TCDB is operated by the Saier Lab Bioinformatics Group

References included in TCDB:


Grigoryan, G., D.T. Moore, and W.F. DeGrado. (2011). Transmembrane communication: general principles and lessons from the structure and function of the M2 proton channel, K⁺ channels, and integrin receptors. Annu. Rev. Biochem. 80: 211-237. 21548783
Mandala, V.S., J.K. Williams, and M. Hong. (2018). Structure and Dynamics of Membrane Proteins from Solid-State NMR. Annu Rev Biophys. [Epub: Ahead of Print] 29498890


and ?. (2012). RETRACTED ARTICLE: Deprotonation of arginines in S4 is involved in NaChBac gating. J Membr Biol. 245(11):761. 22527606
and Abbott GW. (2016). KCNE1 and KCNE3: The yin and yang of voltage-gated K(+) channel regulation. Gene. 576(1 Pt 1):1-13. 26410412
and Atlas D. (201). The voltage-gated calcium channel functions as the molecular switch of synaptic transmission. Annu Rev Biochem. 82:607-35. 23331239
and Rothberg BS. (2012). The BK channel: a vital link between cellular calcium and electrical signaling. Protein Cell. 3(12):883-92. 22996175
and Thevenod F. (2010). Catch me if you can! Novel aspects of cadmium transport in mammalian cells. Biometals. 23(5):857-75. 20204475
Abbott, G.W. (2017). β Subunits Control the Effects of Human Kv4.3 Potassium Channel Phosphorylation. Front Physiol 8: 646. 28919864
Agarkova, I., D. Dunigan, J. Gurnon, T. Greiner, J. Barres, G. Thiel, and J.L. Van Etten. (2008). Chlorovirus-mediated membrane depolarization of Chlorella alters secondary active transport of solutes. J. Virol. 82: 12181-12190. 18842725
Agwa, A.J., L.V. Blomster, D.J. Craik, G.F. King, and C.I. Schroeder. (2018). Efficient Enzymatic Ligation of Inhibitor Cystine Knot Spider Venom Peptides: Using Sortase A To Form Double-Knottins That Probe Voltage-Gated Sodium Channel Na1.7. Bioconjug Chem. [Epub: Ahead of Print] 30148615
Akopian, A.N., L. Sivilotti, and J.N. Wood. (1996). A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature 379: 257-262. 8538791
Alexander, S.P.H. and J.A. Peters. (1997). Receptor and ion channel nomenclature supplement. Trends Pharmacol. Sci., Elsevier, pp. 76-84.
Altrichter, S., M. Haase, B. Loh, A. Kuhn, and S. Leptihn. (2016). Mechanism of the Spontaneous and Directional Membrane Insertion of a 2-Transmembrane Ion Channel. ACS Chem Biol. [Epub: Ahead of Print] 27960258
Amarouch, M.Y., H. Kurt, L. Delemotte, and H. Abriel. (2020). Biophysical Characterization of Epigallocatechin-3-Gallate Effect on the Cardiac Sodium Channel Na1.5. Molecules 25:. 32085432
Amin, A.S., Y.J. Reckman, E. Arbelo, A.M. Spanjaart, P.G. Postema, R. Tadros, M.W. Tanck, M.P. Van den Berg, A.A.M. Wilde, and H.L. Tan. (2018). SCN5A mutation type and topology are associated with the risk of ventricular arrhythmia by sodium channel blockers. Int J Cardiol. [Epub: Ahead of Print] 29709244
An, F.A., M.R. Bowlby, M. Betty, J. Cao, H. Ling, G. Mendoza, J.W. Hinson, K.I. Mattsson, B.W. Strassle, J.S. Trimmer, and K.J. Rhodes. (2000). Modulation of A-type potassium channels by a family of calcium sensors. Nature 403: 553. 10676964
Anderson, P.A.V. and R.M. Greenberg. (2001). Phylogeny of ion channels: clues to structure and function. Comp. Biochem. Physiol. B 129: 17-18. 11337248
Andolfo, I., R. Russo, F. Manna, B.E. Shmukler, A. Gambale, G. Vitiello, G. De Rosa, C. Brugnara, S.L. Alper, L.M. Snyder, and A. Iolascon. (2015). Novel Gardos channel mutations linked to dehydrated hereditary stomatocytosis (xerocytosis). Am J Hematol 90: 921-926. 26178367
Anwar, T. and G. Samudrala. (2018). Bioinformatics Analysis and Functional Prediction of Transmembrane Proteins in. Genes (Basel) 9:. 30332795
Aoki, I., M. Tateyama, T. Shimomura, K. Ihara, Y. Kubo, S. Nakano, and I. Mori. (2018). SLO potassium channels antagonize premature decision making in. Commun Biol 1: 123. 30272003
Aqvist, J. and V. Luzhkov. (2000). Ion permeation mechanism of the potassium channel. Nature 404: 881-884. 10786795
Aryal, P., F. Abd-Wahab, G. Bucci, M.S. Sansom, and S.J. Tucker. (2015). Influence of lipids on the hydrophobic barrier within the pore of the TWIK-1 K2P channel. Channels (Austin) 9: 44-49. 25487004
Aryal, P., V. Jarerattanachat, M.V. Clausen, M. Schewe, C. McClenaghan, L. Argent, L.J. Conrad, Y.Y. Dong, A.C. Pike, E.P. Carpenter, T. Baukrowitz, M.S. Sansom, and S.J. Tucker. (2017). Bilayer-Mediated Structural Transitions Control Mechanosensitivity of the TREK-2 K2P Channel. Structure. [Epub: Ahead of Print] 28392258
Ashmole, I., D.V. Vavoulis, P.J. Stansfeld, P.R. Mehta, J.F. Feng, M.J. Sutcliffe, and P.R. Stanfield. (2009). The response of the tandem pore potassium channel TASK-3 (K(2P)9.1) to voltage: gating at the cytoplasmic mouth. J. Physiol. 587: 4769-4783. 19703964
Atsuta, Y., R.R. Tomizawa, M. Levin, and C.J. Tabin. (2019). L-type voltage-gated Ca channel Ca1.2 regulates chondrogenesis during limb development. Proc. Natl. Acad. Sci. USA 116: 21592-21601. 31591237
Bachnoff, N., M. Cohen-Kutner, M. Trus, and D. Atlas. (2013). Intra-membrane Signaling Between the Voltage-Gated Ca2+-Channel and Cysteine Residues of Syntaxin 1A Coordinates Synchronous Release. Sci Rep 3: 1620. 23567899
Bagal, S.K., B.E. Marron, R.M. Owen, R.I. Storer, and N.A. Swain. (2015). Voltage gated sodium channels as drug discovery targets. Channels (Austin) 9: 360-366. 26646477
Bagnéris, C., P.G. Decaen, B.A. Hall, C.E. Naylor, D.E. Clapham, C.W. Kay, and B.A. Wallace. (2013). Role of the C-terminal domain in the structure and function of tetrameric sodium channels. Nat Commun 4: 2465. 24051986
Bagriantsev, S.N., R. Peyronnet, K.A. Clark, E. Honoré, and D.L. Minor, Jr. (2011). Multiple modalities converge on a common gate to control K2P channel function. EMBO. J. 30: 3594-3606. 21765396
Bai, H.W., S. Eom, H.D. Yeom, K.V.A. Nguyen, J. Lee, S.O. Sohn, and J.H. Lee. (2018). Molecular basis involved in the blocking effect of antidepressant metergoline on C-type inactivation of Kv1.4 channel. Neuropharmacology 146: 65-73. [Epub: Ahead of Print] 30465811
Baig, A.M., J. Iqbal, and N.A. Khan. (2013). In vitro efficacies of clinically available drugs against growth and viability of an Acanthamoeba castellanii keratitis isolate belonging to the T4 genotype. Antimicrob. Agents Chemother. 57: 3561-3567. 23669391
Baker, K.A., C. Tzitzilonis, W. Kwiatkowski, S. Choe, and R. Riek. (2007). Conformational dynamics of the KcsA potassium channel governs gating properties. Nat Struct Mol Biol 14: 1089-1095. 17922011
Balagué, C., B. Lin, C. Alcon, G. Flottes, S. Malmström, C. Köhler, G. Neuhaus, G. Pelletier, F. Gaymard, and D. Roby. (2003). HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell 15: 365-379. 12566578
Balajthy, A., P. Hajdu, G. Panyi, and Z. Varga. (2017). Sterol Regulation of Voltage-Gated K+ Channels. Curr Top Membr 80: 255-292. 28863820
Balss, J., P. Papatheodorou, M. Mehmel, D. Baumeister, B. Hertel, N. Delaroque, F.C. Chatelain, D.L. Minor, Jr, J.L. Van Etten, J. Rassow, A. Moroni, and G. Thiel. (2008). Transmembrane domain length of viral K+ channels is a signal for mitochondria targeting. Proc. Natl. Acad. Sci. USA 105: 12313-12318. 18719119
Bang, H., Y. Kim, and D. Kim. (2000). TREK-2, a new member of the mechanosensitive tandem-pore K+ channel family. J. Biol. Chem. 275: 17412-17419. 10747911
Barber AF., Carnevale V., Raju SG., Amaral C., Treptow W. and Klein ML. (2012). Hinge-bending motions in the pore domain of a bacterial voltage-gated sodium channel. Biochim Biophys Acta. 1818(9):2120-5. 22579978
Barmeyer, C., C. Rahner, Y. Yang, F.J. Sigworth, H.J. Binder, and V.M. Rajendran. (2010). Cloning and identification of tissue-specific expression of KCNN4 splice variants in rat colon. Am. J. Physiol. Cell Physiol. 299: C251-263. 20445171
Barros, F., L.A. Pardo, P. Domínguez, L.M. Sierra, and P. de la Peña. (2019). New Structures and Gating of Voltage-Dependent Potassium (Kv) Channels and Their Relatives: A Multi-Domain and Dynamic Question. Int J Mol Sci 20:. 30634573
Barros, F., P. de la Peña, P. Domínguez, L.M. Sierra, and L.A. Pardo. (2020). The EAG Voltage-Dependent K Channel Subfamily: Similarities and Differences in Structural Organization and Gating. Front Pharmacol 11: 411. 32351384
Bartolomé-Martín, D., I. Ibáñez, D. Piniella, E. Martínez-Blanco, S.G. Pelaz, and F. Zafra. (2019). Identification of potassium channel proteins Kv7.2/7.3 as common partners of the dopamine and glutamate transporters DAT and GLT-1. Neuropharmacology. [Epub: Ahead of Print] 30885609
Bassetto, C.A.Z., Jr, J.L. Carvalho-de-Souza, and F. Bezanilla. (2019). Metal Bridge in S4 Segment Supports Helix Transition in Shaker Channel. Biophys. J. [Epub: Ahead of Print] 31635788
Basu, D. and E.S. Haswell. (2017). Plant mechanosensitive ion channels: an ocean of possibilities. Curr. Opin. Plant Biol. 40: 43-48. 28750206
Bauer, C.K. and J.R. Schwarz. (2018). Ether-à-go-go K channels: effective modulators of neuronal excitability. J. Physiol. 596: 769-783. 29333676
Becchetti, A., S. Crescioli, F. Zanieri, G. Petroni, R. Mercatelli, S. Coppola, L. Gasparoli, M. D'Amico, S. Pillozzi, O. Crociani, M. Stefanini, A. Fiore, L. Carraresi, V. Morello, S. Manoli, M.F. Brizzi, D. Ricci, M. Rinaldi, A. Masi, T. Schmidt, F. Quercioli, P. Defilippi, and A. Arcangeli. (2017). The conformational state of hERG1 channels determines integrin association, downstream signaling, and cancer progression. Sci Signal 10:. 28377405
Becker, C., D. Geiger, B. Dunkel, A. Roller, A. Bertl, A. Latz, A. Carpaneto, P. Dietrich, M.R.G. Roelfsema, C. Voelker, D. Schmidt, B. Mueller-Roeber, K. Czempinski, and R. Hedrich. (2004). AtTPK4, an Arabidopsis tandem-pore K+ channel, poised to control the pollen membrane voltage in a pH- and Ca2+-dependent manner. Proc. Natl. Acad. Sci. USA 101: 15621-15626. 15505206
Behringer, E.J. and M.A. Hakim. (2019). Functional Interaction among K and TRP Channels for Cardiovascular Physiology: Modern Perspectives on Aging and Chronic Disease. Int J Mol Sci 20:. 30893836
Ben Mahmoud, A., R. Ben Mansour, F. Driss, S. Baklouti-Gargouri, O. Siala, E. Mkaouar-Rebai, and F. Fakhfakh. (2015). Evaluation of the effect of c.2946+1G>T mutation on splicing in the SCN1A gene. Comput Biol Chem 54: 44-48. 25590135
Ben Soussia, I., S. El Mouridi, D. Kang, A. Leclercq-Blondel, L. Khoubza, P. Tardy, N. Zariohi, M. Gendrel, F. Lesage, E.J. Kim, D. Bichet, O. Andrini, and T. Boulin. (2019). Mutation of a single residue promotes gating of vertebrate and invertebrate two-pore domain potassium channels. Nat Commun 10: 787. 30770809
Bennett, V., and J. Healy. (2008). Being there: cellular targeting of voltage-gated sodium channels in the heart. J. Cell. Biol. 180: 13-15. 18180365
Berkefeld, H. and B. Fakler. (2013). Ligand-Gating by Ca2+ Is Rate Limiting for Physiological Operation of BKCa Channels. J. Neurosci. 33: 7358-7367. 23616542
Berkefeld, H., C.A. Sailer, W. Bildl, V. Rohde, J.O. Thumfart, S. Eble, N. Klugbauer, E. Reisinger, J. Bischofberger, D. Oliver, H.G. Knaus, U. Schulte, and B. Fakler. (2006). BKCa-Cav channel complexes mediate rapid and localized Ca2+-activated K+ signaling. Science 314: 615-620. 17068255
Bertaccini EJ., Dickinson R., Trudell JR. and Franks NP. (2014). Molecular modeling of a tandem two pore domain potassium channel reveals a putative binding site for general anesthetics. ACS Chem Neurosci. 5(12):1246-52. 25340635
Bertl, A., J. Ramos, J. Ludwig, H. Lichtenberg-Fraté, J. Reid, H. Bihler, F. Calero, P. Martinez, and P.O. Ljungdahl. (2003). Characterization of potassium transport in wild-type and isogenic yeast strains carrying all combinations of trk1, trk2 and tok1 null mutations. Mol. Microbiol. 47: 767-780. 12535075
Bezanilla, F. (2000). The voltage sensor in voltage-dependent ion channels. Physiol. Rev. 80: 555-592. 10747201
Bezanilla, F. (2008). How membrane proteins sense voltage. Nat Rev Mol. Cell Biol. 9: 323-332. 18354422
Bezine, M., S. Maatoug, R. Ben Khalifa, M. Debbabi, A. Zarrouk, Y. Wang, W.J. Griffiths, T. Nury, M. Samadi, A. Vejux, J. de Sèze, T. Moreau, R. Kharrat, M. El Ayeb, and G. Lizard. (2018). Modulation of Kv3.1b potassium channel level and intracellular potassium concentration in 158N murine oligodendrocytes and BV-2 murine microglial cells treated with 7-ketocholesterol, 24S-hydroxycholesterol or tetracosanoic acid (C24:0). Biochimie. [Epub: Ahead of Print] 29462682
Bianchi L., S.M. Kwok, M. Driscoll, F. Sesti. (2003). A potassium channel-MiRP complex controls neurosensory function in Caenorhabditis elegans. J Biol. Chem. 278:12415-12424. 12533541
Biel M., S. Michalakis. (2007). Function and dysfunction of CNG channels: insights from channelopathies and mouse models. Mol Neurobiol. 35: 266-277. 17917115
Biel, M., C. Wahl-Schott, S. Michalakis, and X. Zong. (2009). Hyperpolarization-activated cation channels: from genes to function. Physiol. Rev. 89: 847-885. 19584315
Bignucolo, O. and S. Bernèche. (2020). The Voltage-Dependent Deactivation of the KvAP Channel Involves the Breakage of Its S4 Helix. Front Mol Biosci 7: 162. 32850956
Biswas, S., I. Deschênes, D. Disilvestre, Y. Tian, V.L. Halperin, and G.F. Tomaselli. (2008). Calmodulin regulation of Nav1.4 current: role of binding to the carboxyl terminus. J. Gen. Physiol. 131: 197-209. 18270170
