chem Ecol 30: 2359-2397. 15724962
Mang, D., M. Shu, S. Tanaka, S. Nagata, T. Takada, H. Endo, S. Kikuta, H. Tabunoki, K. Iwabuchi, and R. Sato. (2016). Expression of the fructose receptor BmGr9 and its involvement in the promotion of feeding, suggested by its co-expression with neuropeptide F1 in Bombyx mori. Insect Biochem Mol Biol 75: 58-69. [Epub: Ahead of Print] 27288056
Miura, N., T. Nakagawa, K. Touhara, and Y. Ishikawa. (2010). Broadly and narrowly tuned odorant receptors are involved in female sex pheromone reception in Ostrinia moths. Insect Biochem Mol Biol 40: 64-73. 20044000
Miyamoto, T., J. Slone, X. Song, and H. Amrein. (2012). A fructose receptor functions as a nutrient sensor in the Drosophila brain. Cell 151: 1113-1125. 23178127
Mukunda, L., S. Lavista-Llanos, B.S. Hansson, and D. Wicher. (2014). Dimerisation of the Drosophila odorant coreceptor Orco. Front Cell Neurosci 8: 261. 25221476
Nakagawa, T., M. Pellegrino, K. Sato, L.B. Vosshall, and K. Touhara. (2012). Amino acid residues contributing to function of the heteromeric insect olfactory receptor complex. PLoS One 7: e32372. 22403649
Nichols, A.S. and C.W. Luetje. (2010). Transmembrane segment 3 of Drosophila melanogaster odorant receptor subunit 85b contributes to ligand-receptor interactions. J. Biol. Chem. 285: 11854-11862. 20147286
Ramdya, P. and R. Benton. (2010). Evolving olfactory systems on the fly. Trends Genet. 26: 307-316. 20537755
Sato, K., K. Tanaka, and K. Touhara. (2011). Sugar-regulated cation channel formed by an insect gustatory receptor. Proc. Natl. Acad. Sci. USA 108: 11680-11685. 21709218
Sato, K., M. Pellegrino, T. Nakagawa, T. Nakagawa, L.B. Vosshall, and K. Touhara. (2008). Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature. 452: 1002-1006. 18408712
Stensmyr, M.C., H.K. Dweck, A. Farhan, I. Ibba, A. Strutz, L. Mukunda, J. Linz, V. Grabe, K. Steck, S. Lavista-Llanos, D. Wicher, S. Sachse, M. Knaden, P.G. Becher, Y. Seki, and B.S. Hansson. (2012). A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell 151: 1345-1357. 23217715
Touhara, K. (2009). Insect olfactory receptor complex functions as a ligand-gated ionotropic channel. Ann. N.Y. Acad. Sci. 1170: 177-180. 19686133
Wicher, D., R. Schäfer, R. Bauernfeind, M.C. Stensmyr, R. Heller, S.H. Heinemann, and B.S. Hansson. (2008). Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature. 452: 1007-1011. 18408711


Fedders, H., M. Michalek, J. Grötzinger, and M. Leippe. (2008). An exceptional salt-tolerant antimicrobial peptide derived from a novel gene family of haemocytes of the marine invertebrate Ciona intestinalis. Biochem. J. 416: 65-75. 18598239


Ostroumova, O.S., L.V. Schagina, M.I. Mosevitsky, and V.V. Zakharov. (2011). Ion channel activity of brain abundant protein BASP1 in planar lipid bilayers. FEBS J. 278: 461-469. 21156029


Yamaguchi, A., Tamang D., and Saier M. (2007). Mercury Transport in Bacteria. [DOI: 10.1007/s11270-007-9334-z] 0
Barkay, T., S.M. Miller, and A.O. Summers. (2003). Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol. Rev. 27: 355-384. 12829275
Inoue, C., K. Sugawara, and T. Kusano. (1990). Thiobacillus ferrooxidans mer operon: sequence analysis of the promoter and adjacent genes. Gene 96: 115-120. 2265748
Kiyono, M., Y. Sone, R. Nakamura, H. Pan-Hou, and K. Sakabe. (2009). The MerE protein encoded by transposon Tn21 is a broad mercury transporter in Escherichia coli. FEBS Lett. 583: 1127-1131. 19265693
Kusano, T., G.Y. Ji, C. Inoue, and S. Silver. (1990). Constitutive synthesis of a transport function encoded by the Thiobacillus ferrooxidans merC gene cloned in Escherichia coli. J. Bacteriol. 172: 2688-2692. 2185229
Miller, S.M. (1999). Bacterial detoxification of Hg(II) and organomercurials. Essays Biochem 34: 17-30. 10730186
Morby, A.P., J.L. Hobman, and N.L. Brown. (1995). The role of cysteine residues in the transport of mercuric ions by the Tn501 MerT and MerP mercury-resistance proteins. Mol. Microbiol. 17: 25-35. 7476206
Peters, S.E., J.L. Hobman, P. Strike, and D.A. Ritchie. (1991). Novel mercury resistance determinants carried by IncJ plasmids pMERPH and R391. Mol. Gen. Genet. 228: 294-299. 1886614
Qian, H., L. Sahlman, P.O. Eriksson, C. Hambraeus, U. Edlund, and I. Sethson. (1998). NMR solution structure of the oxidized form of MerP, a mercuric ion binding protein involved in bacterial mercuric ion resistance. Biochemistry 37: 9316-9322. 9649312
Schué, M., L.G. Dover, G.S. Besra, J. Parkhill, and N.L. Brown. (2009). Sequence and analysis of a plasmid-encoded mercury resistance operon from Mycobacterium marinum identifies MerH, a new mercuric ion transporter. J. Bacteriol. 191: 439-444. 18931130
Serre, L., E. Rossy, E. Pebay-Peyroula, C. Cohen-Addad, and J. Covès. (2004). Crystal structure of the oxidized form of the periplasmic mercury-binding protein MerP from Ralstonia metallidurans CH34. J. Mol. Biol. 339: 161-171. 15123428
Sugio, T., T. Komoda, Y. Okazaki, Y. Takeda, S. Nakamura, and F. Takeuchi. (2010). Volatilization of metal mercury from Organomercurials by highly mercury-resistant Acidithiobacillus ferrooxidans MON-1. Biosci. Biotechnol. Biochem. 74: 1007-1012. 20460735
Velasco, A., P. Acebo, N. Flores, and J. Perera. (1999). The mer operon of the acidophilic bacterium Thiobacillus T3.2 diverges from its Thiobacillus ferrooxidans counterpart. Extremophiles 3: 35-43. 10086843
Venturi, E., K. Mio, M. Nishi, T. Ogura, T. Moriya, S.J. Pitt, K. Okuda, S. Kakizawa, R. Sitsapesan, C. Sato, and H. Takeshima. (2011). Mitsugumin 23 forms a massive bowl-shaped assembly and cation-conducting channel. Biochemistry 50: 2623-2632. 21381722
Wilson, J.R., C. Leang, A.P. Morby, J.L. Hobman, and N.L. Brown. (2000). MerF is a mercury transport protein: different structures but a common mechanism for mercuric ion transporters? FEBS Lett. 472: 78-82. 10781809


Cavard, D. (2002). Assembly of colicin A in the outer membrane of producing Escherichia coli cells requires both phospholipase A and one porin, but phospholipase A is sufficient for secretion. J. Bacteriol. 184: 3723-3733. 12057969
Chen, Y.R., T.Y. Yang, G.S. Lei, L.J. Lin, and K.F. Chak. (2011). Delineation of the translocation of colicin E7 across the inner membrane of Escherichia coli. Arch. Microbiol. 193: 419-428. 21387181


Matsuda, S., Y. Matsuda, and L. D''Adamio. (2009). BRI3 inhibits amyloid precursor protein processing in a mechanistically distinct manner from its homologue dementia gene BRI2. J. Biol. Chem. 284: 15815-15825. 19366692
Reilly-O''Donnell, B., G.B. Robertson, A. Karumbi, C. McIntyre, W. Bal, M. Nishi, H. Takeshima, A.J. Stewart, and S.J. Pitt. (2017). Dysregulated Zn2+ homeostasis impairs cardiac type-2 ryanodine receptor and mitsugumin 23 functions, leading to sarcoplasmic reticulum Ca2+ leakage. J. Biol. Chem. [Epub: Ahead of Print] 28630041
Takeshima, H., E. Venturi, and R. Sitsapesan. (2015). New and notable ion-channels in the sarcoplasmic/endoplasmic reticulum: do they support the process of intracellular Ca2+ release? J. Physiol. 593: 3241-3251. 26228553
Venturi, E., K. Mio, M. Nishi, T. Ogura, T. Moriya, S.J. Pitt, K. Okuda, S. Kakizawa, R. Sitsapesan, C. Sato, and H. Takeshima. (2011). Mitsugumin 23 forms a massive bowl-shaped assembly and cation-conducting channel. Biochemistry 50: 2623-2632. 21381722