Blasic, J.R., D.L. Worcester, K. Gawrisch, P. Gurnev, and M. Mihailescu. (2015). Pore Hydration States of KcsA Potassium Channels in Membranes. J. Biol. Chem. 290: 26765-26775. 26370089
Bocksteins, E., N. Ottschytsch, J.P. Timmermans, A.J. Labro, and D.J. Snyders. (2011). Functional interactions between residues in the S1, S4, and S5 domains of Kv2.1. Eur Biophys. J. 40: 783-793. 21455829
Borger C., Schunke S., Lecher J., Stoldt M., Winkhaus F., Kaupp UB. and Willbold D. (2015). Resonance assignment of the ligand-free cyclic nucleotide-binding domain from the murine ion channel HCN2. Biomol NMR Assign. 9(2):243-6. 25324217
Börjesson, S.I. and F. Elinder. (2011). An electrostatic potassium channel opener targeting the final voltage sensor transition. J Gen Physiol 137: 563-577. 21624947
Bosmans, F., M. Puopolo, M.F. Martin-Eauclaire, B.P. Bean, and K.J. Swartz. (2011). Functional properties and toxin pharmacology of a dorsal root ganglion sodium channel viewed through its voltage sensors. J Gen Physiol 138: 59-72. 21670206
Boukhabza, M., J. El Hilaly, N. Attiya, A. El-Haidani, Y. Filali-Zegzouti, D. Mazouzi, and M.Y. Amarouch. (2016). In Silico Evaluation of the Potential Antiarrhythmic Effect of Epigallocatechin-3-Gallate on Cardiac Channelopathies. Comput Math Methods Med 2016: 7861653. 27882075
Boulton, S., M. Akimoto, S. Akbarizadeh, and G. Melacini. (2017). Free Energy Landscape Remodeling of the Cardiac Pacemaker Channel Explains the Molecular Basis of Familial Sinus Bradycardia. J. Biol. Chem. [Epub: Ahead of Print] 28174302
Brailoiu, E., R. Hooper, X. Cai, G.C. Brailoiu, M.V. Keebler, N.J. Dun, J.S. Marchant, and S. Patel. (2010). An ancestral deuterostome family of two-pore channels mediates nicotinic acid adenine dinucleotide phosphate-dependent calcium release from acidic organelles. J. Biol. Chem. 285: 2897-2901. 19940116
Brams M., Kusch J., Spurny R., Benndorf K. and Ulens C. (2014). Family of prokaryote cyclic nucleotide-modulated ion channels. Proc Natl Acad Sci U S A. 111(21):7855-60. 24821777
Bramswig, N.C., A.M. Bertoli-Avella, B. Albrecht, A.I. Al Aqeel, A. Alhashem, N. Al-Sannaa, M. Bah, K. Bröhl, C. Depienne, N. Dorison, D. Doummar, N. Ehmke, H.M. Elbendary, S. Gorokhova, D. Héron, D. Horn, K. James, B. Keren, A. Kuechler, S. Ismail, M.Y. Issa, I. Marey, M. Mayer, J. McEvoy-Venneri, A. Megarbane, C. Mignot, S. Mohamed, C. Nava, N. Philip, C. Ravix, A. Rolfs, A.A. Sadek, L. Segebrecht, V. Stanley, C. Trautman, S. Valence, L. Villard, T. Wieland, H. Engels, T.M. Strom, M.S. Zaki, J.G. Gleeson, H.J. Lüdecke, P. Bauer, and D. Wieczorek. (2018). Genetic variants in components of the NALCN-UNC80-UNC79 ion channel complex cause a broad clinical phenotype (NALCN channelopathies). Hum Genet 137: 753-768. 30167850
Brennecke, J.T. and B.L. de Groot. (2018). Mechanism of Mechanosensitive Gating of the TREK-2 Potassium Channel. Biophys. J. 114: 1336-1343. 29590591
Brettmann, J.B., D. Urusova, M. Tonelli, J.R. Silva, and K.A. Henzler-Wildman. (2015). Role of protein dynamics in ion selectivity and allosteric coupling in the NaK channel. Proc. Natl. Acad. Sci. USA 112: 15366-15371. 26621745
Brohawn, S.G., E.B. Campbell, and R. MacKinnon. (2014). Physical mechanism for gating and mechanosensitivity of the human TRAAK K+ channel. Nature 516: 126-130. 25471887
Brohawn, S.G., J. del Mármol, and R. MacKinnon. (2012). Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel. Science 335: 436-441. 22282805
Brontein-Sitton, N. (2006). The ether-a-go-go Related Gene (erg) Voltage-Gated K+ Channels: A Common Structure with Uncommon Characteristics. Modulator. 21: 13-15.
Bruening-Wright, A., F. Elinder, and H.P. Larsson. (2007). Kinetic relationship between the voltage sensor and the activation gate in spHCN channels. J Gen Physiol 130: 71-81. 17591986
Bruening-Wright, A., W.S. Lee, J.P. Adelman, and J. Maylie. (2007). Evidence for a Deep Pore Activation Gate in Small Conductance Ca2+-activated K+ Channels. J. Gen. Physiol. 130(6):601-610. 17998394
Buraei, Z. and J. Yang. (2010). The ß subunit of voltage-gated Ca2+ channels. Physiol. Rev. 90: 1461-1506. 20959621
Burashnikov, A., H. Barajas-Martinez, D. Hu, V.M. Robinson, M. Grunnet, and C. Antzelevitch. (2020). The SK Channel Inhibitors NS8593 and UCL1684 Prevent the Development of Atrial Fibrillation via Atrial-selective Inhibition of Sodium Channel Activity. J Cardiovasc Pharmacol. [Epub: Ahead of Print] 32453071
Bustos, D., M. Bedoya, D. Ramírez, G. Concha, L. Zúñiga, N. Decher, E.W. Hernández-Rodríguez, F.V. Sepúlveda, L. Martínez, and W. González. (2020). Elucidating the Structural Basis of the Intracellular pH Sensing Mechanism of TASK-2 KP Channels. Int J Mol Sci 21:. 31947679
Butterwick, J.A. and R. MacKinnon. (2010). Solution structure and phospholipid interactions of the isolated voltage-sensor domain from KvAP. J. Mol. Biol. 403: 591-606. 20851706
Bystroff, C. (2018). Intramembranal disulfide cross-linking elucidates the super-quaternary structure of mammalian CatSpers. Reprod Biol. [Epub: Ahead of Print] 29371110
Cai, K., H. Gao, X. Wu, S. Zhang, Z. Han, X. Chen, G. Zhang, and F. Zeng. (2019). The Ability to Regulate Transmembrane Potassium Transport in Root Is Critical for Drought Tolerance in Barley. Int J Mol Sci 20:. 31443572
Cai, S.Q., L. Hernandez, Y. Wang, K.H. Park, and F. Sesti. (2005). MPS-1 is a K+ channel β-subunit and a serine/threonine kinase. Nat Neurosci 8: 1503-1509. 16222231
Cang, C., B. Bekele, and D. Ren. (2014). The voltage-gated sodium channel TPC1 confers endolysosomal excitability. Nat Chem Biol 10: 463-469. 24776928
Cang, C., Y. Zhou, B. Navarro, Y.J. Seo, K. Aranda, L. Shi, S. Battaglia-Hsu, I. Nissim, D.E. Clapham, and D. Ren. (2013). mTOR regulates lysosomal ATP-sensitive two-pore Na+ channels to adapt to metabolic state. Cell 152: 778-790. 23394946
Canto-Bustos, M., E. Loeza-Alcocer, R. González-Ramírez, M.A. Gandini, R. Delgado-Lezama, and R. Felix. (2014). Functional expression of T-type Ca2+ channels in spinal motoneurons of the adult turtle. PLoS One 9: e108187. 25255145
Capera, J., C. Serrano-Novillo, M. Navarro-Pérez, S. Cassinelli, and A. Felipe. (2019). The Potassium Channel Odyssey: Mechanisms of Traffic and Membrane Arrangement. Int J Mol Sci 20:. 30744118
Carkci, S., E.O. Etem, S. Ozaydin, A. Karakeci, A. Tektemur, T. Ozan, and I. Orhan. (2017). Ion channel gene expressions in infertile men: A case-control study. Int J Reprod Biomed (Yazd) 15: 749-756. 29492471
Carraretto, L., E. Formentin, E. Teardo, V. Checchetto, M. Tomizioli, T. Morosinotto, G.M. Giacometti, G. Finazzi, and I. Szabó. (2013). A thylakoid-located two-pore K+ channel controls photosynthetic light utilization in plants. Science 342: 114-118. 24009357
Casida, J.E. and K.A. Durkin. (2013). Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Annu Rev Entomol 58: 99-117. 23317040
Castellano, A., M.D. Chiara, B. Mellström, A. Molina, F. Monje, J.R. Naranjo, and J. López-Barneo. (1997). Identification and functional characterization of a K+ channel α-subunit with regulatory properties specific to brain. J. Neurosci. 17: 4652-4661. 9169526
Catterall, W.A. (2010). Ion channel voltage sensors: structure, function, and pathophysiology. Neuron. 67: 915-928. 20869590
Catterall, W.A., S. Dib-Hajj, M.H. Meisler, and D. Pietrobon. (2008). Inherited neuronal ion channelopathies: new windows on complex neurological diseases. J. Neurosci. 28: 11768-11777. 19005038
Cavinder, B. and F. Trail. (2012). Role of Fig1, a component of the low-affinity calcium uptake system, in growth and sexual development of filamentous fungi. Eukaryot. Cell. 11: 978-988. 22635922
Cha, A., G.E. Snyder, P.R. Selvin, and F. Bezanilla. (1999). Atomic scale movement of the voltage sensing region in a potassium channel measured via spectroscopy. Nature 402: 809-813. 10617201
Chahine, M., S. Pilote, V. Pouliot, H. Takami, and C. Sato. (2004). Role of arginine residues on the S4 segment of the Bacillus halodurans Na+ channel in voltage-sensing. J. Membr. Biol. 201: 9-24. 15635808
Chancey, J.H., P.E. Shockett, and J.P. O''Reilly. (2007). Relative resistance to slow inactivation of human cardiac Na+ channel hNav1.5 is reversed by lysine or glutamine substitution at V930 in D2-S6. Am. J. Physiol. Cell Physiol. 293: C1895-1905. 17928536
Chanda, B., and F. Bezanilla (2008). A common pathway for charge transport through voltage-sensing domains. Neuron 57: 345-51. 18255028
Charalambous, K. and B.A. Wallace. (2011). NaChBac: The Long Lost Sodium Channel Ancestor. Biochemistry 50: 6742-6752. 21770445
Charpentier, M., J. Sun, T.V. Martins, G.V. Radhakrishnan, K. Findlay, E. Soumpourou, J. Thouin, A.A. Véry, D. Sanders, R.J. Morris, and G.E. Oldroyd. (2016). Nuclear-localized cyclic nucleotide-gated channels mediate symbiotic calcium oscillations. Science 352: 1102-1105. 27230377
Charpentier, M., R. Bredemeier, G. Wanner, N. Takeda, E. Schleiff, and M. Parniske. (2008). Lotus japonicus CASTOR and POLLUX are ion channels essential for perinuclear calcium spiking in legume root endosymbiosis. Plant Cell 20: 3467-3479. 19106374
Chartrand, E., A.A. Arnold, A. Gravel, S. Jenna, and I. Marcotte. (2010). Potential role of the membrane in hERG channel functioning and drug-induced long QT syndrome. Biochim. Biophys. Acta. 1798: 1651-1662. 20510171
Chauhan, D.S., D.K. Swain, N. Shah, H.P. Yadav, U.P. Nakade, V.K. Singh, R. Nigam, S. Yadav, and S.K. Garg. (2017). Functional and molecular characterization of voltage gated sodium channel Nav 1.8 in bull spermatozoa. Theriogenology 90: 210-218. 28166971
Checchetto, V., A. Segalla, G. Allorent, N. La Rocca, L. Leanza, G.M. Giacometti, N. Uozumi, G. Finazzi, E. Bergantino, and I. Szabò. (2012). Thylakoid potassium channel is required for efficient photosynthesis in cyanobacteria. Proc. Natl. Acad. Sci. USA 109: 11043-11048. 22711813
Checchetto, V., E. Formentin, L. Carraretto, A. Segalla, G.M. Giacometti, I. Szabo, and E. Bergantino. (2013). Functional characterization and determination of the physiological role of a calcium-dependent potassium channel from cyanobacteria. Plant Physiol. 162: 953-964. 23640756
Checchetto, V., E. Teardo, L. Carraretto, E. Formentin, E. Bergantino, G.M. Giacometti, and I. Szabo. (2013). Regulation of photosynthesis by ion channels in cyanobacteria and higher plants. Biophys Chem 182: 51-57. 23891570
Chemin, J., A. Patel, F. Duprat, M. Zanzouri, M. Lazdunski, and E. Honoré. (2005). Lysophosphatidic acid-operated K+ channels. J. Biol. Chem. 280: 4415-4421. 15572365
Chemin, J., C. Girard, F. Duprat, F. Lesage, G. Romey, and M. Lazdunski. (2003). Mechanisms underlying excitatory effects of group 1 metabotropic glutamate receptors via inhibition of 2P domain K+ channels. EMBO J. 22: 5403-5411. 14532113
Chen, B., P. Liu, H. Zhan, and Z.W. Wang. (2011). Dystrobrevin controls neurotransmitter release and muscle Ca2+ transients by localizing BK channels in Caenorhabditis elegans. J. Neurosci. 31: 17338-17347. 22131396
Chen, H., J. Kronengold, Y. Yan, V.R. Gazula, M.R. Brown, L. Ma, G. Ferreira, Y. Yang, A. Bhattacharjee, F.J. Sigworth, L. Salkoff, and L.K. Kaczmarek. (2009). The N-terminal domain of Slack determines the formation and trafficking of Slick/Slack heteromeric sodium-activated potassium channels. J. Neurosci. 29: 5654-5665. 19403831
Chen, H., J. Pan, D.M. Gandhi, C. Dockendorff, Q. Cui, B. Chanda, and K.A. Henzler-Wildman. (2019). NMR Structural Analysis of Isolated Shaker Voltage-Sensing Domain in LPPG Micelles. Biophys. J. 117: 388-398. 31301804
Chen, J., S.C. Cassar, D. Zhang, and M. Gopalakrishnan. (2005). A novel potassium channel encoded by Ectocarpus siliculosus virus. Biochem. Biophys. Res. Commun. 326: 887-893. 15607752
Chen, J., Z. Liu, J.P. Creagh, R. Zheng, and T.V. McDonald. (2019). Physical and Functional Interaction Sites in Cytoplasmic Domains of KCNQ1 and KCNE1 Channel Subunits. Am. J. Physiol. Heart Circ Physiol. [Epub: Ahead of Print] 31834838
Chen, M., D. Yin, S. Guo, D.Z. Xu, Z. Wang, Z. Chen, M. Rubart-von der Lohe, S.F. Lin, T.H. Everett, J.N. Weiss, and P.S. Chen. (2018). Sex-Specific Activation of SK Current by Isoproterenol Facilitates Action Potential Triangulation and Arrhythmogenesis in Rabbit Ventricles. J. Physiol. [Epub: Ahead of Print] 29917243
Chen, M., S. Li, M. Hao, J. Chen, Z. Zhao, S. Hong, J. Min, J. Tang, M. Hu, and L. Hong. (2020). T-type calcium channel blockade induces apoptosis in C2C12 myotubes and skeletal muscle via endoplasmic reticulum stress activation. FEBS Open Bio 10: 2122-2136. 32865339
Chen, X., M.Y. Ruan, and S.Q. Cai. (2015). KChIP-like auxiliary subunits of Kv4 channels regulate excitability of muscle cells and control male turning behavior during mating in Caenorhabditis elegans. J. Neurosci. 35: 1880-1891. 25653349
Chen, X., Q. Wang, F. Ni, and J. Ma. (2010). Structure of the full-length Shaker potassium channel Kv1.2 by normal-mode-based X-ray crystallographic refinement. Proc. Natl. Acad. Sci. USA 107: 11352-11357. 20534430
Cherki, R., L. Luques, Y. Anis, and A. Meir. (2006). Ion Channels in Endocrine Pancreatic Cell and their Role in Diabetes. Modulator. 21: 16-21.
Cho, S.W., K.Y. Choi, and C.S. Park. (2004). A new putative cyclic nucleotide-gated channel gene, cng-3, is critical for thermotolerance in Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 325: 525-531. 15530424
Cho, T., A. Ishii-Kato, Y. Fukata, Y. Nakayama, K. Iida, M. Fukata, and H. Iida. (2016). Coupling of a voltage-gated Ca2+ channel homologue with a plasma membrane H+ -ATPase in yeast. Genes Cells. [Epub: Ahead of Print] 27935186
Choi, S.W., K.S. Kim, D.H. Shin, H.Y. Yoo, H. Choe, T.H. Ko, J.B. Youm, W.K. Kim, Y.H. Zhang, and S.J. Kim. (2013). Class 3 inhibition of hERG K+ channel by caffeic acid phenethyl ester (CAPE) and curcumin. Pflugers Arch 465: 1121-1134. 23440458
Chotoo, C.K., G.A. Silverman, D.C. Devor, and C.J. Luke. (2013). A small conductance calcium-activated K+ channel in C. elegans, KCNL-2, plays a role in the regulation of the rate of egg-laying. PLoS One 8: e75869. 24040423
Chowdhury, S., B.W. Jarecki, and B. Chanda. (2014). A molecular framework for temperature-dependent gating of ion channels. Cell 158: 1148-1158. 25156949
Chung, J.J., B. Navarro, G. Krapivinsky, L. Krapivinsky, and D.E. Clapham. (2011). A novel gene required for male fertility and functional CATSPER channel formation in spermatozoa. Nat Commun 2: 153. 21224844
Churamani, D., R. Hooper, E. Brailoiu, and S. Patel. (2012). Domain assembly of NAADP-gated two-pore channels. Biochem. J. 441: 317-323. 21992073
Clapham, D.E. (1999). Unlocking family secrets: K+ channel transmembrane domains. Cell 97: 547-550. 10367883
Clark, M.D., G.F. Contreras, R. Shen, and E. Perozo. (2020). Electromechanical coupling in the hyperpolarization-activated K channel KAT1. Nature. [Epub: Ahead of Print] 32461693
Clayton, G.M., S. Altieri, L. Heginbotham, V.M. Unger, and J.H. Morais-Cabral. (2008). Structure of the transmembrane regions of a bacterial cyclic nucleotide-regulated channel. Proc. Natl. Acad. Sci. USA 105: 1511-1515. 18216238
Cohen, A., Y. Ben-Abu, S. Hen, and N. Zilberberg. (2008). A novel mechanism for human K2P2.1 channel gating. Facilitation of C-type gating by protonation of extracellular histidine residues. J. Biol. Chem. 283: 19448-19455. 18474599
Cohen, L., Y. Moran, A. Sharon, D. Segal, D. Gordon, and M. Gurevitz. (2009). Drosomycin, an innate immunity peptide of Drosophila melanogaster, interacts with the fly voltage-gated sodium channel. J. Biol. Chem. 284: 23558-23563. 19574227
Cohen-Kutner, M., D. Nachmanni, and D. Atlas. (2010). CaV2.1 (P/Q channel) interaction with synaptic proteins is essential for depolarization-evoked release. Channels (Austin) 4: 266-277. 20495360
Colosimo, E., A. Gambardella, M. Mantegazza, A. Labate, R. Rusconi, E. Schiavon, F. Annesi, R.R. Cassulini, S. Carrideo, R. Chifari, M.P. Canevini, R. Canger, S. Franceschetti, G. Annesi, E. Wanke, and A. Quattrone. (2007). Electroclinical features of a family with simple febrile seizures and temporal lobe epilepsy associated with SCN1A loss-of-function mutation. Epilepsia 48: 1691-1696. 17565594
Cong, B., G. Han, X.H. Huang, S.H. Liu, C.L. Liu, X.Z. Lin, P.Q. He, and H. Gasaino. (2009). Molecular cloning and tissue expression patterns of a small conductance calcium-activated potassium channel gene in turbot (Scophthalmus maximus L.). Fish Shellfish Immunol 27: 221-229. 19481607
Coskun, C. and N. Purali. (2016). Cloning and molecular characterization of a putative voltage-gated sodium channel gene in the crayfish. Invert Neurosci 16: 2. 27032955
Coutelier, M., I. Blesneac, A. Monteil, M.L. Monin, K. Ando, E. Mundwiller, A. Brusco, I. Le Ber, M. Anheim, A. Castrioto, C. Duyckaerts, A. Brice, A. Durr, P. Lory, and G. Stevanin. (2015). A Recurrent Mutation in CACNA1G Alters Cav3.1 T-Type Calcium-Channel Conduction and Causes Autosomal-Dominant Cerebellar Ataxia. Am J Hum Genet 97: 726-737. 26456284
Cox, J.J., F. Reimann, A.K. Nicholas, G. Thornton, E. Roberts, K. Springell, G. Karbani, H. Jafri, J. Mannan, Y. Raashid, L. Al-Gazali, H. Hamamy, E.M. Valente, S. Gorman, R. Williams, D.P. McHale, J.N. Wood, F.M. Gribble, and C.G. Woods. (2006). An SCN9A channelopathy causes congenital inability to experience pain. Nature 444: 894-898. 17167479
Cregg, R., A. Momin, F. Rugiero, J.N. Wood, and J. Zhao. (2010). Pain channelopathies. J. Physiol. 588: 1897-1904. 20142270
Cribbs L.L., B.L. Martin, E.A. Schroder, B.B. Keller, B.P. Delisle, J. Satin. (2001). Identification of the t-type calcium channel (Cav3.1d) in developing mouse heart. Circ. Res. 88: 403-407. 11230107
Cuello, L.G., D.M. Cortes, and E. Perozo. (2004). Molecular architecture of the KvAP voltage-dependent K+ channel in a lipid bilayer. Science 306: 491-495. 15486302
Cuello, L.G., V. Jogini, D.M. Cortes, and E. Perozo. (2010). Structural mechanism of C-type inactivation in K+ channels. Nature 466: 203-208. 20613835
Cui, J. (2010). BK-type calcium-activated potassium channels: coupling of metal ions and voltage sensing. J. Physiol. 588: 4651-4658. 20660558
Czempinski K., S. Zimmermann, T. Ehrhardt, B. Muller-Rober. (1997). New structure and function in plant K+ channels: KCO1, an outward rectifier with a steep Ca2+ dependency. EMBO J. 16:2565-75. 9184204
Czirják, G., D. Vuity, and P. Enyedi. (2008). Phosphorylation-dependent binding of 14-3-3 proteins controls TRESK regulation. J. Biol. Chem. 283: 15672-15680. 18397886
Czirjak, G., Z.E. Toth, and P. Enyedi. (2004). The two-pore domain K+ channel, TRESK, is activated by the cytoplasmic calcium signal through calcineurin. J. Biol. Chem. 279: 18550-18558. 14981085
D'Adamo, M.C., C. Gallenmüller, I. Servettini, E. Hartl, S.J. Tucker, L. Arning, S. Biskup, A. Grottesi, L. Guglielmi, P. Imbrici, P. Bernasconi, G. Di Giovanni, F. Franciolini, L. Catacuzzeno, M. Pessia, and T. Klopstock. (2014). Novel phenotype associated with a mutation in the KCNA1(Kv1.1) gene. Front Physiol 5: 525. 25642194
Dabby, R., M. Sadeh, R. Gilad, Y. Lampl, S. Cohen, S. Inbar, and E. Leshinsky-Silver. (2011). Chronic non-paroxysmal neuropathic pain - Novel phenotype of mutation in the sodium channel SCN9A gene. J Neurol Sci 301: 90-92. 21094958
Dai, G., T.K. Aman, F. DiMaio, and W.N. Zagotta. (2019). The HCN channel voltage sensor undergoes a large downward motion during hyperpolarization. Nat Struct Mol Biol 26: 686-694. 31285608
Das, A., S. Chatterjee, and H. Raghuraman. (2019). Structural Dynamics of the Paddle Motif Loop in the Activated Conformation of KvAP Voltage Sensor. Biophys. J. [Epub: Ahead of Print] 31547975
Davies, A.G., J.T. Pierce-Shimomura, H. Kim, M.K. VanHoven, T.R. Thiele, A. Bonci, C.I. Bargmann, and S.L. McIntire. (2003). A central role of the BK potassium channel in behavioral responses to ethanol in C. elegans. Cell 115: 655-666. 14675531
Davies, L.A., C. Hu, N.A. Guagliardo, N. Sen, X. Chen, E.M. Talley, R.M. Carey, D.A. Bayliss, and P.Q. Barrett (2008). TASK channel deletion in mice causes primary hyperaldosteronism. Proc. Natl. Acad. Sci. U.S.A. 105: 2203-2208. 18250325
de Kovel, C.G.F., S. Syrbe, E.H. Brilstra, N. Verbeek, B. Kerr, H. Dubbs, A. Bayat, S. Desai, S. Naidu, S. Srivastava, H. Cagaylan, U. Yis, C. Saunders, M. Rook, S. Plugge, H. Muhle, Z. Afawi, K.M. Klein, V. Jayaraman, R. Rajagopalan, E. Goldberg, E. Marsh, S. Kessler, C. Bergqvist, L.K. Conlin, B.L. Krok, I. Thiffault, M. Pendziwiat, I. Helbig, T. Polster, I. Borggraefe, J.R. Lemke, M.J. van den Boogaardt, R.S. Møller, and B.P.C. Koeleman. (2017). Neurodevelopmental Disorders Caused by De Novo Variants in KCNB1 Genotypes and Phenotypes. JAMA Neurol. [Epub: Ahead of Print] 28806457
de la Cruz, I.P., J.Z. Levin, C. Cummins, P. Anderson, and H.R. Horvitz. (2003). sup-9, sup-10, and unc-93 may encode components of a two-pore K+ channel that coordinates muscle contraction in Caenorhabditis elegans. J. Neurosci. 23: 9133-9145. 14534247
de la Cruz, I.P., L. Ma, and H.R. Horvitz. (2014). The Caenorhabditis elegans iodotyrosine deiodinase ortholog SUP-18 functions through a conserved channel SC-box to regulate the muscle two-pore domain potassium channel SUP-9. PLoS Genet 10: e1004175. 24586202
de la Peña, P., P. Domínguez, and F. Barros. (2018). Functional characterization of Kv11.1 (hERG) potassium channels split in the voltage-sensing domain. Pflugers Arch. [Epub: Ahead of Print] 29572566
De Marchi, U., N. Sassi, B. Fioretti, L. Catacuzzeno, G.M. Cereghetti, I. Szabò, and M. Zoratti. (2009). Intermediate conductance Ca2+-activated potassium channel (KCa3.1) in the inner mitochondrial membrane of human colon cancer cells. Cell Calcium 45: 509-516. 19406468
Debnath, D.K., R.V. Basaiawmoit, K.L. Nielsen, and D.E. Otzen. (2011). The role of membrane properties in Mistic folding and dimerisation. Protein Eng Des Sel 24: 89-97. 21097953
Decher N., M. Maier, W. Dittrich, J. Gassenhuber, A. Bruggemann, A.E. Busch, K. Steinmeyer. (2001) Characterization of TASK-4, a novel member of the pH-sensitive, two-pore domain potassium channel family. FEBS Lett. 492:84-9. 11248242
Delemotte, L., M.A. Kasimova, M.L. Klein, M. Tarek, and V. Carnevale. (2015). Free-energy landscape of ion-channel voltage-sensor-domain activation. Proc. Natl. Acad. Sci. USA 112: 124-129. 25535341
Delemotte, L., W. Treptow, M.L. Klein, and M. Tarek. (2010). Effect of sensor domain mutations on the properties of voltage-gated ion channels: molecular dynamics studies of the potassium channel Kv1.2. Biophys. J. 99: L72-74. 21044565
Demidchik, V., S. Shabala, S. Isayenkov, T.A. Cuin, and I. Pottosin. (2018). Calcium transport across plant membranes: mechanisms and functions. New Phytol 220: 49-69. 29916203
Derebe, M.G., W. Zeng, Y. Li, A. Alam, and Y. Jiang. (2011). Structural studies of ion permeation and Ca2+ blockage of a bacterial channel mimicking the cyclic nucleotide-gated channel pore. Proc. Natl. Acad. Sci. USA 108: 592-597. 21187429
Desai, R., J. Kronengold, J. Mei, S.A. Forman, and L.K. Kaczmarek. (2008). Protein kinase C modulates inactivation of Kv3.3 channels. J. Biol. Chem. 283: 22283-22294. 18539595
DeSimone, C.V., V.V. Zarayskiy, V.E. Bondarenko, and M.J. Morales. (2011). Heteropoda toxin 2 interaction with Kv4.3 and Kv4.1 reveals differences in gating modification. Mol Pharmacol 80: 345-355. 21540294
Devor, M. (2006). Sodium channels and mechanisms of neuropathic pain. J Pain 7: S3-S12. 16426998
Di, L., S. Srivastava, O. Zhdanova, Y. Sun, Z. Li, and E.Y. Skolnik. (2010). Nucleoside diphosphate kinase B knock-out mice have impaired activation of the K+ channel KCa3.1, resulting in defective T cell activation. J. Biol. Chem. 285: 38765-38771. 20884616
Díaz-Franulic, I., V. González-Pérez, H. Moldenhauer, N. Navarro-Quezada, and D. Naranjo. (2018). Gating-induced large aqueous volumetric remodeling and aspartate tolerance in the voltage sensor domain of Shaker K channels. Proc. Natl. Acad. Sci. USA 115: 8203-8208. 30038023
Dib-Hajj, S.D., T.R. Cummins, J.A. Black, and S.G. Waxman. (2007). From genes to pain: Na v 1.7 and human pain disorders. Trends Neurosci. 30(11):555-63. 17950472
Ding, J., J.W. Zhang, Y.X. Guo, Y.X. Zhang, Z.H. Chen, and Q.X. Zhai. (2019). Novel mutations in SCN9A occurring with fever-associated seizures or epilepsy. Seizure 71: 214-218. 31394368
Dixit, G., I.D. Sahu, W. Renyolds, T. Wadsworth, B.D. Harding, C.K. Jaycox, C. Dabney-Smith, C.R. Sanders, and G.A. Lorigan. (2019). Probing the Dynamics and Structural Topology of Reconstituted Human KCNQ1 Voltage Sensor Domain (Q1-VSD) in Lipid Bilayers using EPR Spectroscopy. Biochemistry. [Epub: Ahead of Print] 30620191
Dixon, R.E., E.P. Cheng, J.L. Mercado, and L.F. Santana. (2012). L-type ca(2+) channel function during timothy syndrome. Trends Cardiovasc Med 22: 72-76. 22999068
Dobler, T., A. Springauf, S. Tovornik, M. Weber, A. Schmitt, R. Sedlmeier, E. Wischmeyer, and F. Döring. (2007). TRESK two-pore-domain K+ channels constitute a significant component of background potassium currents in murine dorsal root ganglion neurones. J. Physiol. 585: 867-879. 17962323
Docampo R., Moreno SN. and Plattner H. (2014). Intracellular calcium channels in protozoa. Eur J Pharmacol. 739:4-18. 24291099
Doherty, T., Y. Su, and M. Hong. (2010). High-resolution orientation and depth of insertion of the voltage-sensing S4 helix of a potassium channel in lipid bilayers. J. Mol. Biol. 401: 642-652. 20600109
Dong, Y.Y., A.C. Pike, A. Mackenzie, C. McClenaghan, P. Aryal, L. Dong, A. Quigley, M. Grieben, S. Goubin, S. Mukhopadhyay, G.F. Ruda, M.V. Clausen, L. Cao, P.E. Brennan, N.A. Burgess-Brown, M.S. Sansom, S.J. Tucker, and E.P. Carpenter. (2015). K2P channel gating mechanisms revealed by structures of TREK-2 and a complex with Prozac. Science 347: 1256-1259. 25766236
Douglas, R.M., J.C. Lai, S. Bian, L. Cummins, E. Moczydlowski, and G.G. Haddad. (2006). The calcium-sensitive large-conductance potassium channel (BK/MAXI K) is present in the inner mitochondrial membrane of rat brain. Neuroscience 139: 1249-61. 16567053
Downey, P., I. Szabó, N. Ivashikina, A. Negro, F. Guzzo, P. Ache, R. Hedrich, M. Terzi, and F. Lo Schiavo. (2000). KDC1, a novel carrot root hair K+channel: cloning, characterization, and expression in mammalian cells. J. Biol. Chem. 275: 394420-39426. 10970888
Doyle, D.A, J.M. Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait, and R. MacKinnon. (1998). The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280: 69-77. 9525859
Drenth, J.P., and S.G. Waxman. (2007). Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders. J. Clin. Invest. 117: 3603-3609. 18060017
Dreyer, I. and N. Uozumi. (2011). Potassium channels in plant cells. FEBS J. 278: 4293-4303. 21955642
Du Y., Nomura Y., Zhorov BS. and Dong K. (2015). Rotational Symmetry of Two Pyrethroid Receptor Sites in the Mosquito Sodium Channel. Mol Pharmacol. 88(2):273-80. 25972447
Du, Y., D. Garden, B. Khambay, B.S. Zhorov, and K. Dong. (2011). Batrachotoxin, pyrethroids, and BTG 502 share overlapping binding sites on insect sodium channels. Mol Pharmacol 80: 426-433. 21680776