Coste, B., J. Mathur, M. Schmidt, T.J. Earley, S. Ranade, M.J. Petrus, A.E. Dubin, and A. Patapoutian. (2010). Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330: 55-60. 20813920
Coste, B., S.E. Murthy, J. Mathur, M. Schmidt, Y. Mechioukhi, P. Delmas, and A. Patapoutian. (2015). Piezo1 ion channel pore properties are dictated by C-terminal region. Nat Commun 6: 7223. 26008989
Ge J., Li W., Zhao Q., Li N., Chen M., Zhi P., Li R., Gao N., Xiao B. and Yang M. (2015). Architecture of the mammalian mechanosensitive Piezo1 channel. Nature. 527(7576):64-9. 26390154
Gottlieb PA. and Sachs F. (2012). Piezo1: properties of a cation selective mechanical channel. Channels (Austin). 6(4):214-9. 22790400
Kamajaya A., Kaiser JT., Lee J., Reid M. and Rees DC. (2014). The structure of a conserved piezo channel domain reveals a topologically distinct beta sandwich fold. Structure. 22(10):1520-7. 25242456
Kim SE., Coste B., Chadha A., Cook B. and Patapoutian A. (2012). The role of Drosophila Piezo in mechanical nociception. Nature. 483(7388):209-12. 22343891
McHugh, B.J., A. Murdoch, C. Haslett, and T. Sethi. (2012). Loss of the integrin-activating transmembrane protein Fam38A (Piezo1) promotes a switch to a reduced integrin-dependent mode of cell migration. PLoS One 7: e40346. 22792288
Ranade, S.S., S.H. Woo, A.E. Dubin, R.A. Moshourab, C. Wetzel, M. Petrus, J. Mathur, V. Bégay, B. Coste, J. Mainquist, A.J. Wilson, A.G. Francisco, K. Reddy, Z. Qiu, J.N. Wood, G.R. Lewin, and A. Patapoutian. (2014). Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature 516: 121-125. 25471886


Goytain, A. and G.A. Quamme. (2005). Identification and characterization of a novel mammalian Mg2+ transporter with channel-like properties. BMC Genomics 6: 48. 15804357
Molee, P., P. Adisakwattana, O. Reamtong, S. Petmitr, T. Sricharunrat, N. Suwandittakul, and U. Chaisri. (2015). Up-regulation of AKAP13 and MAGT1 on cytoplasmic membrane in progressive hepatocellular carcinoma: a novel target for prognosis. Int J Clin Exp Pathol 8: 9796-9811. 26617690
Trapani, V., N. Shomer, and E. Rajcan-Separovic. (2015). The role of MAGT1 in genetic syndromes. Magnes Res 28: 46-55. 26422833
Zhou, H. and D.E. Clapham. (2009). Mammalian MagT1 and TUSC3 are required for cellular magnesium uptake and vertebrate embryonic development. Proc. Natl. Acad. Sci. USA 106: 15750-15755. 19717468


Baughman, J.M., F. Perocchi, H.S. Girgis, M. Plovanich, C.A. Belcher-Timme, Y. Sancak, X.R. Bao, L. Strittmatter, O. Goldberger, R.L. Bogorad, V. Koteliansky, and V.K. Mootha. (2011). Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476: 341-345. 21685886
Bick, A.G., S.E. Calvo, and V.K. Mootha. (2012). Evolutionary diversity of the mitochondrial calcium uniporter. Science 336: 886. 22605770
Brandt, K., D.B. Müller, J. Hoffmann, C. Hübert, B. Brutschy, G. Deckers-Hebestreit, and V. Müller. (2013). Functional production of the Na+ F1F(O) ATP synthase from Acetobacterium woodii in Escherichia coli requires the native AtpI. J. Bioenerg. Biomembr. 45: 15-23. 23054076
De Stefani, D., A. Raffaello, E. Teardo, I. Szabò, and R. Rizzuto. (2011). A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476: 336-340. 21685888
Docampo R., Moreno SN. and Plattner H. (2014). Intracellular calcium channels in protozoa. Eur J Pharmacol. 739:4-18. 24291099
Drago, I., P. Pizzo, and T. Pozzan. (2011). After half a century mitochondrial calcium in- and efflux machineries reveal themselves. EMBO. J. 30: 4119-4125. 21934651
Hicks, D.B., Z. Wang, Y. Wei, R. Kent, A.A. Guffanti, H. Banciu, D.H. Bechhofer, and T.A. Krulwich. (2003). A tenth atp gene and the conserved atpI gene of a Bacillus atp operon have a role in Mg2+ uptake. Proc. Natl. Acad. Sci. USA 100: 10213-10218. 12917488
Mallilankaraman, K., C. Cárdenas, P.J. Doonan, H.C. Chandramoorthy, K.M. Irrinki, T. Golenár, G. Csordás, P. Madireddi, J. Yang, M. Müller, R. Miller, J.E. Kolesar, J. Molgó, B. Kaufman, G. Hajnóczky, J.K. Foskett, and M. Madesh. (2012). MCUR1 is an essential component of mitochondrial Ca2+ uptake that regulates cellular metabolism. Nat. Cell Biol. 14: 1336-1343. 23178883
Mallilankaraman, K., P. Doonan, C. Cárdenas, H.C. Chandramoorthy, M. Müller, R. Miller, N.E. Hoffman, R.K. Gandhirajan, J. Molgó, M.J. Birnbaum, B.S. Rothberg, D.O. Mak, J.K. Foskett, and M. Madesh. (2012). MICU1 Is an Essential Gatekeeper for MCU-Mediated Mitochondrial Ca2+ Uptake that Regulates Cell Survival. Cell 151: 630-644. 23101630
Morales-Rios, E., I.N. Watt, Q. Zhang, S. Ding, I.M. Fearnley, M.G. Montgomery, M.J. Wakelam, and J.E. Walker. (2015). Purification, characterization and crystallization of the F-ATPase from Paracoccus denitrificans. Open Biol 5:. 26423580
O'Brien, J.E. and M.H. Meisler. (2013). Sodium channel SCN8A (Nav1.6): properties and de novo mutations in epileptic encephalopathy and intellectual disability. Front Genet 4: 213. 24194747
Oxenoid, K., Y. Dong, C. Cao, T. Cui, Y. Sancak, A.L. Markhard, Z. Grabarek, L. Kong, Z. Liu, B. Ouyang, Y. Cong, V.K. Mootha, and J.J. Chou. (2016). Architecture of the mitochondrial calcium uniporter. Nature 533: 269-273. 27135929
Quan, X., T.T. Nguyen, S.K. Choi, S. Xu, R. Das, S.K. Cha, N. Kim, J. Han, A. Wiederkehr, C.B. Wollheim, and K.S. Park. (2015). Essential role of mitochondrial Ca2+ uniporter in the generation of mitochondrial pH gradient and metabolism-secretion coupling in insulin-releasing cells. J. Biol. Chem. 290: 4086-4096. 25548283
Raffaello, A., D. De Stefani, D. Sabbadin, E. Teardo, G. Merli, A. Picard, V. Checchetto, S. Moro, I. Szabò, and R. Rizzuto. (2013). The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit. EMBO. J. 32: 2362-2376. 23900286
Sancak, Y., A.L. Markhard, T. Kitami, E. Kovács-Bogdán, K.J. Kamer, N.D. Udeshi, S.A. Carr, D. Chaudhuri, D.E. Clapham, A.A. Li, S.E. Calvo, O. Goldberger, and V.K. Mootha. (2013). EMRE is an essential component of the mitochondrial calcium uniporter complex. Science 342: 1379-1382. 24231807
Soontharapirakkul, K., W. Promden, N. Yamada, H. Kageyama, A. Incharoensakdi, A. Iwamoto-Kihara, and T. Takabe. (2011). Halotolerant cyanobacterium Aphanothece halophytica contains an Na+-dependent F1F0-ATP synthase with a potential role in salt-stress tolerance. J. Biol. Chem. 286: 10169-10176. 21262962
Tsai, M.F., C.B. Phillips, M. Ranaghan, C.W. Tsai, Y. Wu, C. Willliams, and C. Miller. (2016). Dual functions of a small regulatory subunit in the mitochondrial calcium uniporter complex. Elife 5:. 27099988
Xiao, R. and X.Z. Xu. (2009). Function and regulation of TRP family channels in C. elegans. Pflugers Arch 458: 851-860. 19421772