Du, Y., W. Song, J.R. Groome, Y. Nomura, N. Luo, and K. Dong. (2010). A negative charge in transmembrane segment 1 of domain II of the cockroach sodium channel is critical for channel gating and action of pyrethroid insecticides. Toxicol Appl Pharmacol 247: 53-59. 20561903
Duan, J.J., J.H. Ma, P.H. Zhang, X.P. Wang, A.R. Zou, and D.N. Tu. (2007). Verapamil blocks HERG channel by the helix residue Y652 and F656 in the S6 transmembrane domain. Acta Pharmacol Sin 28: 959-967. 17588331
Duarri, A., J. Jezierska, M. Fokkens, M. Meijer, H.J. Schelhaas, W.F. den Dunnen, F. van Dijk, C. Verschuuren-Bemelmans, G. Hageman, P. van de Vlies, B. Küsters, B.P. van de Warrenburg, B. Kremer, C. Wijmenga, R.J. Sinke, M.A. Swertz, H.H. Kampinga, E. Boddeke, and D.S. Verbeek. (2012). Mutations in potassium channel kcnd3 cause spinocerebellar ataxia type 19. Ann Neurol 72: 870-880. 23280838
Duby, G., E. Hosy, C. Fizames, C. Alcon, A. Costa, H. Sentenac, and J.B. Thibaud. (2008). AtKC1, a conditionally targeted Shaker-type subunit, regulates the activity of plant K+ channels. Plant J. 53(1):115-123. 17976154
Durdagi, S., J. Subbotina, J. Lees-Miller, J. Guo, H.J. Duff, and S.Y. Noskov. (2010). Insights into the molecular mechanism of hERG1 channel activation and blockade by drugs. Curr. Med. Chem. 17: 3514-3532. 20738248
Durell, S.R., Y. Hao, T. Nakamura, E.P. Bakker, and H.R. Guy. (1999). Evolutionary relationship between K+ channels and symporters. Biophys. J. 77: 775-788. 10423425
Edwards A., A.B. Heckmann, F. Yousafzai, G. Duc, J.A. Downie. (2007). Structural implications of mutations in the pea SYM8 symbiosis gene, the DMI1 ortholog, encoding a predicted ion channel. Mol Plant Microbe Interact. 20: 1183-1191. 17918620
Eigenbrod, O., K.Y. Debus, J. Reznick, N.C. Bennett, O. Sánchez-Carranza, D. Omerbašić, D.W. Hart, A.J. Barker, W. Zhong, H. Lutermann, J.V. Katandukila, G. Mgode, T.J. Park, and G.R. Lewin. (2019). Rapid molecular evolution of pain insensitivity in multiple African rodents. Science 364: 852-859. 31147513
Eldstrom, J., H. Xu, D. Werry, C. Kang, M.E. Loewen, A. Degenhardt, S. Sanatani, G.F. Tibbits, C. Sanders, and D. Fedida. (2010). Mechanistic basis for LQT1 caused by S3 mutations in the KCNQ1 subunit of IKs. J Gen Physiol 135: 433-448. 20421371
Elinder, F., M. Madeja, H. Zeberg, and P. Århem. (2016). Extracellular Linkers Completely Transplant the Voltage Dependence from Kv1.2 Ion Channels to Kv2.1. Biophys. J. 111: 1679-1691. 27760355
Ellekvist, P., J. Maciel, G. Mlambo, C.H. Ricke, H. Colding, D.A. Klaerke, and N. Kumar. (2008). Critical role of a K+ channel in Plasmodium berghei transmission revealed by targeted gene disruption. Proc. Natl. Acad. Sci. USA 105: 6398-6402. 18434537
Elter, A., A. Hartel, C. Sieben, B. Hertel, E. Fischer-Schliebs, U. Lüttge, A. Moroni, and G. Thiel. (2007). A plant homolog of animal chloride intracellular channels (CLICs) generates an ion conductance in heterologous systems. J. Biol. Chem. 282: 8786-8792. 17267397
Enyedi, P. and G. Czirják. (2010). Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol. Rev. 90: 559-605. 20393194
Enyedi, P., I. Veres, G. Braun, and G. Czirják. (2014). Tubulin Binds to the Cytoplasmic Loop of TRESK Background K+ Channel In Vitro. PLoS One 9: e97854. 24830385
Estacion, M., J.E. O'Brien, A. Conravey, M.F. Hammer, S.G. Waxman, S.D. Dib-Hajj, and M.H. Meisler. (2014). A novel de novo mutation of SCN8A (Nav1.6) with enhanced channel activation in a child with epileptic encephalopathy. Neurobiol Dis 69: 117-123. 24874546
Evans, E.G.B., J.L.W. Morgan, F. DiMaio, W.N. Zagotta, and S. Stoll. (2020). Allosteric conformational change of a cyclic nucleotide-gated ion channel revealed by DEER spectroscopy. Proc. Natl. Acad. Sci. USA. [Epub: Ahead of Print] 32358188
Fan, C., N. Sukomon, E. Flood, J. Rheinberger, T.W. Allen, and C.M. Nimigean. (2020). Ball-and-chain inactivation in a calcium-gated potassium channel. Nature 580: 288-293. 32269335
Fan, J.J. and X. Huang. (2020). Ion Channels in Cancer: Orchestrators of Electrical Signaling and Cellular Crosstalk. Rev Physiol Biochem Pharmacol. [Epub: Ahead of Print] 32894333
Fantin, S.M., H. Huang, C.R. Sanders, and B.T. Ruotolo. (2020). Collision-Induced Unfolding Differentiates Functional Variants of the KCNQ1 Voltage Sensor Domain. J Am Soc Mass Spectrom. [Epub: Ahead of Print] 32960579
Fawcett, G.L., C.M. Santi, A. Butler, T. Harris, M. Covarrubias, and L. Salkoff. (2006). Mutant analysis of the Shal (Kv4) voltage-gated fast transient K+ channel in Caenorhabditis elegans. J. Biol. Chem. 281: 30725-30735. 16899454
Fedida, D. and J.C. Hesketh. (2001). Gating of voltage-dependent potassium channels. Prog. Biophys. Mol. Biol. 75: 165-199. 11376798
Feinshreiber, L., D. Chikvashvili, I. Michaelevski, and I. Lotan. (2009). Syntaxin modulates Kv1.1 through dual action on channel surface expression and conductance. Biochemistry 48: 4109-4114. 19331362
Feng, Z.-P., J. Hamid, C. Doering, S.E. Jarvis, G.M. Bosey, E. Bourinet, T.P. Snutch, and G.W. Zamponi. (2001). Amino acid residues outside of the pore region contribute to N-type calcium channel permeation. J. Biol. Chem. 276: 5726-5730. 11120735
Fernández-Trillo, J., F. Barros, A. Machín, L. Carretero, P. Domínguez, and P. de la Peña. (2011). Molecular determinants of interactions between the N-terminal domain and the transmembrane core that modulate hERG K+ channel gating. PLoS One 6: e24674. 21935437
Fink M., F. Lesage, F. Duprat, C. Heurteaux, R. Reyes, M. Fosset, M. Lazdunski. (1998). A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids. EMBO J. 17:3297-308. 9628867
Fischer, T.Z. and S.G. Waxman. (2010). Familial pain syndromes from mutations of the NaV1.7 sodium channel. Ann. N.Y. Acad. Sci. 1184: 196-207. 20146699
Fischer, W.B. and M.S. Sansom. (2002). Viral ion channels: structure and function. Biochim. Biophys. Acta 1561: 27-45. 11988179
Ford, K.J. and G.W. Davis. (2014). Archaerhodopsin voltage imaging: synaptic calcium and BK channels stabilize action potential repolarization at the Drosophila neuromuscular junction. J. Neurosci. 34: 14517-14525. 25355206
Freeman, S.A., S. Uderhardt, A. Saric, R.F. Collins, C.M. Buckley, S. Mylvaganam, P. Boroumand, J. Plumb, R.N. Germain, D. Ren, and S. Grinstein. (2020). Lipid-gated monovalent ion fluxes regulate endocytic traffic and support immune surveillance. Science 367: 301-305. 31806695
Freites JA. and Tobias DJ. (2015). Voltage Sensing in Membranes: From Macroscopic Currents to Molecular Motions. J Membr Biol. 248(3):419-30. 25972106
Freites, J.A., D.J. Tobias, and S.H. White. (2006). A voltage-sensor water pore. Biophys. J. 91: L90-92. 17012321
Fujinami, S., T. Sato, J.S. Trimmer, B.W. Spiller, D.E. Clapham, T.A. Krulwich, I. Kawagishi, and M. Ito. (2007). The voltage-gated Na+ channel NavBP co-localizes with methyl-accepting chemotaxis protein at cell poles of alkaliphilic Bacillus pseudofirmus OF4. Microbiology. 153: 4027-4038. 18048917
Fujiu, K., Y. Nakayama, A. Yanagisawa, M. Sokabe, and K. Yoshimura. (2009). Chlamydomonas CAV2 encodes a voltage- dependent calcium channel required for the flagellar waveform conversion. Curr. Biol. 19: 133-139. 19167228
Fukasaku, M., J. Kimura, and O. Yamaguchi. (2016). Swelling-activated and arachidonic acid-induced currents are TREK-1 in rat bladder smooth muscle cells. Fukushima J Med Sci. [Epub: Ahead of Print] 26911303
Furini, S. and C. Domene. (2012). On conduction in a bacterial sodium channel. PLoS Comput Biol 8: e1002476. 22496637
Fux, J.E., A. Mehta, J. Moffat, and J.D. Spafford. (2018). Eukaryotic Voltage-Gated Sodium Channels: On Their Origins, Asymmetries, Losses, Diversification and Adaptations. Front Physiol 9: 1406. 30519187
Galindo, B.E., A.T. Neill, and V.D. Vacquier. (2005). A new hyperpolarization-activated, cyclic nucleotide-gated channel from sea urchin sperm flagella. Biochem. Biophys. Res. Commun. 334: 96-101. 15992765
Galindo, B.E., J.L. de la Vega-Beltrán, P. Labarca, V.D. Vacquier, and A. Darszon. (2007). Sp-tetraKCNG: A novel cyclic nucleotide gated K+ channel. Biochem. Biophys. Res. Commun. 354: 668-675. 17254550
Gao, Q.F., L.L. Gu, H.Q. Wang, C.F. Fei, X. Fang, J. Hussain, S.J. Sun, J.Y. Dong, H. Liu, and Y.F. Wang. (2016). Cyclic nucleotide-gated channel 18 is an essential Ca2+ channel in pollen tube tips for pollen tube guidance to ovules in Arabidopsis. Proc. Natl. Acad. Sci. USA 113: 3096-3101. 26929345
García Segarra, N., I. Gautschi, L. Mittaz-Crettol, C. Kallay Zetchi, L. Al-Qusairi, M.X. Van Bemmelen, P. Maeder, L. Bonafé, L. Schild, and E. Roulet-Perez. (2014). Congenital ataxia and hemiplegic migraine with cerebral edema associated with a novel gain of function mutation in the calcium channel CACNA1A. J Neurol Sci 342: 69-78. 24836863
Garciadeblas, B., J. Barrero-Gil, B. Benito, and A. Rodríguez-Navarro. (2007). Potassium transport systems in the moss Physcomitrella patens: pphak1 plants reveal the complexity of potassium uptake. Plant J. 52: 1080-1093. 17916113
Gardella, E., F. Becker, R.S. Møller, J. Schubert, J.R. Lemke, L.H. Larsen, H. Eiberg, M. Nothnagel, H. Thiele, J. Altmüller, S. Syrbe, A. Merkenschlager, T. Bast, B. Steinhoff, P. Nürnberg, Y. Mang, L. Bakke Møller, P. Gellert, S. Heron, L. Dibbens, S. Weckhuysen, H.A. Dahl, S. Biskup, N. Tommerup, H. Hjalgrim, H. Lerche, S. Beniczky, and Y.G. Weber. (2015). Benign infantile seizures and paroxysmal dyskinesia caused by an SCN8A mutation. Ann Neurol. [Epub: Ahead of Print] 26677014
Gardner, A., W. Wu, S. Thomson, E.M. Zangerl-Plessl, A. Stary-Weinzinger, and M. Sanguinetti. (2017). Molecular basis of altered hERG1 channel gating induced by ginsenoside Rg3. Mol Pharmacol. [Epub: Ahead of Print] 28705808
Garg, P., A. Gardner, V. Garg, and M.C. Sanguinetti. (2013). Structural basis of ion permeation gating in Slo2.1 K+ channels. J Gen Physiol 142: 523-542. 24166878
Garneau, L., H. Klein, M.F. Lavoie, E. Brochiero, L. Parent, and R. Sauvé. (2014). Aromatic-aromatic interactions between residues in KCa3.1 pore helix and S5 transmembrane segment control the channel gating process. J Gen Physiol 143: 289-307. 24470490
Garrett, S. and J.J. Rosenthal. (2012). RNA editing underlies temperature adaptation in K+ channels from polar octopuses. Science 335: 848-851. 22223739
Garten, M., S. Aimon, P. Bassereau, and G.E. Toombes. (2015). Reconstitution of a Transmembrane Protein, the Voltage-gated Ion Channel, KvAP, into Giant Unilamellar Vesicles for Microscopy and Patch Clamp Studies. J Vis Exp. 25650630
Gaymard, F., G. Pilot, B. Lacombe, D. Bouchez, D. Bruneau, J. Boucherez, N. Michaux-Ferriere, J.B. Thibaud, and H. Sentenac. (1998). Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap. Cell 94: 647-655. 9741629
Gazzarrini, S., J.L. Van Etten, D. DiFrancesco, G. Thiel, and A. Moroni. (2002). Voltage-dependence of virus-encoded miniature K+ channel Kcv. J. Membrane Biol. 187: 15-25. 12029374
Gazzarrini, S., M. Kang, A. Abenavoli, G. Romani, C. Olivari, D. Gaslini, G. Ferrara, J.L. van Etten, M. Kreim, S.M. Kast, G. Thiel, and A. Moroni. (2009). Chlorella virus ATCV-1 encodes a functional potassium channel of 82 amino acids. Biochem. J. 420: 295-303. 19267691
Geiger D., Becker D., Vosloh D., Gambale F., Palme K., Rehers M., Anschuetz U., Dreyer I., Kudla J. and Hedrich R. (2009). Heteromeric AtKC1{middle dot}AKT1 channels in Arabidopsis roots facilitate growth under K+-limiting conditions. J Biol Chem. 284(32):21288-95. 19509299
Geng, Y. and K.L. Magleby. (2014). Single-channel kinetics of BK (Slo1) channels. Front Physiol 5: 532. 25653620
Gessner, G., Y.M. Cui, Y. Otani, T. Ohwada, M. Soom, T. Hoshi, and S.H. Heinemann. (2012). Molecular mechanism of pharmacological activation of BK channels. Proc. Natl. Acad. Sci. USA 109: 3552-3557. 22331907
Gilch, S., O. Meyer, and I. Schmidt. (2010). Electron paramagnetic studies of the copper and iron containing soluble ammonia monooxygenase from Nitrosomonas europaea. Biometals 23: 613-622. 20204476
Gill, C.H., A. Randall, S.A. Bates, K. Hill, D. Owen, P.M. Larkman, W. Cairns, S.P. Yusaf, P.R. Murdock, P.J. Strijbos, A.J. Powell, C.D. Benham, and C.H. Davies. (2004). Characterization of the human HCN1 channel and its inhibition by capsazepine. Br J Pharmacol 143: 411-421. 15351778
Giordanetto, F., L. Knerr, and A. Wållberg. (2011). T-type calcium channels inhibitors: a patent review. Expert Opin Ther Pat 21: 85-101. 21087200
Giorgetti, A., A.V. Nair, P. Codega, V. Torre, and P. Carloni. (2005). Structural basis of gating of CNG channels. FEBS Lett. 579: 1968-1972. 15792804
Glaaser, I.W., J.R. Bankston, H. Liu, M. Tateyama, and R.S. Kass. (2006). A carboxyl-terminal hydrophobic interface is critical to sodium channel function. Relevance to inherited disorders. J. Biol. Chem. 281: 24015-24023. 16798729
Glauner, K.S., L.M. Mannuzzu, C.S. Gandhi, and E.Y. Isacoff. (1999). Spectroscopic mapping of voltage sensor movement in the Shaker potassium channel. Nature 402: 813-817. 10617202
Gobert, A., G. Park, A. Amtmann, D. Sanders, and F.J. Maathuis. (2006). Arabidopsis thaliana cyclic nucleotide gated channel 3 forms a non-selective ion transporter involved in germination and cation transport. J Exp Bot 57: 791-800. 16449377
Gofman Y., Shats S., Attali B., Haliloglu T. and Ben-Tal N. (2012). How does KCNE1 regulate the Kv7.1 potassium channel? Model-structure, mutations, and dynamics of the Kv7.1-KCNE1 complex. Structure. 20(8):1343-52. 22771213
Gofman, Y., C. Schärfe, D.S. Marks, T. Haliloglu, and N. Ben-Tal. (2014). Structure, dynamics and implied gating mechanism of a human cyclic nucleotide-gated channel. PLoS Comput Biol 10: e1003976. 25474149
Gohar, O. (2006). Ion Channel Modulation by G-protein Coupled Receptors. Modulators. 21:2-9.