Cang, C., K. Aranda, Y.J. Seo, B. Gasnier, and D. Ren. (2015). TMEM175 Is an Organelle K+ Channel Regulating Lysosomal Function. Cell 162: 1101-1112. 26317472
Jing, C.C., X.G. Luo, H.G. Cui, F.R. Li, P. Li, E.Z. Jiang, Y. Ren, and H. Pang. (2015). Screening of polymorphisms located in the FGF20 and TMEM175 genes in North Chinese Parkinson''s disease patients. Genet Mol Res 14: 13679-13687. 26535683
Jinn, S., R.E. Drolet, P.E. Cramer, A.H. Wong, D.M. Toolan, C.A. Gretzula, B. Voleti, G. Vassileva, J. Disa, M. Tadin-Strapps, and D.J. Stone. (2017). TMEM175 deficiency impairs lysosomal and mitochondrial function and increases α-synuclein aggregation. Proc. Natl. Acad. Sci. USA. [Epub: Ahead of Print] 28193887


Aizawa, S., V.R. Contu, Y. Fujiwara, K. Hase, H. Kikuchi, C. Kabuta, K. Wada, and T. Kabuta. (2016). Lysosomal membrane protein SIDT2 mediates the direct uptake of DNA by lysosomes. Autophagy 0. [Epub: Ahead of Print] 27846365
Aizawa, S., Y. Fujiwara, V.R. Contu, K. Hase, M. Takahashi, H. Kikuchi, C. Kabuta, K. Wada, and T. Kabuta. (2016). Lysosomal putative RNA transporter SIDT2 mediates direct uptake of RNA by lysosomes. Autophagy 12: 565-578. 27046251
Cappelle, K., C.F. de Oliveira, B. Van Eynde, O. Christiaens, and G. Smagghe. (2016). The involvement of clathrin-mediated endocytosis and two Sid-1-like transmembrane proteins in double-stranded RNA uptake in the Colorado potato beetle midgut. Insect Mol Biol. [Epub: Ahead of Print] 26959524
Dickson, E.J., J.B. Jensen, O. Vivas, M. Kruse, A.E. Traynor-Kaplan, and B. Hille. (2016). Dynamic formation of ER-PM junctions presents a lipid phosphatase to regulate phosphoinositides. J. Cell Biol. [Epub: Ahead of Print] 27044890
Duxbury, M.S., S.W. Ashley, and E.E. Whang. (2005). RNA interference: a mammalian SID-1 homologue enhances siRNA uptake and gene silencing efficacy in human cells. Biochem. Biophys. Res. Commun. 331: 459-463. 15850781
Feinberg, E.H. and C.P. Hunter. (2003). Transport of dsRNA into cells by the transmembrane protein SID-1. Science 301: 1545-1547. 12970568
Herdman, C. and T. Moss. (2016). Extended-Synaptotagmins (E-Syts); the extended story. Pharmacol Res 107: 48-56. [Epub: Ahead of Print] 26926095
Jose, A.M., J.J. Smith, and C.P. Hunter. (2009). Export of RNA silencing from C. elegans tissues does not require the RNA channel SID-1. Proc. Natl. Acad. Sci. USA 106: 2283-2288. 19168628
Jose, A.M., Y.A. Kim, S. Leal-Ekman, and C.P. Hunter. (2012). Conserved tyrosine kinase promotes the import of silencing RNA into Caenorhabditis elegans cells. Proc. Natl. Acad. Sci. USA 109: 14520-14525. 22912399
McEwan, D.L., A.S. Weisman, and C.P. Hunter. (2012). Uptake of extracellular double-stranded RNA by SID-2. Mol. Cell 47: 746-754. 22902558
Pratt, A.J., R.P. Rambo, P.W. Lau, and I.J. MacRae. (2012). Preparation and characterization of the extracellular domain of human Sid-1. PLoS One 7: e33607. 22509261
Shih, J.D. and C.P. Hunter. (2011). SID-1 is a dsRNA-selective dsRNA-gated channel. RNA 17: 1057-1065. 21474576
Takahashi, M., V.R. Contu, C. Kabuta, K. Hase, Y. Fujiwara, K. Wada, and T. Kabuta. (2017). SIDT2 mediates gymnosis, the uptake of naked single-stranded oligonucleotides into living cells. RNA Biol 0. [Epub: Ahead of Print] 28277980
Valdes, V.J., A. Athie, L.S. Salinas, R.E. Navarro, and L. Vaca. (2012). CUP-1 Is a Novel Protein Involved in Dietary Cholesterol Uptake in Caenorhabditis elegans. PLoS One 7: e33962. 22479487
Xu J., Yoshimura K., Mon H., Li Z., Zhu L., Iiyama K., Kusakabe T. and Lee JM. (2014). Establishment of Caenorhabditis elegans SID-1-dependent DNA delivery system in cultured silkworm cells. Mol Biotechnol. 56(3):193-8. 23979877
Xu, W. and Z. Han. (2008). Cloning and phylogenetic analysis of sid-1-like genes from aphids. J Insect Sci 8: 1-6. 20302524
Yu, H., Y. Liu, D.R. Gulbranson, A. Paine, S.S. Rathore, and J. Shen. (2016). Extended synaptotagmins are Ca2+-dependent lipid transfer proteins at membrane contact sites. Proc. Natl. Acad. Sci. USA. [Epub: Ahead of Print] 27044075


Madan, V., S. Sánchez-Martínez, N. Vedovato, G. Rispoli, L. Carrasco, and J.L. Nieva. (2007). Plasma membrane-porating domain in poliovirus 2B protein. A short peptide mimics viroporin activity. J. Mol. Biol. 374: 951-964. 17963782


Cavinder, B. and F. Trail. (2012). Role of Fig1, a component of the low-affinity calcium uptake system, in growth and sexual development of filamentous fungi. Eukaryot. Cell. 11: 978-988. 22635922
Muller, E.M., N.A. Mackin, S.E. Erdman, and K.W. Cunningham. (2003). Fig1p facilitates Ca2+ influx and cell fusion during mating of Saccharomyces cerevisiae. J. Biol. Chem. 278: 38461-38469. 12878605
Palma-Guerrero J., Zhao J., Goncalves AP., Starr TL. and Glass NL. (2015). Identification and characterization of LFD-2, a predicted fringe protein required for membrane integrity during cell fusion in neurospora crassa. Eukaryot Cell. 14(3):265-77. 25595444
Yang, M., A. Brand, T. Srikantha, K.J. Daniels, D.R. Soll, and N.A. Gow. (2011). Fig1 facilitates calcium influx and localizes to membranes destined to undergo fusion during mating in Candida albicans. Eukaryot. Cell. 10: 435-444. 21216943


Beurg, M., A.C. Goldring, and R. Fettiplace. (2015). The effects of Tmc1 Beethoven mutation on mechanotransducer channel function in cochlear hair cells. J Gen Physiol 146: 233-243. 26324676
Beurg, M., W. Xiong, B. Zhao, U. Müller, and R. Fettiplace. (2015). Subunit determination of the conductance of hair-cell mechanotransducer channels. Proc. Natl. Acad. Sci. USA 112: 1589-1594. 25550511
Chou, A., A. Lee, K.J. Hendargo, V.S. Reddy, M.A. Shlykov, H. Kuppusamykrishnan, A. Medrano-Soto, and M.H. Saier, Jr. (2017). Characterization of the Tetraspan Junctional Complex (4JC) superfamily. Biochim. Biophys. Acta. 1859: 402-414. 27916633
Fettiplace, R. (2016). Is TMC1 the Hair Cell Mechanotransducer Channel? Biophys. J. 111: 3-9. 27410728
Lumpkin, E.A., K.L. Marshall, and A.M. Nelson. (2010). The cell biology of touch. J. Cell Biol. 191: 237-248. 20956378
Maeda, R., K.S. Kindt, W. Mo, C.P. Morgan, T. Erickson, H. Zhao, R. Clemens-Grisham, P.G. Barr-Gillespie, and T. Nicolson. (2014). Tip-link protein protocadherin 15 interacts with transmembrane channel-like proteins TMC1 and TMC2. Proc. Natl. Acad. Sci. USA 111: 12907-12912. 25114259
Ogun, O. and M. Zallocchi. (2014). Clarin-1 acts as a modulator of mechanotransduction activity and presynaptic ribbon assembly. J. Cell Biol. 207: 375-391. 25365995
Petit, M.M., E.F. Schoenmakers, C. Huysmans, J.M. Geurts, N. Mandahl, and W.J. Van de Ven. (1999). LHFP, a novel translocation partner gene of HMGIC in a lipoma, is a member of a new family of LHFP-like genes. Genomics 57: 438-441. 10329012
Wu, Z. and U. Müller. (2016). Molecular Identity of the Mechanotransduction Channel in Hair Cells: Not Quiet There Yet. J. Neurosci. 36: 10927-10934. 27798175
Wu, Z., N. Grillet, B. Zhao, C. Cunningham, S. Harkins-Perry, B. Coste, S. Ranade, N. Zebarjadi, M. Beurg, R. Fettiplace, A. Patapoutian, and U. Müller. (2016). Mechanosensory hair cells express two molecularly distinct mechanotransduction channels. Nat Neurosci. [Epub: Ahead of Print] 27893727
Xiong, W., N. Grillet, H.M. Elledge, T.F. Wagner, B. Zhao, K.R. Johnson, P. Kazmierczak, and U. Müller. (2012). TMHS Is an Integral Component of the Mechanotransduction Machinery of Cochlear Hair Cells. Cell 151: 1283-1295. 23217710
Zhao, B., Z. Wu, N. Grillet, L. Yan, W. Xiong, S. Harkins-Perry, and U. Müller. (2014). TMIE is an essential component of the mechanotransduction machinery of cochlear hair cells. Neuron. 84: 954-967. 25467981