Gomez-Lagunas, F. (2010). Quinidine interaction with Shab K+ channels: pore block and irreversible collapse of the K+ conductance. J. Physiol. 588: 2691-2706. 20547671
Gomez-Ospina, N., F. Tsuruta, O. Barreto-Chang, L. Hu, and R. Dolmetsch. (2006). The C terminus of the L-type voltage-gated calcium channel Ca(V)1.2 encodes a transcription factor. Cell 127: 591-606. 17081980
Gong, Q., M.A. Jones, and Z. Zhou. (2006). Mechanisms of pharmacological rescue of trafficking-defective hERG mutant channels in human long QT syndrome. J. Biol. Chem. 281: 4069-4074. 16361248
Gonzalez W., Riedelsberger J., Morales-Navarro SE., Caballero J., Alzate-Morales JH., Gonzalez-Nilo FD. and Dreyer I. (2012). The pH sensor of the plant K+-uptake channel KAT1 is built from a sensory cloud rather than from single key amino acids. Biochem J. 442(1):57-63. 22070190
Gonzalez W., Valdebenito B., Caballero J., Riadi G., Riedelsberger J., Martinez G., Ramirez D., Zuniga L., Sepulveda FV., Dreyer I., Janta M. and Becker D. (2015). K(2)p channels in plants and animals. Pflugers Arch. 467(5):1091-104. 25369776
Gonzalez, C., G.F. Contreras, A. Peyser, P. Larsson, A. Neely, and R. Latorre. (2012). Voltage sensor of ion channels and enzymes. Biophys Rev 4: 1-15. 28509999
Goodchild, S.J., C. Lamy, V. Seutin, and N.V. Marrion. (2009). Inhibition of K(Ca)2.2 and K(Ca)2.3 channel currents by protonation of outer pore histidine residues. J Gen Physiol 134: 295-308. 19786583
Goral RO., Leipold E., Nematian-Ardestani E. and Heinemann SH. (2015). Heterologous expression of NaV1.9 chimeras in various cell systems. Pflugers Arch. 467(12):2423-35. 25916202
Gouas, L., C. Bellocq, M. Berthet, F. Potet, S. Demolombe, A. Forhan, R. Lescasse, F. Simon, B. Balkau, I. Denjoy, B. Hainque, I. Baró, P. Guicheney, and. (2004). New KCNQ1 mutations leading to haploinsufficiency in a general population; Defective trafficking of a KvLQT1 mutant. Cardiovasc Res 63: 60-68. 15194462
Goutierre, M., S. Al Awabdh, F. Donneger, E. François, D. Gomez-Dominguez, T. Irinopoulou, L. Menendez de la Prida, and J.C. Poncer. (2019). KCC2 Regulates Excitability and Hippocampal Activity via Interaction with Task-3 Channels. Cell Rep 28: 91-103.e7. 31269453
Grabe, M., H.C. Lai, M. Jain, Y. Nung Jan, and L. Yeh Jan. (2007). Structure prediction for the down state of a potassium channel voltage sensor. Nature 445: 550-553. 17187053
Grabner, M., R.T. Dirksen, N. Suda, and K.G. Beam. (1999). The II-III loop of the skeletal muscle dihydropyridine receptor is responsible for the bi-directional coupling with the ryanodine receptor. J. Biol. Chem. 274: 21913-21919. 10419512
Grahammer, F., R. Warth, J. Barhanin, M. Bleich, and M.J. Hug. (2001). The small conductance K+ channel, KCNQ1. Expression, function, and subunit composition in murine trachea. J. Biol. Chem. 276: 42268-42275. 11527966
Gravante, B., A. Barbuti, R. Milanesi, I. Zappi, C. Viscomi, and D. DiFrancesco. (2004). Interaction of the pacemaker channel HCN1 with filamin A. J. Biol. Chem. 279: 43847-43853. 15292205
Grefen, C., Z. Chen, A. Honsbein, N. Donald, A. Hills, and M.R. Blatt. (2010). A novel motif essential for SNARE interaction with the K+ channel KC1 and channel gating in Arabidopsis. Plant Cell 22: 3076-3092. 20884800
Greiner, T., A. Moroni, J.L. Van Etten, and G. Thiel. (2018). Genes for Membrane Transport Proteins: Not So Rare in Viruses. Viruses 10:. 30149667
Griguoli, M., A. Maul, C. Nguyen, A. Giorgetti, P. Carloni, and E. Cherubini. (2010). Nicotine blocks the hyperpolarization-activated current Ih and severely impairs the oscillatory behavior of oriens-lacunosum moleculare interneurons. J. Neurosci. 30: 10773-10783. 20702707
Groome JR., Lehmann-Horn F., Fan C., Wolf M., Winston V., Merlini L. and Jurkat-Rott K. (2014). NaV1.4 mutations cause hypokalaemic periodic paralysis by disrupting IIIS4 movement during recovery. Brain. 137(Pt 4):998-1008. 24549961
Grupe, A., K.H. Schröter, J.P. Ruppersberg, M. Stocker, T. Drewes, S. Beckh, and O. Pongs. (1990). Cloning and expression of a human voltage-gated potassium channel. A novel member of the RCK potassium channel family. EMBO. J. 9: 1749-1756. 2347305
Gu, R.X. and B.L. de Groot. (2020). Lipid-protein interactions modulate the conformational equilibrium of a potassium channel. Nat Commun 11: 2162. 32358584
Gu, Z., L.D. Plant, X.Y. Meng, J.M. Perez-Aguilar, Z. Wang, M. Dong, D.E. Logothetis, and R. Zhou. (2017). Exploring the Nanotoxicology of MoS2: A Study on the Interaction of MoS2 Nanoflakes and K+ Channels. ACS Nano. [Epub: Ahead of Print] 29236481
Gubitosi-Klug, R.A., D.J. Mancuso, and R.W. Gross. (2005). The human Kv1.1 channel is palmitoylated, modulating voltage sensing: Identification of a palmitoylation consensus sequence. Proc. Natl. Acad. Sci. USA 102: 5964-5968. 15837928
Gulbins, E., N. Sassi, H. Grassmè, M. Zoratti, and I. Szabò. (2010). Role of Kv1.3 mitochondrial potassium channel in apoptotic signalling in lymphocytes. Biochim. Biophys. Acta. 1797: 1251-1259. 20114030
Gulbis, J.M., M. Zhou, S. Mann, and R. MacKinnon. (2000). Structure ofthe cytoplasmic β subunit-T1 assembly of voltage-dependent K+ channels. Science 289: 123-127. 10884227
Gulbis, J.M., S. Mann, and R. MacKinnon. (1999). Structure of a voltage-dependent K+ channel beta subunit. Cell 97: 943-952. 10399921
Guo, J., W. Zeng, and Y. Jiang. (2017). Tuning the ion selectivity of two-pore channels. Proc. Natl. Acad. Sci. USA. [Epub: Ahead of Print] 28096396
Guo, J., W. Zeng, Q. Chen, C. Lee, L. Chen, Y. Yang, C. Cang, D. Ren, and Y. Jiang. (2015). Structure of the voltage-gated two-pore channel TPC1 from Arabidopsis thaliana. Nature. [Epub: Ahead of Print] 26689363
Gupta, R.K., D.K. Swain, V. Singh, M. Anand, S. Choudhury, S. Yadav, A. Saxena, and S.K. Garg. (2018). Molecular characterization of voltage-gated potassium channel (Kv) and its importance in functional dynamics in bull spermatozoa. Theriogenology 114: 229-236. [Epub: Ahead of Print] 29656213
Gurevitz, M. (2012). Mapping of scorpion toxin receptor sites at voltage-gated sodium channels. Toxicon 60: 502-511. 22694883
Haitin, Y. and B. Attali. (2008). The C-terminus of Kv7 channels: a multifunctional module. J. Physiol. 586: 1803-1810. 18218681
Hall, M.K., D.A. Weidner, S. Dayal, E. Pak, A.K. Murashov, and R.A. Schwalbe. (2017). Membrane Distribution and Activity of a Voltage-Gated K+ Channel is Modified by Replacement of Complex Type N-Glycans with Hybrid Type. J Glycobiol 6:. 30271698
Hamamoto, S., J. Marui, K. Matsuoka, K. Higashi, K. Igarashi, T. Nakagawa, T. Kuroda, Y. Mori, Y. Murata, Y. Nakanishi, M. Maeshima, I. Yabe, and N. Uozumi. (2008). Characterization of a tobacco TPK-type K+ channel as a novel tonoplast K+ channel using yeast tonoplasts. J. Biol. Chem. 283: 1911-1920. 18029350
Hamid, J., J.B. Peloquin, A. Monteil, and G.W. Zamponi. (2006). Determinants of the differential gating properties of Cav3.1 and Cav3.3 T-type channels: a role of domain IV? Neuroscience 143: 717-728. 16996222
Hamilton, K.L., Syme, C.A., and Devor, D.C. (2003). Molecular localization of the inhibitory arachidonic acid binding site to the pore of hIK1. J. Biol. Chem. 278: 16690-16697. 12609997
Han, C., Y. Yang, R.H. Te Morsche, J.P. Drenth, J.M. Politei, S.G. Waxman, and S.D. Dib-Hajj. (2016). Familial gain-of-function Nav1.9 mutation in a painful channelopathy. J Neurol Neurosurg Psychiatry. [Epub: Ahead of Print] 27503742
Han, W., S. Nattel, T. Noguchi, and A. Shrier. (2006). C-terminal domain of Kv4.2 and associated KChIP2 interactions regulate functional expression and gating of Kv4.2. J. Biol. Chem. 281: 27134-27144. 16820361
Hanlon, M.R. and B.A. Wallace. (2002). Structure and function of voltage-dependent ion channel regulatory β subunits. Biochemistry 41: 2886-2894. 11863426
Hantouche, C., B. Williamson, W.C. Valinsky, J. Solomon, A. Shrier, and J.C. Young. (2016). Bag1 Promotes TRC8-Dependent Degradation of Misfolded hERG Potassium Channels. J. Biol. Chem. [Epub: Ahead of Print] 27998983
Harkcom, W.T., M. Papanikolaou, V. Kanda, S.M. Crump, and G.W. Abbott. (2019). KCNQ1 rescues TMC1 plasma membrane expression but not mechanosensitive channel activity. J Cell Physiol. [Epub: Ahead of Print] 30613966
Hashimoto, K., M. Saito, H. Matsuoka, K. Iida, and H. Iida. (2004). Functional analysis of a rice putative voltage-dependent Ca2+ channel, OsTPC1, expressed in yeast cells lacking its homologous gene CCH1. Plant Cell Physiol. 45: 496-500. 15111725
Hayoz, S., P.B. Tiwari, G. Piszczek, A. Üren, and T.I. Brelidze. (2017). Investigating cyclic nucleotide and cyclic dinucleotide binding to HCN channels by surface plasmon resonance. PLoS One 12: e0185359. 28950029
He, C., S. Altshuler-Keylin, D. Daniel, N.D. L''Etoile, and D. O''Halloran. (2016). The cyclic nucleotide gated channel subunit CNG-1 instructs behavioral outputs in Caenorhabditis elegans by coincidence detection of nutritional status and olfactory input. Neurosci Lett 632: 71-78. [Epub: Ahead of Print] 27561605
He, W., G.T. Young, B. Zhang, P.J. Cox, L.T. Cho, S. John, S.A. Paciga, L.S. Wood, N. Danziger, S. Scollen, and C. Vangjeli. (2018). Functional confirmation that the R1488* variant in SCN9A results in complete loss-of-function of Na1.7. BMC Med Genet 19: 124. 30037327
Heath, G.R. and S. Scheuring. (2019). Advances in high-speed atomic force microscopy (HS-AFM) reveal dynamics of transmembrane channels and transporters. Curr. Opin. Struct. Biol. 57: 93-102. 30878714
Held, K., F. Gruss, V.D. Aloi, A. Janssens, C. Ulens, T. Voets, and J. Vriens. (2018). Mutations in the voltage-sensing domain affect the alternative ion permeation pathway in the TRPM3 channel. J. Physiol. [Epub: Ahead of Print] 29604058
Hellmer, J. and C. Zeilinger. (2003). MjK1, a K+ channel from M. jannaschii, mediates K+ uptake and K+ sensitivity in E. coli. FEBS Lett. 547: 165-169. 12860407
Hemara-Wahanui A., S. Berjukow, C.I. Hope, P.K. Dearden, S.B. Wu, J. Wilson-Wheeler, D.M. Sharp, P. Lundon-Treweek, G.M. Clover, J.C. Hoda, J. Striessnig, R. Marksteiner, S. Hering, M.A. Maw. (2005). A CACNA1F mutation identified in an X-linked retinal disorder shifts the voltage dependence of Cav1.4 channel activation. Proc. Natl. Acad. Sci. U.S.A. 102: 7553-7558. 15897456
Henrion, U., S. Zumhagen, K. Steinke, N. Strutz-Seebohm, B. Stallmeyer, F. Lang, E. Schulze-Bahr, and G. Seebohm. (2012). Overlapping Cardiac Phenotype Associated with a Familial Mutation in the Voltage Sensor of the KCNQ1 Channel. Cell Physiol Biochem 29: 809-818. 22613981
Hertel, B., S. Tayefeh, T. Kloss, J. Hewing, M. Gebhardt, D. Baumeister, A. Moroni, G. Thiel, and S.M. Kast. (2010). Salt bridges in the miniature viral channel Kcv are important for function. Eur Biophys. J. 39: 1057-1068. 19390850
Hille, B. (1992). Chapter 9: Structure of channel proteins; Chapter 20: Evolution and diversity. In: Ionic Channels of Excitable Membranes, 2nd Ed., Sinaur Assoc. Inc., Pubs., Sunderland, Massachusetts.
Hirano, M., Y. Onishi, T. Yanagida, and T. Ide. (2011). Role of the KcsA channel cytoplasmic domain in pH-dependent gating. Biophys. J. 101: 2157-2162. 22067153
Hite, R.K., P. Yuan, Z. Li, Y. Hsuing, T. Walz, and R. MacKinnon. (2015). Cryo-electron microscopy structure of the Slo2.2 Na+-activated K+ channel. Nature 527: 198-203. 26436452
Hofer, N.T., P. Tuluc, N.J. Ortner, Y.V. Nikonishyna, M.L. Fernándes-Quintero, K.R. Liedl, B.E. Flucher, H. Cox, and J. Striessnig. (2020). Biophysical classification of a de novo mutation as a high-risk mutation for a severe neurodevelopmental disorder. Mol Autism 11: 4. 31921405
Hoffgaard F., Kast SM., Moroni A., Thiel G. and Hamacher K. (2015). Tectonics of a K(+) channel: The importance of the N-terminus for channel gating. Biochim Biophys Acta. 1848(12):3197-204. 26403836
Holland, K.D., J.A. Kearney, T.A. Glauser, G. Buck, M. Keddache, J.R. Blankston, I.W. Glaaser, R.S. Kass, and M.H. Meisler. (2008). Mutation of sodium channel SCN3A in a patient with cryptogenic pediatric partial epilepsy. Neurosci Lett 433(1): 65-70. 18242854
Honsbein A., Sokolovski S., Grefen C., Campanoni P., Pratelli R., Paneque M., Chen Z., Johansson I. and Blatt MR. (2009). A tripartite SNARE-K+ channel complex mediates in channel-dependent K+ nutrition in Arabidopsis. Plant Cell. 21(9):2859-77. 19794113
Hoomann, T., N. Jahnke, A. Horner, S. Keller, and P. Pohl. (2013). Filter gate closure inhibits ion but not water transport through potassium channels. Proc. Natl. Acad. Sci. USA 110: 10842-10847. 23754382
Hooper, R., D. Churamani, E. Brailoiu, C.W. Taylor, and S. Patel. (2011). Membrane topology of NAADP-sensitive two-pore channels and their regulation by N-linked glycosylation. J. Biol. Chem. 286: 9141-9149. 21173144
Horn, R. (2000). Conversation between voltage sensors and gates of ion channels. Biochemistry 39: 15653-15658. 11123889
Horng, T.L., R.S. Eisenberg, C. Liu, and F. Bezanilla. (2018). Continuum Gating Current Models Computed with Consistent Interactions. Biophys. J. [Epub: Ahead of Print] 30612713
Hou, S., R. Xu, S.H. Heinemann, and T. Hoshi. (2008). The RCK1 high-affinity Ca2+ sensor confers carbon monoxide sensitivity to Slo1 BK channels. Proc. Natl. Acad. Sci. USA 105: 4039-4043. 18316727
Huang, D.T., N. Chi, S.C. Chen, T.Y. Lee, and K. Hsu. (2011). Background K(2P) channels KCNK3/9/15 limit the budding of cell membrane-derived vesicles. Cell Biochem Biophys 61: 585-594. 21761257
Huang, J., M. Estacion, P. Zhao, F.B. Dib-Hajj, B. Schulman, A. Abicht, I. Kurth, K. Brockmann, S.G. Waxman, and S.D. Dib-Hajj. (2019). A Novel Gain-of-Function Nav1.9 Mutation in a Child With Episodic Pain. Front Neurosci 13: 918. 31551682
Huang, M.H., P.Y. Liu, and S.N. Wu. (2019). Characterization of Perturbing Actions by Verteporfin, a Benzoporphyrin Photosensitizer, on Membrane Ionic Currents. Front Chem 7: 566. 31508407
Hug, L.A., B.J. Baker, K. Anantharaman, C.T. Brown, A.J. Probst, C.J. Castelle, C.N. Butterfield, A.W. Hernsdorf, Y. Amano, K. Ise, Y. Suzuki, N. Dudek, D.A. Relman, K.M. Finstad, R. Amundson, B.C. Thomas, and J.F. Banfield. (2016). A new view of the tree of life. Nat Microbiol 1: 16048. 27572647
Hull, J.M. and L.L. Isom. (2017). Voltage-gated sodium channel β subunits: The power outside the pore in brain development and disease. Neuropharmacology. [Epub: Ahead of Print] 28927993
Humphries, J., L. Xiong, J. Liu, A. Prindle, F. Yuan, H.A. Arjes, L. Tsimring, and G.M. Süel. (2017). Species-Independent Attraction to Biofilms through Electrical Signaling. Cell 168: 200-209.e12. 28086091
Idikuda, V., W. Gao, Z. Su, Q. Liu, and L. Zhou. (2018). cAMP binds to closed, inactivated, and open sea urchin HCN channels in a state-dependent manner. J Gen Physiol. [Epub: Ahead of Print] 30541772
Ikematsu, N., M.L. Dallas, F.A. Ross, R.W. Lewis, J.N. Rafferty, J.A. David, R. Suman, C. Peers, D.G. Hardie, and A.M. Evans. (2011). Phosphorylation of the voltage-gated potassium channel Kv2.1 by AMP-activated protein kinase regulates membrane excitability. Proc. Natl. Acad. Sci. USA 108: 18132-18137. 22006306
Ikrar, T., H. Hanawa, H. Watanabe, S. Okada, Y. Aizawa, M.M. Ramadan, S. Komura, F. Yamashita, M. Chinushi, and Y. Aizawa. (2008). A double-point mutation in the selectivity filter site of the KCNQ1 potassium channel results in a severe phenotype, LQT1, of long QT syndrome. J Cardiovasc Electrophysiol 19: 541-549. 18266681
Infield, D.T., E.E.L. Lee, J.D. Galpin, G.D. Galles, F. Bezanilla, and C.A. Ahern. (2018). Replacing voltage sensor arginines with citrulline provides mechanistic insight into charge versus shape. J Gen Physiol 150: 1017-1024. 29866793
Infield, D.T., K. Matulef, J.D. Galpin, K. Lam, E. Tajkhorshid, C.A. Ahern, and F.I. Valiyaveetil. (2018). Main-chain mutagenesis reveals intrahelical coupling in an ion channel voltage-sensor. Nat Commun 9: 5055. 30498243
Iorio, J., C. Duranti, T. Lottini, E. Lastraioli, G. Bagni, A. Becchetti, and A. Arcangeli. (2020). K11.1 Potassium Channel and the Na/H Antiporter NHE1 Modulate Adhesion-Dependent Intracellular pH in Colorectal Cancer Cells. Front Pharmacol 11: 848. 32587517
Isbell, H.M., A.M. Kilpatrick, Z. Lin, R. Mahling, and M.A. Shea. (2018). Backbone resonance assignments of complexes of apo human calmodulin bound to IQ motif peptides of voltage-dependent sodium channels Na1.1, Na1.4 and Na1.7. Biomol NMR Assign. [Epub: Ahead of Print] 29728980
Ito, M., H. Xu, A.A. Guffanti, Y. Wei, L. Zvi, D.E. Clapham, and T.A. Krulwich. (2004). The voltage-gated Na+ channel NavBP has a role in motility, chemotaxis, and pH homeostasis of the alkaliphilic Bacillus. Proc. Natl. Acad. Sci. USA 101: 10566-10571. 15243157
Iwahashi, Y., Y. Toyama, S. Imai, H. Itoh, M. Osawa, M. Inoue, and I. Shimada. (2020). Conformational equilibrium shift underlies altered K channel gating as revealed by NMR. Nat Commun 11: 5168. 33057011
Iwamoto, M., H. Shimizu, F. Inoue, T. Konno, Y.C. Sasaki, and S. Oiki. (2006). Surface structure and its dynamic rearrangements of the KcsA potassium channel upon gating and tetrabutylammonium blocking. J. Biol. Chem. 281: 28379-28386. 16835240
Jalily Hasani, H., A. Ganesan, M. Ahmed, and K.H. Barakat. (2018). Effects of protein-protein interactions and ligand binding on the ion permeation in KCNQ1 potassium channel. PLoS One 13: e0191905. 29444113
Jalkanen, R., N.T. Bech-Hansen, R. Tobias, E.M. Sankila, M. Mäntyjärvi, H. Forsius, A. de la Chapelle, and T. Alitalo. (2007). A novel CACNA1F gene mutation causes Aland Island eye disease. Invest Ophthalmol Vis Sci 48: 2498-2502. 17525176
James, Z.M., A.J. Borst, Y. Haitin, B. Frenz, F. DiMaio, W.N. Zagotta, and D. Veesler. (2017). CryoEM structure of a prokaryotic cyclic nucleotide-gated ion channel. Proc. Natl. Acad. Sci. USA 114: 4430-4435. 28396445
Jan, L.Y. and Y.N. Jan. (1997). Cloned potassium channels from eukaryotes and prokaryotes. Annu. Rev. Neurosci. 20: 91-123. 9056709
Jaślan, D., T.D. Mueller, D. Becker, J. Schultz, T. Cuin, I. Marten, I. Dreyer, G. Schönknecht, and R. Hedrich. (2016). Gating of the two-pore cation channel AtTPC1 in the plant vacuole is based on a single voltage-sensing domain. Plant Biol (Stuttg). [Epub: Ahead of Print] 27270880
Jędrychowska, J. and V. Korzh. (2019). Kv2.1 voltage-gated potassium channel et al. in developmental perspective. Dev Dyn. [Epub: Ahead of Print] 31512327
Jegla, T. and L. Salkoff. (1995). A multigene family of novel K+ channels from Paramecium tetraurelia. Receptors Channels 3: 51-60. 8589993
Jensen H.S., K. Callo, T. Jespersen, B.S. Jensen, S.P. Olesen. (2005). The KCNQ5 potassium channel from mouse: a broadly expressed M-current like potassium channel modulated by zinc, pH, and volume changes. Brain Res. Mol. Brain Res. 139: 52-62. 15963599
Jensen, M.&.#.2.1.6.;., V. Jogini, D.W. Borhani, A.E. Leffler, R.O. Dror, and D.E. Shaw. (2012). Mechanism of voltage gating in potassium channels. Science 336: 229-233. 22499946
Jia, Z., M. Yazdani, G. Zhang, J. Cui, and J. Chen. (2018). Hydrophobic gating in BK channels. Nat Commun 9: 3408. 30143620
Jiang D., Du Y., Nomura Y., Wang X., Wu Y., Zhorov BS. and Dong K. (2015). Mutations in the transmembrane helix S6 of domain IV confer cockroach sodium channel resistance to sodium channel blocker insecticides and local anesthetics. Insect Biochem Mol Biol. 66:88-95. 26407935
Jiang, D., T.M. Gamal El-Din, C. Ing, P. Lu, R. Pomès, N. Zheng, and W.A. Catterall. (2018). Structural basis for gating pore current in periodic paralysis. Nature. [Epub: Ahead of Print] 29769724
Jiang, Y., A. Lee, J. Chen, M. Cadene, B.T. Chait, and R. MacKinnon. (2002). Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417: 515-522. 12037559
Jiang, Y., A. Lee, J. Chen, V. Ruta, M. Cadene, B.T. Chait, and R. MacKinnon. (2003a). X-ray structure of a voltage-dependent K+ channel. Nature 423: 33-41. 12721618
Jiang, Y., V. Ruta, J. Chen, A. Lee, and R. MacKinnon. (2003b). The principle of gating charge movement in a voltage-dependent K+ channel. Nature 423: 42-48. 12721619
Johansson, I., K. Wulfetange, F. Porée, E. Michard, P. Gajdanowicz, B. Lacombe, H. Sentenac, J.B. Thibaud, B. Mueller-Roeber, M.R. Blatt, and I. Dreyer. (2006). External K+ modulates the activity of the Arabidopsis potassium channel SKOR via an unusual mechanism. Plant J. 46: 269-281. 16623889
Jones, J.M., L. Dionne, J. Dell''Orco, R. Parent, J.N. Krueger, X. Cheng, S.D. Dib-Hajj, R.K. Bunton-Stasyshyn, L.M. Sharkey, J.J. Dowling, G.G. Murphy, V.G. Shakkottai, P. Shrager, and M.H. Meisler. (2016). Single amino acid deletion in transmembrane segment D4S6 of sodium channel Scn8a (Nav1.6) in a mouse mutant with a chronic movement disorder. Neurobiol Dis 89: 36-45. 26807988
Jospin, M., S. Watanabe, D. Joshi, S. Young, K. Hamming, C. Thacker, T.P. Snutch, E.M. Jorgensen, and K. Schuske. (2007). UNC-80 and the NCA ion channels contribute to endocytosis defects in synaptojanin mutants. Curr. Biol. 17: 1595-1600. 17825559
Kanellopoulos, A.H. and A. Matsuyama. (2016). Voltage-gated sodium channels and pain-related disorders. Clin Sci (Lond) 130: 2257-2265. 27815510
Kanellopoulos, A.H., J. Koenig, H. Huang, M. Pyrski, Q. Millet, S. Lolignier, T. Morohashi, S.J. Gossage, M. Jay, J.E. Linley, G. Baskozos, B.M. Kessler, J.J. Cox, A.C. Dolphin, F. Zufall, J.N. Wood, and J. Zhao. (2018). Mapping protein interactions of sodium channel Na1.7 using epitope-tagged gene-targeted mice. EMBO. J. 37: 427-445. 29335280
Kang, C., C.G. Vanoye, R.C. Welch, W.D. Van Horn, and C.R. Sanders. (2010). Functional delivery of a membrane protein into oocyte membranes using bicelles. Biochemistry 49: 653-655. 20044833
Kang, D., E. Mariash, and D. Kim. (2004). Functional expression of TRESK-2, a new member of the tandem-pore K+ channel family. J. Biol. Chem. 279: 28063-28070. 15123670
Kanzaki, M., M. Nagasawa, I. Kojima, C. Sato, K. Naruse, M. Sokabe, and H. Iida. (1999). Molecular identification of a eukaryotic, stretch-activated nonselective cation channel. Science 285: 882-886. 10436155
Kapplinger JD., Giudicessi JR., Ye D., Tester DJ., Callis TE., Valdivia CR., Makielski JC., Wilde AA. and Ackerman MJ. (2015). Enhanced Classification of Brugada Syndrome-Associated and Long-QT Syndrome-Associated Genetic Variants in the SCN5A-Encoded Nav1.5 Cardiac Sodium Channel. Circ Cardiovasc Genet. 8(4):582-95. 25904541
Kapplinger, J.D., D.J. Tester, M. Alders, B. Benito, M. Berthet, J. Brugada, P. Brugada, V. Fressart, A. Guerchicoff, C. Harris-Kerr, S. Kamakura, F. Kyndt, T.T. Koopmann, Y. Miyamoto, R. Pfeiffer, G.D. Pollevick, V. Probst, S. Zumhagen, M. Vatta, J.A. Towbin, W. Shimizu, E. Schulze-Bahr, C. Antzelevitch, B.A. Salisbury, P. Guicheney, A.A. Wilde, R. Brugada, J.J. Schott, and M.J. Ackerman. (2010). An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm 7: 33-46. 20129283