Chen, X.S., T. Stehle, and S.C. Harrison. (1998). Interaction of polyomavirus internal protein VP2 with the major capsid protein VP1 and implications for participation of VP2 in viral entry. EMBO. J. 17: 3233-3240. 9628860
Giorda KM., Raghava S., Zhang MW. and Hebert DN. (2013). The viroporin activity of the minor structural proteins VP2 and VP3 is required for SV40 propagation. J Biol Chem. 288(4):2510-20. 23223228
Raghava, S., K.M. Giorda, F.B. Romano, A.P. Heuck, and D.N. Hebert. (2011). The SV40 late protein VP4 is a viroporin that forms pores to disrupt membranes for viral release. PLoS Pathog 7: e1002116. 21738474
Raghava, S., K.M. Giorda, F.B. Romano, A.P. Heuck, and D.N. Hebert. (2013). SV40 late protein VP4 forms toroidal pores to disrupt membranes for viral release. Biochemistry 52: 3939-3948. 23651212


Aqdam, M.J., K. Kamali, M. Rahgozar, M. Ohadi, M. Manoochehri, A. Tahami, L. Bostanshirin, and H.R. Khorshid. (2010). Association of CALHM1 Gene Polymorphism with Late Onset Alzheimer's Disease in Iranian Population. Avicenna J Med Biotechnol 2: 153-157. 23408664
Boada, M., C. Antúnez, J. López-Arrieta, J.J. Galán, F.J. Morón, I. Hernández, J. Marín, P. Martínez-Lage, M. Alegret, J.M. Carrasco, C. Moreno, L.M. Real, A. González-Pérez, L. Tárraga, and A. Ruiz. (2010). CALHM1 P86L polymorphism is associated with late-onset Alzheimer's disease in a recessive model. J Alzheimers Dis 20: 247-251. 20164592
Calero, O., M.J. Bullido, J. Clarimón, R. Hortigüela, A. Frank-García, P. Martínez-Martín, A. Lleó, M.J. Rey, I. Sastre, A. Rábano, J. de Pedro-Cuesta, I. Ferrer, and M. Calero. (2012). Genetic variability of the gene cluster CALHM 1-3 in sporadic Creutzfeldt-Jakob disease. Prion 6: 407-412. 22874670
Cui, P.J., L. Zheng, L. Cao, Y. Wang, Y.L. Deng, G. Wang, W. Xu, H.D. Tang, J.F. Ma, T. Zhang, J.Q. Ding, Q. Cheng, and S.D. Chen. (2010). CALHM1 P86L polymorphism is a risk factor for Alzheimer's disease in the Chinese population. J Alzheimers Dis 19: 31-35. 20061624
Dreses-Werringloer U., Vingtdeux V., Zhao H., Chandakkar P., Davies P. and Marambaud P. (2013). CALHM1 controls the Ca(2)(+)-dependent MEK, ERK, RSK and MSK signaling cascade in neurons. J Cell Sci. 126(Pt 5):1199-206. 23345406
Dreses-Werringloer, U., J.C. Lambert, V. Vingtdeux, H. Zhao, H. Vais, A. Siebert, A. Jain, J. Koppel, A. Rovelet-Lecrux, D. Hannequin, F. Pasquier, D. Galimberti, E. Scarpini, D. Mann, C. Lendon, D. Campion, P. Amouyel, P. Davies, J.K. Foskett, F. Campagne, and P. Marambaud. (2008). A polymorphism in CALHM1 influences Ca2+ homeostasis, Abeta levels, and Alzheimer''s disease risk. Cell 133: 1149-1161. 18585350
Gallego-Sandín, S., M.T. Alonso, and J. García-Sancho. (2011). Calcium homoeostasis modulator 1 (CALHM1) reduces the calcium content of the endoplasmic reticulum (ER) and triggers ER stress. Biochem. J. 437: 469-475. 21574960
Koppel, J., F. Campagne, V. Vingtdeux, U. Dreses-Werringloer, M. Ewers, D. Rujescu, H. Hampel, M.L. Gordon, E. Christen, J. Chapuis, B.S. Greenwald, P. Davies, and P. Marambaud. (2011). CALHM1 P86L polymorphism modulates CSF Aβ levels in cognitively healthy individuals at risk for Alzheimer's disease. Mol Med 17: 974-979. 21629967
Lv, R.J., J.S. He, Y.H. Fu, X.Q. Shao, L.W. Wu, Q. Lu, L.R. Jin, and H. Liu. (2011). A polymorphism in CALHM1 is associated with temporal lobe epilepsy. Epilepsy Behav 20: 681-685. 21439911
Ma, Z., A.P. Siebert, K.H. Cheung, R.J. Lee, B. Johnson, A.S. Cohen, V. Vingtdeux, P. Marambaud, and J.K. Foskett. (2012). Calcium homeostasis modulator 1 (CALHM1) is the pore-forming subunit of an ion channel that mediates extracellular Ca2+ regulation of neuronal excitability. Proc. Natl. Acad. Sci. USA 109: E1963-1971. 22711817
Ma, Z., J.E. Tanis, A. Taruno, and J.K. Foskett. (2015). Calcium homeostasis modulator (CALHM) ion channels. Pflugers Arch. [Epub: Ahead of Print] 26603282
Malik, U., A. Javed, A. Ali, and K. Asghar. (2016). Structural and functional annotation of human FAM26F: A multifaceted protein having a critical role in the immune system. Gene. [Epub: Ahead of Print] 27784631
Shibata, N., B. Kuerban, M. Komatsu, T. Ohnuma, H. Baba, and H. Arai. (2010). Genetic association between CALHM1, 2, and 3 polymorphisms and Alzheimer's disease in a Japanese population. J Alzheimers Dis 20: 417-421. 20164573
Siebert, A.P., Z. Ma, J.D. Grevet, A. Demuro, I. Parker, and J.K. Foskett. (2013). Structural and Functional Similarities of Calcium Homeostasis Modulator 1 (CALHM1) Ion Channel with Connexins, Pannexins, and Innexins. J. Biol. Chem. 288: 6140-6153. 23300080
Taruno A., Vingtdeux V., Ohmoto M., Ma Z., Dvoryanchikov G., Li A., Adrien L., Zhao H., Leung S., Abernethy M., Koppel J., Davies P., Civan MM., Chaudhari N., Matsumoto I., Hellekant G., Tordoff MG., Marambaud P. and Foskett JK. (2013). CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes. Nature. 495(7440):223-6. 23467090
Wu, J., S. Peng, R. Wu, Y. Hao, G. Ji, and Z. Yuan. (2012). Generation of Calhm1 knockout mouse and characterization of calhm1 gene expression. Protein Cell 3: 470-480. 22723178