Karelina, T.V., Y.D. Stepanenko, P.A. Abushik, D.A. Sibarov, and S.M. Antonov. (2017). Downregulation of Purkinje Cell Activity by Modulators of Small Conductance Calcium-Activated Potassium Channels In Rat Cerebellum. Acta Naturae 8: 91-99. 28050270
Kariev, A.M. and M.E. Green. (2018). The Role of Proton Transport in Gating Current in a Voltage Gated Ion Channel, as Shown by Quantum Calculations. Sensors (Basel) 18:. 30231473
Kaupp, U.B. and R. Seifert. (2001). Molecular diversity of pacemaker ion channels. Annu. Rev. Physiol. 63: 235-257. 11181956
Kihira, Y., T.O. Hermanstyne, and H. Misonou. (2010). Formation of heteromeric Kv2 channels in mammalian brain neurons. J. Biol. Chem. 285: 15048-15055. 20202934
Kim, H., J.T. Pierce-Shimomura, H.J. Oh, B.E. Johnson, M.B. Goodman, and S.L. McIntire. (2009). The dystrophin complex controls bk channel localization and muscle activity in Caenorhabditis elegans. PLoS Genet 5: e1000780. 20019812
Kim, H.J., B.G. Kim, J.E. Park, C.S. Ki, J. Huh, J.B. Youm, J.S. Kang, and H. Cho. (2019). Characterization of a novel LQT3 variant with a selective efficacy of mexiletine treatment. Sci Rep 9: 12997. 31506521
Kim, H.J., D. Yang, S.H. Kim, B. Kim, H.D. Kim, J.S. Lee, J.R. Choi, S.T. Lee, and H.C. Kang. (2019). Genetic and clinical features of SCN8A developmental and epileptic encephalopathy. Epilepsy Res 158: 106222. [Epub: Ahead of Print] 31675620
Kim, H.J., P. Lv, C.R. Sihn, and E.N. Yamoah. (2011). Cellular and molecular mechanisms of autosomal dominant form of progressive hearing loss, DFNA2. J. Biol. Chem. 286: 1517-1527. 20966080
Kim, T., S. Kim, H.M. Yun, K.C. Chung, Y.S. Han, H.S. Shin, and H. Rhim. (2009). Modulation of Ca(v)3.1 T-type Ca2+ channels by the ran binding protein RanBPM. Biochem. Biophys. Res. Commun. 378: 15-20. 18801335
Kintzer, A.F. and R.M. Stroud. (2016). Structure, inhibition and regulation of two-pore channel TPC1 from Arabidopsis thaliana. Nature 531: 258-262. 26961658
Kintzer, A.F., E.M. Green, P.K. Dominik, M. Bridges, J.P. Armache, D. Deneka, S.S. Kim, W. Hubbell, A.A. Kossiakoff, Y. Cheng, and R.M. Stroud. (2018). Structural basis for activation of voltage sensor domains in an ion channel TPC1. Proc. Natl. Acad. Sci. USA. [Epub: Ahead of Print] 30190435
Kirichok, Y., B. Navarro, and D.E. Clapham. (2006). Whole-cell patch-clamp measurements of spermatozoa reveal an alkaline-activated Ca2+ channel. Nature 439: 737-740. 16467839
Kirsch, S.A., A. Kugemann, A. Carpaneto, R.A. Böckmann, and P. Dietrich. (2018). Phosphatidylinositol-3,5-bisphosphate lipid-binding-induced activation of the human two-pore channel 2. Cell Mol Life Sci. [Epub: Ahead of Print] 29705952
Kleopa, K.A. (2011). Autoimmune channelopathies of the nervous system. Curr Neuropharmacol 9: 458-467. 22379460
Koishi, R., H. Xu, D. Ren, B. Navarro, B.W. Spiller, Q. Shi, and D.E. Clapham. (2004). A superfamily of voltage-gated sodium channels in bacteria. J. Biol. Chem. 279: 9532-9538. 14665618
Komiya, M., M. Kato, D. Tadaki, T. Ma, H. Yamamoto, R. Tero, Y. Tozawa, M. Niwano, and A. Hirano-Iwata. (2020). Advances in Artificial Cell Membrane Systems as a Platform for Reconstituting Ion Channels. Chem Rec. [Epub: Ahead of Print] 31944562
Kon, S., A. Takaku, F. Toyama, E. Takayama-Watanabe, and A. Watanabe. (2019). Acrosome reaction-inducing substance triggers two different pathways of sperm intracellular signaling in newt fertilization. Int J Dev Biol 63: 589-595. 32149368
Köpfer, D.A., C. Song, T. Gruene, G.M. Sheldrick, U. Zachariae, and B.L. de Groot. (2014). Ion permeation in K⁺ channels occurs by direct Coulomb knock-on. Science 346: 352-355. 25324389
Kourrich, S., T. Hayashi, J.Y. Chuang, S.Y. Tsai, T.P. Su, and A. Bonci. (2013). Dynamic interaction between sigma-1 receptor and Kv1.2 shapes neuronal and behavioral responses to cocaine. Cell 152: 236-247. 23332758
Kowal, J., M. Chami, P. Baumgartner, M. Arheit, P.L. Chiu, M. Rangl, S. Scheuring, G.F. Schröder, C.M. Nimigean, and H. Stahlberg. (2014). Ligand-induced structural changes in the cyclic nucleotide-modulated potassium channel MloK1. Nat Commun 5: 3106. 24469021
Kratochvil, H.T., J.K. Carr, K. Matulef, A.W. Annen, H. Li, M. Maj, J. Ostmeyer, A.L. Serrano, H. Raghuraman, S.D. Moran, J.L. Skinner, E. Perozo, B. Roux, F.I. Valiyaveetil, and M.T. Zanni. (2016). Instantaneous ion configurations in the K+ ion channel selectivity filter revealed by 2D IR spectroscopy. Science 353: 1040-1044. 27701114
Krishnamoorthy-Natarajan, G. and M. Koide. (2016). BK Channels in the Vascular System. Int Rev Neurobiol 128: 401-438. 27238270
Kuang Q., Purhonen P., Jegerschold C. and Hebert H. (2014). The projection structure of Kch, a putative potassium channel in Escherichia coli, by electron crystallography. Biochim Biophys Acta. 1838(1 Pt B):237-43. 24055821
Kuang, Q., P. Purhonen, C. Jegerschöld, P.J.B. Koeck, and H. Hebert. (2015). Free RCK arrangement in Kch, a putative escherichia coli potassium channel, as suggested by electron crystallography. Structure 23: 199-205. 25497729
Kubota, T., A.M. Correa, and F. Bezanilla. (2017). Mechanism of functional interaction between potassium channel Kv1.3 and sodium channel NavBeta1 subunit. Sci Rep 7: 45310. 28349975
Kuenze, G., C.G. Vanoye, R.R. Desai, S. Adusumilli, K.R. Brewer, H. Woods, E.F. McDonald, C.R. Sanders, A.L. George, Jr, and J. Meiler. (2020). Allosteric mechanism for KCNE1 modulation of KCNQ1 potassium channel activation. Elife 9:. 33095155
Kugler, A., B. Köhler, K. Palme, P. Wolff, and P. Dietrich. (2009). Salt-dependent regulation of a CNG channel subfamily in Arabidopsis. BMC Plant Biol 9: 140. 19943938
Kukovetz, K., B. Hertel, C.R. Schvarcz, A. Saponaro, M. Manthey, U. Burk, T. Greiner, G.F. Steward, J.L. Van Etten, A. Moroni, G. Thiel, and O. Rauh. (2020). A Functional K Channel from Tetraselmis Virus 1, a Member of the. Viruses 12:. 33003637
Kullmann DM. and Waxman SG. (2010). Neurological channelopathies: new insights into disease mechanisms and ion channel function. J Physiol. 588(Pt 11):1823-7. 20375141
Kumar, P., D. Kumar, S.K. Jha, N.K. Jha, and R.K. Ambasta. (2016). Ion Channels in Neurological Disorders. Adv Protein Chem Struct Biol 103: 97-136. 26920688
Kunkel, M.T., D.B. Johnstone, J.H. Thomas, and L. Salkoff. (2000). Mutants of a temperature-sensitive two-P domain potassium channel. J. Neurosci. 20: 7517-7524. 11027209
Kuo, M.M., Y. Saimi, C. Kung, and S. Choe. (2007). Patch clamp and phenotypic analyses of a prokaryotic cyclic nucleotide-gated K+ channel using Escherichia coli as a host. J. Biol. Chem. 282: 24294-24301. 17588940
Kuo, M.M.-C., Y. Saimi, and C. Kung. (2003). Gain-of-function mutations indicate that Escherichia coli Kch forms a functional K+ conduit in vivo. EMBO J. 22: 4049-4058. 12912904
Kurusu, T., T. Yagala, A. Miyao, H. Hirochika, and K. Kuchitsu. (2005). Identification of a putative voltage-gated Ca2+ channel as a key regulator of elicitor-induced hypersensitive cell death and mitogen-activated protein kinase activation in rice. Plant J. 42: 798-809. 15941394
Kurusu, T., Y. Sakurai, A. Miyao, H. Hirochika, and K. Kuchitsu. (2004). Identification of a putative voltage-gated Ca2+ -permeable channel (OsTPC1) involved in Ca2+ influx and regulation of growth and development in rice. Plant Cell Physiol. 45: 693-702. 15215504
Kuum, M., V. Veksler, J. Liiv, R. Ventura-Clapier, and A. Kaasik. (2012). Endoplasmic reticulum potassium-hydrogen exchanger and small conductance calcium-activated potassium channel activities are essential for ER calcium uptake in neurons and cardiomyocytes. J Cell Sci 125: 625-633. 22331352
Labro, A.J., I.R. Boulet, F.S. Choveau, E. Mayeur, T. Bruyns, G. Loussouarn, A.L. Raes, and D.J. Snyders. (2011). The S4-S5 linker of KCNQ1 channels forms a structural scaffold with the S6 segment controlling gate closure. J. Biol. Chem. 286: 717-725. 21059661
Ladwig, F., R.I. Dahlke, N. Stührwohldt, J. Hartmann, K. Harter, and M. Sauter. (2015). Phytosulfokine Regulates Growth in Arabidopsis through a Response Module at the Plasma Membrane That Includes CYCLIC NUCLEOTIDE-GATED CHANNEL17, H+-ATPase, and BAK1. Plant Cell 27: 1718-1729. 26071421
Lamothe, S.M., A.E. Hogan-Cann, W. Li, J. Guo, T. Yang, J.N. Tschirhart, and S. Zhang. (2018). The N terminus and transmembrane segment S1 of Kv1.5 can coassemble with the rest of the channel independent of the S1-S2 linkage. J. Biol. Chem. [Epub: Ahead of Print] 30121572
Lampert, A., S.D. Dib-Hajj, L. Tyrrell, and S.G. Waxman. (2006). Size matters: Erythromelalgia mutation S241T in Nav1.7 alters channel gating. J. Biol. Chem. 281: 36029-36035. 17008310
Langan, P.S., V.G. Vandavasi, W. Kopec, B. Sullivan, P.V. Afonne, K.L. Weiss, B.L. de Groot, and L. Coates. (2020). The structure of a potassium-selective ion channel reveals a hydrophobic gate regulating ion permeation. IUCrJ 7: 835-843. 32939275
Latorre, R., K. Castillo, W. Carrasquel-Ursulaez, R.V. Sepulveda, F. Gonzalez-Nilo, C. Gonzalez, and O. Alvarez. (2017). Molecular Determinants of BK Channel Functional Diversity and Functioning. Physiol. Rev. 97: 39-87. 27807200
Latz, A., D. Becker, M. Hekman, T. Müller, D. Beyhl, I. Marten, C. Eing, A. Fischer, M. Dunkel, A. Bertl, U.R. Rapp, and R. Hedrich. (2007). TPK1, a Ca2+-regulated Arabidopsis vacuole two-pore K+ channel is activated by 14-3-3 proteins. Plant J. 52: 449-459. 17764516
Lazniewska, J. and N. Weiss. (2017). Glycosylation of voltage-gated calcium channels in health and disease. Biochim. Biophys. Acta. 1859: 662-668. [Epub: Ahead of Print] 28109749
Lazzari-Dean, J.R., A.M.M. Gest, and E.W. Miller. (2019). Optical estimation of absolute membrane potential using fluorescence lifetime imaging. Elife 8:. [Epub: Ahead of Print] 31545164
Lebaudy, A., F. Pascaud, A.A. Véry, C. Alcon, I. Dreyer, J.B. Thibaud, and B. Lacombe. (2010). Preferential KAT1-KAT2 heteromerization determines inward K+ current properties in Arabidopsis guard cells. J. Biol. Chem. 285: 6265-6274. 20040603
Lee H., Lin MC., Kornblum HI., Papazian DM. and Nelson SF. (2014). Exome sequencing identifies de novo gain of function missense mutation in KCND2 in identical twins with autism and seizures that slows potassium channel inactivation. Hum Mol Genet. 23(13):3481-9. 24501278
Lee, C.H. and R. MacKinnon. (2017). Structures of the Human HCN1 Hyperpolarization-Activated Channel. Cell 168: 111-120.e11. 28086084
Lee, C.H. and R. MacKinnon. (2018). Activation mechanism of a human SK-calmodulin channel complex elucidated by cryo-EM structures. Science 360: 508-513. 29724949
Lee, J.H., B.H. Lee, S.H. Choi, I.S. Yoon, T.J. Shin, M.K. Pyo, S.M. Lee, H.C. Kim, and S.Y. Nah. (2008). Involvement of batrachotoxin binding sites in ginsenoside-mediated voltage-gated Na+ channel regulation. Brain Res 1203: 61-67. 18321475
Lee, U.S., J. Shi, and J. Cui. (2010). Modulation of BK channel gating by the ß2 subunit involves both membrane-spanning and cytoplasmic domains of Slo1. J. Neurosci. 30: 16170-16179. 21123563
Leipold, E., F. Ullrich, M. Thiele, A.A. Tietze, H. Terlau, D. Imhof, and S.H. Heinemann. (2017). Subtype-specific block of voltage-gated K channels by μ-conopeptides. Biochem. Biophys. Res. Commun. 482: 1135-1140. 27916464
Leng Q., R.W. Mercier, B.G. Hua, H. Fromm, G.A. Berkowitz. (2002). Electrophysiological analysis of cloned cyclic nucleotide-gated ion channels. Plant Physiol. 128: 400-410. 11842144
Lengyel, M., G. Czirják, and P. Enyedi. (2018). TRESK background potassium channel is not gated at the helix bundle crossing near the cytoplasmic end of the pore. PLoS One 13: e0197622. 29763475
Lewis, A., Z.A. McCrossan, R.W. Manville, M.O. Popa, L.G. Cuello, and S.A.N. Goldstein. (2020). TOK channels use the two gates in classical K channels to achieve outward rectification. FASEB J. [Epub: Ahead of Print] 32519783