Agirre, A., A. Barco, L. Carrasco, and J.L. Nieva. (2002). Viroporin-mediated membrane permeabilization. Pore formation by nonstructural poliovirus 2B protein. J. Biol. Chem. 277: 40434-40441. 12183456
Agirre, A., M. Lorizate, S. Nir, and J.L. Nieva. (2008). Poliovirus 2b insertion into lipid monolayers and pore formation in vesicles modulated by anionic phospholipids. Biochim. Biophys. Acta. 1778: 2621-2626. 18634749
Ao, D., H.C. Guo, S.Q. Sun, D.H. Sun, T.S. Fung, Y.Q. Wei, S.C. Han, X.P. Yao, S.Z. Cao, D.X. Liu, and X.T. Liu. (2015). Viroporin Activity of the Foot-and-Mouth Disease Virus Non-Structural 2B Protein. PLoS One 10: e0125828. 25946195
Ao, D., S.Q. Sun, and H.C. Guo. (2014). Topology and biological function of enterovirus non-structural protein 2B as a member of the viroporin family. Vet Res 45: 87. 25163654
Bubeck, D., D.J. Filman, N. Cheng, A.C. Steven, J.M. Hogle, and D.M. Belnap. (2005). The structure of the poliovirus 135S cell entry intermediate at 10-angstrom resolution reveals the location of an externalized polypeptide that binds to membranes. J. Virol. 79: 7745-7755. 15919927
Gonzalez, M.E. and L. Carrasco. (2003). Viroporins. FEBS Lett. 552: 28-34. 12972148
Hyser, J.M. and M.K. Estes. (2015). Pathophysiological Consequences of Calcium-Conducting Viroporins. Annu Rev Virol 2: 473-496. 26958925
Ito, M., Y. Yanagi, and T. Ichinohe. (2012). Encephalomyocarditis virus viroporin 2B activates NLRP3 inflammasome. PLoS Pathog 8: e1002857. 22916014
Madan, V., S. Sánchez-Martínez, L. Carrasco, and J.L. Nieva. (2010). A peptide based on the pore-forming domain of pro-apoptotic poliovirus 2B viroporin targets mitochondria. Biochim. Biophys. Acta. 1798: 52-58. 19879236
Martínez-Gil, L., M. Bañó-Polo, N. Redondo, S. Sánchez-Martínez, J.L. Nieva, L. Carrasco, and I. Mingarro. (2011). Membrane integration of poliovirus 2B viroporin. J. Virol. 85: 11315-11324. 21835803
Patargias, G., T. Barke, A. Watts, and W.B. Fischer. (2009). Model generation of viral channel forming 2B protein bundles from polio and coxsackie viruses. Mol. Membr. Biol. 26: 309-320. 19707940
Sánchez-Martínez, S., N. Huarte, R. Maeso, V. Madan, L. Carrasco, and J.L. Nieva. (2008). Functional and structural characterization of 2B viroporin membranolytic domains. Biochemistry 47: 10731-10739. 18785754
Sánchez-Martínez, S., V. Madan, L. Carrasco, and J.L. Nieva. (2012). Membrane-active peptides derived from picornavirus 2B viroporin. Curr. Protein. Pept. Sci. 13: 632-643. 23131189
Tuthill, T.J., D. Bubeck, D.J. Rowlands, and J.M. Hogle. (2006). Characterization of early steps in the poliovirus infection process: receptor-decorated liposomes induce conversion of the virus to membrane-anchored entry-intermediate particles. J. Virol. 80: 172-180. 16352541


Bronnimann, M.P., J.A. Chapman, C.K. Park, and S.K. Campos. (2013). A transmembrane domain and GxxxG motifs within L2 are essential for papillomavirus infection. J. Virol. 87: 464-473. 23097431
Demaegd, D., F. Foulquier, A.S. Colinet, L. Gremillon, D. Legrand, P. Mariot, E. Peiter, E. Van Schaftingen, G. Matthijs, and P. Morsomme. (2013). Newly characterized Golgi-localized family of proteins is involved in calcium and pH homeostasis in yeast and human cells. Proc. Natl. Acad. Sci. USA 110: 6859-6864. 23569283


Choi, J., K. Tanaka, Y. Cao, Y. Qi, J. Qiu, Y. Liang, S.Y. Lee, and G. Stacey. (2014). Identification of a plant receptor for extracellular ATP. Science 343: 290-294. 24436418
Deng, C., B. Pan, M. Engel, and X.F. Huang. (2013). Neuregulin-1 signalling and antipsychotic treatment: potential therapeutic targets in a schizophrenia candidate signalling pathway. Psychopharmacology (Berl) 226: 201-215. 23389757
Iida H., Furuichi T., Nakano M., Toyota M., Sokabe M. and Tatsumi H. (2014). New candidates for mechano-sensitive channels potentially involved in gravity sensing in Arabidopsis thaliana. Plant Biol (Stuttg). 16 Suppl 1:39-42. 23731064
Kamano S., Kume S., Iida K., Lei KJ., Nakano M., Nakayama Y. and Iida H. (2015). Transmembrane Topologies of Ca2+-permeable Mechanosensitive Channels MCA1 and MCA2 in Arabidopsis thaliana. J Biol Chem. 290(52):30901-9. 26555262
Lei, L. and A.C. Spradling. (2016). Mouse oocytes differentiate through organelle enrichment from sister cyst germ cells. Science 352: 95-99. 26917595
Libault, M. and G. Stacey. (2010). Evolution of FW2.2-like (FWL) and PLAC8 genes in eukaryotes. Plant Signal Behav 5: 1226-1228. 20855956
Shigematsu, H., K. Iida, M. Nakano, P. Chaudhuri, H. Iida, and K. Nagayama. (2014). Structural Characterization of the Mechanosensitive Channel Candidate MCA2 from Arabidopsis thaliana. PLoS One 9: e87724. 24475319
Song, W.Y., K.S. Choi, d.o.Y. Kim, M. Geisler, J. Park, V. Vincenzetti, M. Schellenberg, S.H. Kim, Y.P. Lim, E.W. Noh, Y. Lee, and E. Martinoia. (2010). Arabidopsis PCR2 is a zinc exporter involved in both zinc extrusion and long-distance zinc transport. Plant Cell 22: 2237-2252. 20647347
Song, W.Y., S. Hörtensteiner, R. Tomioka, Y. Lee, and E. Martinoia. (2011). Common functions or only phylogenetically related? The large family of PLAC8 motif-containing/PCR genes. Mol. Cells 31: 1-7. 21347707
Wang, C., J. Zhang, and J.I. Schroeder. (2017). Two-electrode Voltage-clamp Recordings in Xenopus laevis Oocytes: Reconstitution of Abscisic Acid Activation of SLAC1 Anion Channel via PYL9 ABA Receptor. Bio Protoc 7:. 28516122
Ward, N.L. and D.J. Dumont. (2002). The angiopoietins and Tie2/Tek: adding to the complexity of cardiovascular development. Semin Cell Dev Biol 13: 19-27. 11969368


Stefan, C.P., N. Zhang, T. Sokabe, A. Rivetta, C.L. Slayman, C. Montell, and K.W. Cunningham. (2013). Activation of an essential calcium signaling pathway in Saccharomyces cerevisiae by Kch1 and Kch2, putative low-affinity potassium transporters. Eukaryot. Cell. 12: 204-214. 23204190


Zhang R., Wang K., Lv W., Yu W., Xie S., Xu K., Schwarz W., Xiong S. and Sun B. (2014). The ORF4a protein of human coronavirus 229E functions as a viroporin that regulates viral production. Biochim Biophys Acta. 1838(4):1088-95. 23906728


Masante, C., F. El Najjar, A. Chang, A. Jones, C.L. Moncman, and R.E. Dutch. (2014). The human metapneumovirus small hydrophobic protein has properties consistent with those of a viroporin and can modulate viral fusogenic activity. J. Virol. 88: 6423-6433. 24672047


Sharma P., Rayavara K., Ito D., Basore K. and Desai SA. (2015). A CLAG3 mutation in an amphipathic transmembrane domain alters malaria parasite nutrient channels and confers leupeptin resistance. Infect Immun. 83(6):2566-74. 25870226


Chacko, N., N.N. Mohanty, S.K. Biswas, K. Chand, R. Yogisharadhya, A.B. Pandey, B. Mondal, and S.B. Shivachandra. (2015). A coiled-coil motif in non-structural protein 3 (NS3) of bluetongue virus forms an oligomer. Virus Genes 51: 244-251. 26318174
Han, Z. and R.N. Harty. (2004). The NS3 protein of bluetongue virus exhibits viroporin-like properties. J. Biol. Chem. 279: 43092-43097. 15292261


Gallaher, W.R. and R.F. Garry. (2015). Modeling of the Ebola virus delta peptide reveals a potential lytic sequence motif. Viruses 7: 285-305. 25609303
Hyser, J.M. and M.K. Estes. (2015). Pathophysiological Consequences of Calcium-Conducting Viroporins. Annu Rev Virol 2: 473-496. 26958925
Hyser, J.M., B. Utama, S.E. Crawford, and M.K. Estes. (2012). Genetic divergence of rotavirus nonstructural protein 4 results in distinct serogroup-specific viroporin activity and intracellular punctate structure morphologies. J. Virol. 86: 4921-4934. 22357281
Hyser, J.M., B. Utama, S.E. Crawford, J.R. Broughman, and M.K. Estes. (2013). Activation of the endoplasmic reticulum calcium sensor STIM1 and store-operated calcium entry by rotavirus requires NSP4 viroporin activity. J. Virol. 87: 13579-13588. 24109210
Hyser, J.M., M.R. Collinson-Pautz, B. Utama, and M.K. Estes. (2010). Rotavirus disrupts calcium homeostasis by NSP4 viroporin activity. MBio 1:. 21151776
Pham, T., J.L. Perry, T.L. Dosey, A.H. Delcour, and J.M. Hyser. (2017). The Rotavirus NSP4 Viroporin Domain is a Calcium-conducting Ion Channel. Sci Rep 7: 43487. 28256607


Blasdell, K.R., S.G. Widen, S.M. Diviney, C. Firth, T.G. Wood, H. Guzman, E.C. Holmes, R.B. Tesh, N. Vasilakis, and P.J. Walker. (2014). Koolpinyah and Yata viruses: two newly recognised ephemeroviruses from tropical regions of Australia and Africa. Vet Microbiol 174: 547-553. 25457369
Joubert, D.A., K.R. Blasdell, M.D. Audsley, L. Trinidad, P. Monaghan, K.A. Dave, K.G. Lieu, R. Amos-Ritchie, D.A. Jans, G.W. Moseley, J.J. Gorman, and P.J. Walker. (2014). Bovine ephemeral fever rhabdovirus α1 protein has viroporin-like properties and binds importin β1 and importin 7. J. Virol. 88: 1591-1603. 24257609


Hyser, J.M. and M.K. Estes. (2015). Pathophysiological Consequences of Calcium-Conducting Viroporins. Annu Rev Virol 2: 473-496. 26958925
Okada, Y., S. Endo, H. Takahashi, H. Sawa, T. Umemura, and K. Nagashima. (2001). Distribution and function of JCV agnoprotein. J Neurovirol 7: 302-306. 11517407
Suzuki, T., Y. Orba, Y. Makino, Y. Okada, Y. Sunden, H. Hasegawa, W.W. Hall, and H. Sawa. (2013). Viroporin activity of the JC polyomavirus is regulated by interactions with the adaptor protein complex 3. Proc. Natl. Acad. Sci. USA 110: 18668-18673. 24167297
Suzuki, T., Y. Orba, Y. Okada, Y. Sunden, T. Kimura, S. Tanaka, K. Nagashima, W.W. Hall, and H. Sawa. (2010). The human polyoma JC virus agnoprotein acts as a viroporin. PLoS Pathog 6: e1000801. 20300659


Mahato, D.R. and W.B. Fischer. (2016). Weak Selectivity Predicted for Modeled Bundles of Viral Channel-Forming Protein E5 of Human Papillomavirus-16. J Phys Chem B 120: 13076-13085. 27976908
Wetherill, L.F., K.K. Holmes, M. Verow, M. Müller, G. Howell, M. Harris, C. Fishwick, N. Stonehouse, R. Foster, G.E. Blair, S. Griffin, and A. Macdonald. (2012). High-risk human papillomavirus E5 oncoprotein displays channel-forming activity sensitive to small-molecule inhibitors. J. Virol. 86: 5341-5351. 22357280


Edwards, D., C. Fenizia, H. Gold, M.F. de Castro-Amarante, C. Buchmann, C.A. Pise-Masison, and G. Franchini. (2011). Orf-I and orf-II-encoded proteins in HTLV-1 infection and persistence. Viruses 3: 861-885. 21994758
Hyser, J.M. and M.K. Estes. (2015). Pathophysiological Consequences of Calcium-Conducting Viroporins. Annu Rev Virol 2: 473-496. 26958925
Silic-Benussi, M., O. Marin, R. Biasiotto, D.M. D''Agostino, and V. Ciminale. (2010). Effects of human T-cell leukemia virus type 1 (HTLV-1) p13 on mitochondrial K+ permeability: A new member of the viroporin family? FEBS Lett. 584: 2070-2075. 20170654


Lim, K.P., H.Y. Xu, and D.X. Liu. (2001). Physical interaction between the membrane (M) and envelope (E) proteins of the coronavirus avian infectious bronchitis virus (IBV). Adv Exp Med Biol 494: 595-602. 11774531
Pendleton, A.R. and C.E. Machamer. (2008). Generating antibodies to the gene 3 proteins of infectious bronchitis virus. Methods Mol Biol 454: 163-189. 19057877


Gubala, A.J., D.F. Proll, R.T. Barnard, C.J. Cowled, S.G. Crameri, A.D. Hyatt, and D.B. Boyle. (2008). Genomic characterisation of Wongabel virus reveals novel genes within the Rhabdoviridae. Virology 376: 13-23. 18436275


Jaiteh, M., A. Taly, and J. Hénin. (2016). Evolution of Pentameric Ligand-Gated Ion Channels: Pro-Loop Receptors. PLoS One 11: e0151934. 26986966
Mindthoff S., Grunau S., Steinfort LL., Girzalsky W., Hiltunen JK., Erdmann R. and Antonenkov VD. (2015). Peroxisomal Pex11 is a pore-forming protein homologous to TRPM channels. Biochim Biophys Acta. 1863(2):271-283. 26597702
Schrader, M., B.E. Reuber, J.C. Morrell, G. Jimenez-Sanchez, C. Obie, T.A. Stroh, D. Valle, T.A. Schroer, and S.J. Gould. (1998). Expression of PEX11beta mediates peroxisome proliferation in the absence of extracellular stimuli. J. Biol. Chem. 273: 29607-29614. 9792670


Hyser, J.M. and M.K. Estes. (2015). Pathophysiological Consequences of Calcium-Conducting Viroporins. Annu Rev Virol 2: 473-496. 26958925


Hyser, J.M. and M.K. Estes. (2015). Pathophysiological Consequences of Calcium-Conducting Viroporins. Annu Rev Virol 2: 473-496. 26958925


Minamino, T., Y.V. Morimoto, N. Hara, P.D. Aldridge, and K. Namba. (2016). The Bacterial Flagellar Type III Export Gate Complex Is a Dual Fuel Engine That Can Use Both H+ and Na+ for Flagellar Protein Export. PLoS Pathog 12: e1005495. 26943926


Xia, B., S. Fang, X. Chen, H. Hu, P. Chen, H. Wang, and Z. Gao. (2016). MLKL forms cation channels. Cell Res 26: 517-528. 27033670


Wang, Q.C., Q. Zheng, H. Tan, B. Zhang, X. Li, Y. Yang, J. Yu, Y. Liu, H. Chai, X. Wang, Z. Sun, J.Q. Wang, S. Zhu, F. Wang, M. Yang, C. Guo, H. Wang, Q. Zheng, Y. Li, Q. Chen, A. Zhou, and T.S. Tang. (2016). TMCO1 Is an ER Ca2+ Load-Activated Ca2+ Channel. Cell 165: 1454-1466. 27212239


Morrill, G.A. and A.B. Kostellow. (2016). Molecular Properties of Globin Channels and Pores: Role of Cholesterol in Ligand Binding and Movement. Front Physiol 7: 360. 27656147


Hannan, S.B., N.M. Dräger, T.M. Rasse, A. Voigt, and T.R. Jahn. (2016). Cellular and molecular modifier pathways in tauopathies: the big picture from screening invertebrate models. J Neurochem 137: 12-25. 26756400
La Venuta, G., M. Zeitler, J.P. Steringer, H.M. Müller, and W. Nickel. (2015). The Startling Properties of Fibroblast Growth Factor 2: How to Exit Mammalian Cells without a Signal Peptide at Hand. J. Biol. Chem. 290: 27015-27020. 26416892
La Venuta, G., S. Wegehingel, P. Sehr, H.M. Müller, E. Dimou, J.P. Steringer, M. Grotwinkel, N. Hentze, M.P. Mayer, D.W. Will, U. Uhrig, J.D. Lewis, and W. Nickel. (2016). Small Molecule Inhibitors Targeting Tec Kinase Block Unconventional Secretion of Fibroblast Growth Factor 2. J. Biol. Chem. 291: 17787-17803. 27382052
Müller, H.M., J.P. Steringer, S. Wegehingel, S. Bleicken, M. Münster, E. Dimou, S. Unger, G. Weidmann, H. Andreas, A.J. García-Sáez, K. Wild, I. Sinning, and W. Nickel. (2015). Formation of disulfide bridges drives oligomerization, membrane pore formation, and translocation of fibroblast growth factor 2 to cell surfaces. J. Biol. Chem. 290: 8925-8937. 25694424
Nickel, W. (2010). Pathways of unconventional protein secretion. Curr Opin Biotechnol 21: 621-626. 20637599
Nickel, W. and M. Seedorf. (2008). Unconventional mechanisms of protein transport to the cell surface of eukaryotic cells. Annu. Rev. Cell Dev. Biol. 24: 287-308. 18590485
Pompa, A., F. De Marchis, M.T. Pallotta, Y. Benitez-Alfonso, A. Jones, K. Schipper, K. Moreau, V. Žárský, G.P. Di Sansebastiano, and M. Bellucci. (2017). Unconventional Transport Routes of Soluble and Membrane Proteins and Their Role in Developmental Biology. Int J Mol Sci 18:. 28346345
Steringer, J.P., S. Bleicken, H. Andreas, S. Zacherl, M. Laussmann, K. Temmerman, F.X. Contreras, T.A. Bharat, J. Lechner, H.M. Müller, J.A. Briggs, A.J. García-Sáez, and W. Nickel. (2012). Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-dependent oligomerization of fibroblast growth factor 2 (FGF2) triggers the formation of a lipidic membrane pore implicated in unconventional secretion. J. Biol. Chem. 287: 27659-27669. 22730382
Zacherl, S., G. La Venuta, H.M. Müller, S. Wegehingel, E. Dimou, P. Sehr, J.D. Lewis, H. Erfle, R. Pepperkok, and W. Nickel. (2015). A direct role for ATP1A1 in unconventional secretion of fibroblast growth factor 2. J. Biol. Chem. 290: 3654-3665. 25533462


Chojnacka, K., B. Bilinska, and D.D. Mruk. (2016). Interleukin 1α-induced disruption of the Sertoli cell cytoskeleton affects gap junctional communication. Cell Signal 28: 469-480. 26879129
Martín-Sánchez, F., C. Diamond, M. Zeitler, A.I. Gomez, A. Baroja-Mazo, J. Bagnall, D. Spiller, M. White, M.J. Daniels, A. Mortellaro, M. Peñalver, P. Paszek, J.P. Steringer, W. Nickel, D. Brough, and P. Pelegrín. (2016). Inflammasome-dependent IL-1β release depends upon membrane permeabilisation. Cell Death Differ 23: 1219-1231. 26868913


Lau, S.K., P.C. Woo, K.S. Li, A.K. Tsang, R.Y. Fan, H.K. Luk, J.P. Cai, K.H. Chan, B.J. Zheng, M. Wang, and K.Y. Yuen. (2015). Discovery of a novel coronavirus, China Rattus coronavirus HKU24, from Norway rats supports the murine origin of Betacoronavirus 1 and has implications for the ancestor of Betacoronavirus lineage A. J. Virol. 89: 3076-3092. 25552712


Jaroslawski S., Duquesne K., Sturgis JN. and Scheuring S. (2009). High-resolution architecture of the outer membrane of the Gram-negative bacteria Roseobacter denitrificans. Mol Microbiol. 74(5):1211-22. 19843216
Lolicato, M., S. Reina, A. Messina, F. Guarino, M. Winterhalter, R. Benz, and V. De Pinto. (2011). Generation of artificial channels by multimerization of β-strands from natural porin. Biol Chem 392: 617-624. 21627534


Andersen, C., E. Maier, G. Kemmer, J. Blass, A.-K. Hilpert, R. Benz, and J. Reidl. (2003). Porin OmpP2 of Haemophilus influenzae shows specificity for nicotinamide-derived nucleotide substrates. J. Biol. Chem. 278: 24269-24276. 12695515
Andrade, I.d.a.S., J.L. Vianez-Júnior, C.L. Goulart, F. Homblé, J.M. Ruysschaert, W.M. Almeida von Krüger, P.M. Bisch, W. de Souza, R. Mohana-Borges, and M.C. Motta. (2011). Characterization of a porin channel in the endosymbiont of the trypanosomatid protozoan Crithidia deanei. Microbiology 157: 2818-2830. 21757490
Aunkham, A., A. Schulte, M. Winterhalter, and W. Suginta. (2014). Porin involvement in cephalosporin and carbapenem resistance of Burkholderia pseudomallei. PLoS One 9: e95918. 24788109
Bajaj, H., Q.T. Tran, K.R. Mahendran, C. Nasrallah, J.P. Colletier, A. Davin-Regli, J.M. Bolla, J.M. Pagès, and M. Winterhalter. (2012). Antibiotic uptake through membrane channels: role of Providencia stuartii OmpPst1 porin in carbapenem resistance. Biochemistry 51: 10244-10249. 23210483
Benz, R., R.P. Darveau, and R.E.W. Hancock. (1984). Outer-membrane protein PhoE from Escherichia coli forms anion-selective pores in lipid-bilayer membranes. Eur. J. Biochem. 140: 319-324. 6325185
Blasband, A.J. and C.A. Schnaitman. (1987). Regulation in Escherichia coli of the porin protein gene encoded by lambdoid bacteriophages. J. Bacteriol. 169: 2171-2176. 3032909
Bornet, C., N. Saint, L. Fetnaci, M. Dupont, A. Davin-Régli, C. Bollet, and J.M. Pagès. (2004). Omp35, a new Enterobacter aerogenes porin involved in selective susceptibility to cephalosporins. Antimicrob. Agents Chemother. 48: 2153-2158. 15155215
Brunen, M., H. Engelhardt, A. Schmid, and R. Benz. (1991). The major outer membrane protein of Acidovorax delafieldii is an anion-selective porin. J. Bacteriol. 173: 4182-4187. 1712013
Calderón, I.L., E. Morales, N.J. Caro, C.A. Chahúan, B. Collao, F. Gil, J.M. Villarreal, F. Ipinza, G.C. Mora, and C.P. Saavedra. (2010). Response regulator ArcA of Salmonella enterica serovar Typhimurium downregulates expression of OmpD, a porin facilitating uptake of hydrogen peroxide. Res. Microbiol. 162: 214-222. 21144897
Cervera, J., A.G. Komarov, and V.M. Aguilella. (2008). Rectification properties and pH-dependent selectivity of meningococcal class 1 porin. Biophys. J. 94: 1194-1202. 17965131
Chang HK., Dennis JJ. and Zylstra GJ. (2009). Involvement of two transport systems and a specific porin in the uptake of phthalate by Burkholderia spp. J Bacteriol. 191(14):4671-3. 19429613
Chatfield, C.H., B.J. Mulhern, D.M. Burnside, and N.P. Cianciotto. (2011). Legionella pneumophila LbtU acts as a novel, TonB-independent receptor for the legiobactin siderophore. J. Bacteriol. 193: 1563-1575. 21278293
Chumjan W., Winterhalter M., Schulte A., Benz R. and Suginta W. (2015). Chitoporin from the Marine Bacterium Vibrio harveyi: PROBING THE ESSENTIAL ROLES OF TRP136 AT THE SURFACE OF THE CONSTRICTION ZONE. J Biol Chem. 290(31):19184-96. 26082491
Cowan, S.W., T. Schirmer, G. Rummel, M. Steiert, R. Ghosh, R.A. Pauptit, J.N. Jansonius, and J.P. Rosenbusch. (1992). Crystal structures explain functional properties of two E. coli porins. Nature 358: 727-733. 1380671
Dé, E., A. Baslé, M. Jaquinod, N. Saint, M. Malléa, G. Molle, and J.M. Pagès. (2001). A new mechanism of antibiotic resistance in Enterobacteriaceae induced by a structural modification of the major porin. Mol. Microbiol. 41: 189-198. 11454211
Delcour, A.H. (1997). Function and modulation of bacterial porins: insights from electrophysiology. FEMS Microbiol. Lett. 152: 115-123. 9228742
Duperthuy, M., A.E. Sjöström, D. Sabharwal, F. Damghani, B.E. Uhlin, and S.N. Wai. (2013). Role of the Vibrio cholerae matrix protein Bap1 in cross-resistance to antimicrobial peptides. PLoS Pathog 9: e1003620. 24098113
Duret, G. and A.H. Delcour. (2010). Size and dynamics of the Vibrio cholerae porins OmpU and OmpT probed by polymer exclusion. Biophys. J. 98: 1820-1829. 20441745
Easton, D.M., A. Smith, S.G. Gallego, A.R. Foxwell, A.W. Cripps, and J.M. Kyd. (2005). Characterization of a novel porin protein from Moraxella catarrhalis and identification of an immunodominant surface loop. J. Bacteriol. 187: 6528-6535. 16159786
Egger, L.A., H. Park, and M. Inouye. (1997). Signal transduction via the histidyl-aspartyl phosphorelay. Genes Cells 2: 167-184. 9189755
Elazar, M., D. Halfon, I. Pechatnikov, and Y. Nitzan. (2007). Porin isolated from the outer membrane of Erwinia amylovora and its encoding gene. Curr. Microbiol. 54: 155-161. 17211539
Fàbrega, A., J.L. Rosner, R.G. Martin, M. Solé, and J. Vila. (2012). SoxS-dependent coregulation of ompN and ydbK in a multidrug-resistant Escherichia coli strain. FEMS Microbiol. Lett. 332: 61-67. 22515487
Fernández-Mora, M., J.L. Puente, and E. Calva. (2004). OmpR and LeuO positively regulate the Salmonella enterica serovar Typhi ompS2 porin gene. J. Bacteriol. 186: 2909-2920. 15126450
Forst, S., J. Waukau, G. Leisman, M. Exner, and R. Hancock. (1995). Functional and regulatory analysis of the OmpF-like porin, OpnP, of the symbiotic bacterium Xenorhabdus nematophilus. Mol. Microbiol. 18: 779-789. 8817498
Forst, S.A. and N. Tabatabai. (1997). Role of the histidine kinase, EnvZ, in the production of outer membrane proteins in the symbiotic-pathogenic bacterium Xenorhabdus nematophilus. Appl. Environ. Microbiol. 63: 962-968. 9055414
Fralick, J.A., D.L. Diedrich, and S. Casey-Wood. (1990). Isolation of an Lc-specific Escherichia coli bacteriophage. J. Bacteriol. 172: 1660-1662. 1689719
Ganguly B., Tewari K. and Singh R. (2015). Homology modeling, functional annotation and comparative genomics of outer membrane protein H of Pasteurella multocida. J Theor Biol. 386:18-24. 26362105
Gao, T., L. Ju, J. Yin, and H. Gao. (2015). Positive regulation of the Shewanella oneidensis OmpS38, a major porin facilitating anaerobic respiration, by Crp and Fur. Sci Rep 5: 14263. 26381456
García-Sureda, L., A. Doménech-Sánchez, M. Barbier, C. Juan, J. Gascó, and S. Albertí. (2011). OmpK26, a novel porin associated with carbapenem resistance in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 55: 4742-4747. 21807980
Gensberg, K., A.W. Smith, F.S. Brinkman, and R.E. Hancock. (1999). Identification of oprG, a gene encoding a major outer membrane protein of Pseudomonas aeruginosa. J. Antimicrob. Chemother. 43: 607-608. 10350397
Ghale G., Lanctot AG., Kreissl HT., Jacob MH., Weingart H., Winterhalter M. and Nau WM. (2014). Chemosensing ensembles for monitoring biomembrane transport in real time. Angew Chem Int Ed Engl. 53(10):2762-5. 24469927
Goulart, C.L., P.M. Bisch, W.M. von Krüger, and F. Homblé. (2015). VCA1008: An Anion-Selective Porin of Vibrio Cholerae. Biochim. Biophys. Acta. 1848: 680-687. 25462170
Gromiha, M.M., and M. Suwa (2007). Current developments on β- barrel membrane proteins: sequence and structure analysis, discrimination and prediction. Curr. Protein Pept. Sci. 8: 580-599. 18220845
Gupta S., Prasad GV. and Mukhopadhaya A. (2015). Vibrio cholerae Porin OmpU Induces Caspase-independent Programmed Cell Death upon Translocation to the Host Cell Mitochondria. J Biol Chem. 290(52):31051-68. 26559970
Hadi-Alijanvand, H. and M. Rouhani. (2015). Journey of Poly-Nucleotides through OmpF Porin. J Phys Chem B 119: 6113-6128. 25965338
Housden, N.G., J.A. Wojdyla, J. Korczynska, I. Grishkovskaya, N. Kirkpatrick, A.M. Brzozowski, and C. Kleanthous. (2010). Directed epitope delivery across the Escherichia coli outer membrane through the porin OmpF. Proc. Natl. Acad. Sci. USA 107: 21412-21417. 21098297
Housden, N.G., J.T. Hopper, N. Lukoyanova, D. Rodriguez-Larrea, J.A. Wojdyla, A. Klein, R. Kaminska, H. Bayley, H.R. Saibil, C.V. Robinson, and C. Kleanthous. (2013). Intrinsically disordered protein threads through the bacterial outer-membrane porin OmpF. Science 340: 1570-1574. 23812713
Hu, W.S., H.W. Chen, R.Y. Zhang, C.Y. Huang, and C.F. Shen. (2011). The expression levels of outer membrane proteins STM1530 and OmpD, which are influenced by the CpxAR and BaeSR two-component systems, play important roles in the ceftriaxone resistance of Salmonella enterica serovar Typhimurium. Antimicrob. Agents Chemother. 55: 3829-3837. 21646491
Jadhav, S.R., K.S. Rao, Y. Zheng, R.M. Garavito, and R.M. Worden. (2013). Voltage dependent closure of PorB class II porin from Neisseria meningitidis investigated using impedance spectroscopy in a tethered bilayer lipid membrane interface. J Colloid Interface Sci 390: 211-216. 23083768
Jeanteur, D., J.H. Lakey, and F. Pattus. (1991). The bacterial porin superfamily: sequence alignment and structure prediction. Mol. Microbiol. 5: 2153-2164. 1662760
Jeanteur, D., J.H. Lakey, and F. Pattus. (1994). The porin superfamily: diversity and common features. In: Bacterial Cell Wall (J.M.Ghuysen and R. Hakenbeck, eds.). Elsevier, Amsterdam, pp. 363-380.
Kattner C., Zaucha J., Jaenecke F., Zachariae U. and Tanabe M. (2013). Identification of a cation transport pathway in Neisseria meningitidis PorB. Proteins. 81(5):830-40. 23255122
Kattner, C., S. Pfennig, P. Massari, and M. Tanabe. (2015). One-step purification and porin transport activity of the major outer membrane proteins P2 from Haemophilus influenzae, FomA from Fusobacterium nucleatum and PorB from Neisseria meningitidis. Appl Biochem Biotechnol 175: 2907-2915. 25575589
Keyhani, N.O., X.B. Li, and S. Roseman. (2000). Chitin catabolism in the marine bacterium Vibrio furnissii. Identification and molecular cloning of a chitoporin. J. Biol. Chem. 275: 33068-33076. 10913115
Koebnik, R., K.P. Locher, and P. Van Gelder. (2000). Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol. Microbiol. 37: 239-253. 10931321
Lou, H., M. Chen, S.S. Black, S.R. Bushell, M. Ceccarelli, T. Mach, K. Beis, A.S. Low, V.A. Bamford, I.R. Booth, H. Bayley, and J.H. Naismith. (2011). Altered antibiotic transport in OmpC mutants isolated from a series of clinical strains of multi-drug resistant E. coli. PLoS One 6: e25825. 22053181
Lovelle, M., T. Mach, K.R. Mahendran, H. Weingart, M. Winterhalter, and P. Gameiro. (2011). Interaction of cephalosporins with outer membrane channels of Escherichia coli. Revealing binding by fluorescence quenching and ion conductance fluctuations. Phys Chem Chem Phys 13: 1521-1530. 21152583
Massari, P., C.A. King, A.Y. Ho, and L.M. Wetzler. (2003). Neisserial PorB is translocated to the mitochondria of HeLa cells infected with Neisseria meningitidis and protects cells from apoptosis. Cell. Microbiol. 5: 99-109. 12580946
Nikaido, H. (1992). Porins and specific channels of bacterial outer membranes. Mol. Microbiol. 6: 435-442. 1373213
Pagel, M., V. Simonet, J. Li, M. Lallemand, B. Lauman, and A.H. Delcour. (2007). Phenotypic Characterization of Pore Mutants of the Vibrio cholerae Porin OmpU. J. Bacteriol. 189(23): 8593-8600. 17905973
Park, H.J., S.W. Lee, and S.W. Han. (2014). Proteomic and functional analyses of a novel porin-like protein in Xanthomonas oryzae pv. oryzae. J Microbiol 52: 1030-1035. 25467121
Patel, D.S., S. Re, E.L. Wu, Y. Qi, P.E. Klebba, G. Widmalm, M.S. Yeom, Y. Sugita, and W. Im. (2016). Dynamics and Interactions of OmpF and LPS: Influence on Pore Accessibility and Ion Permeability. Biophys. J. 110: 930-938. 26910429
Pavez, M., C. Vieira, M.R. de Araujo, A. Cerda, L.M. de Almeida, N. Lincopan, and E.M. Mamizuka. (2016). Molecular mechanisms of membrane impermeability in clinical isolates of Enterobacteriaceae exposed to imipenem selective pressure. Int J Antimicrob Agents. [Epub: Ahead of Print] 27256585
Prilipov, A., P.S. Phale, R. Koebnik, C. Widmer, and J.P. Rosenbusch. (1998). Identification and characterization of two quiescent porin genes, nmpC and ompN, in Escherichia coli BE. J. Bacteriol. 180: 3388-3392. 9642192
Rumbo, C., M. Tomás, E. Fernández Moreira, N.C. Soares, M. Carvajal, E. Santillana, A. Beceiro, A. Romero, and G. Bou. (2014). The Acinetobacter baumannii Omp33-36 porin is a virulence factor that induces apoptosis and modulates autophagy in human cells. Infect. Immun. 82: 4666-4680. 25156738
Santiviago, C.A., J.A. Fuentes, S.M. Bueno, A.N. Trombert, A.A. Hildago, L.T. Socias, P. Youderian, and G.C. Mora. (2002). The Salmonella enterica sv. Typhimurium smvA, yddG and ompD (porin) genes are required for the efficient efflux of methyl viologen. Mol. Microbiol. 46: 687-698. 12410826
Schulz, G.E. (1996). Porins: general to specific, native to engineered passive pores. Curr. Opin. Struc. Biol. 6: 485-490. 8794162
Simonet, V.C., A. Baslé, K.E. Klose, and A.H. Delcour. (2003). The Vibrio cholerae porins OmpU and OmpT have distinct channel properties. J. Biol. Chem. 278: 17539-17545.