Li, H., X. Ding, H. Guan, and C. Xiong. (2009). Inhibition of human sperm function and mouse fertilization in vitro by an antibody against cation channel of sperm 1: the contraceptive potential of its transmembrane domains and pore region. Fertil Steril 92: 1141-1146. 18976756
Li, L., K. Liu, Y. Hu, D. Li, and S. Luan. (2008). Single mutations convert an outward K+ channel into an inward K+ channel. Proc. Natl. Acad. Sci. USA 105: 2871-2876. 18287042
Li, M., X. Zhou, S. Wang, I. Michailidis, Y. Gong, D. Su, H. Li, X. Li, and J. Yang. (2017). Structure of a eukaryotic cyclic-nucleotide-gated channel. Nature. [Epub: Ahead of Print] 28099415
Li, P., H. Liu, C. Lai, P. Sun, W. Zeng, F. Wu, L. Zhang, S. Wang, C. Tian, and J. Ding. (2014). Differential Modulations of KCNQ1 by Auxiliary Proteins KCNE1 and KCNE2. Sci Rep 4: 4973. 24827085
Li, Q., S. Wanderling, P. Sompornpisut, and E. Perozo. (2014). Structural basis of lipid-driven conformational transitions in the KvAP voltage-sensing domain. Nat Struct Mol Biol 21: 160-166. 24413055
Li, Q., X. Guan, K. Yen, J. Zhang, and J. Yan. (2016). The single transmembrane segment determines the modulatory function of the BK channel auxiliary γ subunit. J Gen Physiol 147: 337-351. 27022192
Li, S., B. Wu, and W. Han. (2019). Parametrization of MARTINI for Modeling Hinging Motions in Membrane Proteins. J Phys Chem B 123: 2254-2269. 30762370
Li, W. and R.W. Aldrich. (2011). Electrostatic influences of charged inner pore residues on the conductance and gating of small conductance Ca2+ activated K+ channels. Proc. Natl. Acad. Sci. USA 108: 5946-5953. 21422289
Liao, P., Y. Qiu, Y. Mo, J. Fu, Z. Song, L. Huang, S. Bai, Y. Wang, J.J. Zhu, F. Tian, Z. Chen, N. Pan, E.Y. Sun, L. Yang, X. Lan, Y. Chen, D. Huang, P. Sun, L. Zhao, D. Yang, W. Lu, T. Yang, J. Xiao, W.G. Li, Z. Gao, B. Shen, Q. Zhang, J. Liu, H. Jiang, R. Jiang, and H. Yang. (2019). Selective activation of TWIK-related acid-sensitive K 3 subunit-containing channels is analgesic in rodent models. Sci Transl Med 11:. 31748231
Liin, S.I., P.E. Lund, J.E. Larsson, J. Brask, B. Wallner, and F. Elinder. (2018). Biaryl sulfonamide motifs up- or down-regulate ion channel activity by activating voltage sensors. J Gen Physiol. [Epub: Ahead of Print] 30002162
Lim, H.H., B.J. Park, H.S. Choi, C.S. Park, S.H. Eom, and J. Ahnn. (1999). Identification and characterization of a putative C. elegans potassium channel gene (Ce-slo-2) distantly related to Ca2+-activated K+ channels. Gene 240: 35-43. 10564810
Ling, K.Y., B. Vaillant, W.J. Haynes, Y. Saimi, and C. Kung. (1998). A comparison of internal eliminated sequences in the genes that encode two K+-channel isoforms in Paramecium tetraurelia. J Eukaryot Microbiol 45: 459-465. 9703683
Liu J., J. Xia, K.H. Cho, D.E. Clapham, D. Ren. (2007). CatSperβ, a novel transmembrane protein in the CatSper channel complex. J. Biol. Chem. 282: 18945-18952. 17478420
Liu, J., A. Prindle, J. Humphries, M. Gabalda-Sagarra, M. Asally, D.Y. Lee, S. Ly, J. Garcia-Ojalvo, and G.M. Süel. (2015). Metabolic co-dependence gives rise to collective oscillations within biofilms. Nature 523: 550-554. 26200335
Liu, J., H. Tan, W. Yang, S. Yao, and L. Hong. (2019). The voltage-gated sodium channel Na1.7 associated with endometrial cancer. J Cancer 10: 4954-4960. 31598168
Liu, K., L. Li, and S. Luan. (2006). Intracellular K+ sensing of SKOR, a Shaker-type K+ channel from Arabidopsis. Plant J. 46: 260-268. 16623888
Liu, M. and A. Gelli. (2008). Elongation factor 3, EF3, associates with the calcium channel Cch1 and targets Cch1 to the plasma membrane in Cryptococcus neoformans. Eukaryot. Cell. 7: 1118-1126. 18503003
Liu, P., B. Chen, and Z.W. Wang. (2014). SLO-2 potassium channel is an important regulator of neurotransmitter release in Caenorhabditis elegans. Nat Commun 5: 5155. 25300429
Liu, P., Q. Ge, B. Chen, L. Salkoff, M.I. Kotlikoff, and Z.W. Wang. (2011). Genetic dissection of ion currents underlying all-or-none action potentials in C. elegans body-wall muscle cells. J. Physiol. 589: 101-117. 21059759
Liu, X., Y. Wu, and Y. Zhou. (2010). Intracellular linkers are involved in Mg2+-dependent modulation of the Eag potassium channel. Channels (Austin) 4: 311-318. 20855938
Liu, Z., Y. Jia, L. Song, Y. Tian, P. Zhang, P. Zhang, Z. Cao, and J. Ma. (2020). Antiarrhythmic effect of crotonoside by regulating sodium and calcium channels in rabbit ventricular myocytes. Life Sci 244: 117333. 31962132
Locke E.G., M. Bonilla, L. Liang, Y. Takita, K.W. Cunningham. (2000). A homolog of voltage-gated Ca2+ channels stimulated by depletion of secretory Ca2+ in yeast. Mol. Cell Biol. 20: 6686-6694 10958666
Loganathan, K., S. Moriya, M. Sivalingam, K.W. Ng, and I.S. Parhar. (2017). Sequence and localization of kcnk10a in the brain of adult zebrafish (Danio rerio). J Chem Neuroanat 86: 92-99. [Epub: Ahead of Print] 29074372
Lolicato, M., P.M. Riegelhaupt, C. Arrigoni, K.A. Clark, and D.L. Minor, Jr. (2014). Transmembrane helix straightening and buckling underlies activation of mechanosensitive and thermosensitive K(2P) channels. Neuron. 84: 1198-1212. 25500157
Long, S.B., X. Tao, E.B. Campbell, and R. MacKinnon. (2007). Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450: 376-382. 18004376
Lopez-Cayuqueo KI., Pena-Munzenmayer G., Niemeyer MI., Sepulveda FV. and Cid LP. (2015). TASK-2 K(2)p K(+) channel: thoughts about gating and its fitness to physiological function. Pflugers Arch. 467(5):1043-53. 25315981
Lorca, R.A., X. Ma, and S.K. England. (2017). The unique N-terminal sequence of the BKCa channel α-subunit determines its modulation by β-subunits. PLoS One 12: e0182068. 28750098
Lorincz, A. and Z. Nusser. (2010). Molecular identity of dendritic voltage-gated sodium channels. Science 328: 906-909. 20466935
Lörinczi, &.#.2.0.1.;., J.C. Gómez-Posada, P. de la Peña, A.P. Tomczak, J. Fernández-Trillo, U. Leipscher, W. Stühmer, F. Barros, and L.A. Pardo. (2015). Voltage-dependent gating of KCNH potassium channels lacking a covalent link between voltage-sensing and pore domains. Nat Commun 6: 6672. 25818916
Lowe, J.S., O. Palygin, N. Bhasin, T.J. Hund, P.A. Boyden, E. Shibata, M.E. Anderson, and P.J. Mohler. (2008). Voltage-gated Nav channel targeting in the heart requires an ankyrin-G dependent cellular pathway. J. Cell. Biol. 180: 173-186. 18180363
Lu, B., Y. Su, S. Das, J. Liu, J. Xia, and D. Ren. (2007). The neuronal channel NALCN contributes resting sodium permeability and is required for normal respiratory rhythm. Cell 129: 371-383. 17448995
Lu, S., S. Ma, Y. Wang, T. Huang, Z. Zhu, and G. Zhao. (2017). Mus musculus-microRNA-449a ameliorates neuropathic pain by decreasing the level of KCNMA1 and TRPA1, and increasing the level of TPTE. Mol Med Rep. [Epub: Ahead of Print] 28498403
Lundberg, M.E., E.C. Becker, and S. Choe. (2013). MstX and a putative potassium channel facilitate biofilm formation in Bacillus subtilis. PLoS One 8: e60993. 23737939
Lyashchenko, A.K., and G.R. Tibbs. (2008). Ion binding in the open HCN pacemaker channel pore: fast mechanisms to shape "slow" channels. J. Gen. Physiol. 131: 227-243. 18270171
Lyashchenko, A.K., K.J. Redd, P.A. Goldstein, and G.R. Tibbs. (2014). cAMP control of HCN2 channel Mg2+ block reveals loose coupling between the cyclic nucleotide-gating ring and the pore. PLoS One 9: e101236. 24983358
Männikkö, R., F. Elinder, and H.P. Larsson. (2002). Voltage-sensing mechanism is conserved among ion channels gated by opposite voltages. Nature 419: 837-841. 12397358
Ma, Y., R. Sugiura, A. Koike, H. Ebina, S.O. Sio, and T. Kuno. (2011). Transient receptor potential (TRP) and Cch1-Yam8 channels play key roles in the regulation of cytoplasmic Ca2+ in fission yeast. PLoS One 6: e22421. 21811607
MacKinnon, R. (1995). Pore loops: an emerging theme in ion channel structure. Neuron 14: 889-892. 7538310
Mahling, R., A.M. Kilpatrick, and M.A. Shea. (2017). Backbone resonance assignments of complexes of human voltage-dependent sodium channel NaV1.2 IQ motif peptide bound to apo calmodulin and to the C-domain fragment of apo calmodulin. Biomol NMR Assign. [Epub: Ahead of Print] 28823028
Maingret, F., A.J. Patel, F. Lesage, M. Lazdunski, and E. Honoré. (1999). Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J. Biol. Chem. 274: 26691-26696. 10480871
Maity, S., A. Marchesi, V. Torre, and M. Mazzolini. (2016). Structural Heterogeneity of CNGA1 Channels Revealed by Electrophysiology and Single-Molecule Force Spectroscopy. ACS Omega 1: 1205-1219. 31457189
Maity, S., M. Mazzolini, M. Arcangeletti, A. Valbuena, P. Fabris, M. Lazzarino, and V. Torre. (2015). Conformational rearrangements in the transmembrane domain of CNGA1 channels revealed by single-molecule force spectroscopy. Nat Commun 6: 7093. 25963832
Malak, O.A., F. Abderemane-Ali, Y. Wei, F.C. Coyan, G. Pontus, D. Shaya, C. Marionneau, and G. Loussouarn. (2020). Up-regulation of voltage-gated sodium channels by peptides mimicking S4-S5 linkers reveals a variation of the ligand-receptor mechanism. Sci Rep 10: 5852. 32246066
Maljevic, S., S. Vejzovic, M.K. Bernhard, A. Bertsche, S. Weise, M. Döcker, H. Lerche, J.R. Lemke, A. Merkenschlager, and S. Syrbe. (2016). Novel KCNQ3 Mutation in a Large Family with Benign Familial Neonatal Epilepsy: A Rare Cause of Neonatal Seizures. Mol Syndromol 7: 189-196. 27781029
Mallmann, R., K. Ondacova, L. Moravcikova, B. Jurkovicova-Tarabova, M. Pavlovicova, L. Lichvarova, V. Kominkova, N. Klugbauer, and L. Lacinova. (2019). Four novel interaction partners demonstrate diverse modulatory effects on voltage-gated Ca2.2 Ca channels. Pflugers Arch. [Epub: Ahead of Print] 30612149
Mallmann, R.T., T. Wilmes, L. Lichvarova, A. Bührer, B. Lohmüller, J. Castonguay, L. Lacinova, and N. Klugbauer. (2013). Tetraspanin-13 modulates voltage-gated CaV2.2 Ca2+ channels. Sci Rep 3: 1777. 23648579
Manville, R.W. and G.W. Abbott. (2018). Gabapentin Is a Potent Activator of KCNQ3 and KCNQ5 Potassium Channels. Mol Pharmacol 94: 1155-1163. 30021858
Manville, R.W. and G.W. Abbott. (2019). Cilantro leaf harbors a potent potassium channel-activating anticonvulsant. FASEB J. fj201900485R. [Epub: Ahead of Print] 31311306
Marcel D., Muller T., Hedrich R. and Geiger D. (2010). K+ transport characteristics of the plasma membrane tandem-pore channel TPK4 and pore chimeras with its vacuolar homologs. FEBS Lett. 584(11):2433-9. 20412800
Marchesi A., Mazzolini M. and Torre V. (2012). A ring of threonines in the inner vestibule of the pore of CNGA1 channels constitutes a binding site for permeating ions. J Physiol. 590(Pt 20):5075-90. 22869010
Marchesi, A., M. Arcangeletti, M. Mazzolini, and V. Torre. (2015). Proton transfer unlocks inactivation in cyclic nucleotide-gated A1 channels. J. Physiol. 593: 857-870. 25480799
Mari, S.A., J. Pessoa, S. Altieri, U. Hensen, L. Thomas, J.H. Morais-Cabral, and D.J. Müller. (2011). Gating of the MlotiK1 potassium channel involves large rearrangements of the cyclic nucleotide-binding domains. Proc. Natl. Acad. Sci. USA 108: 20802-20807. 22135457
Marini, C., A. Porro, A. Rastetter, C. Dalle, I. Rivolta, D. Bauer, R. Oegema, C. Nava, E. Parrini, D. Mei, C. Mercer, R. Dhamija, C. Chambers, C. Coubes, J. Thévenon, P. Kuentz, S. Julia, L. Pasquier, C. Dubourg, W. Carré, A. Rosati, F. Melani, T. Pisano, M. Giardino, A.M. Innes, Y. Alembik, S. Scheidecker, M. Santos, S. Figueiroa, C. Garrido, C. Fusco, D. Frattini, C. Spagnoli, A. Binda, T. Granata, F. Ragona, E. Freri, S. Franceschetti, L. Canafoglia, B. Castellotti, C. Gellera, R. Milanesi, M.M. Mancardi, D.R. Clark, F. Kok, K.L. Helbig, S. Ichikawa, L. Sadler, J. Neupauerová, P. Laššuthova, K. Šterbová, A. Laridon, E. Brilstra, B. Koeleman, J.R. Lemke, F. Zara, P. Striano, J. Soblet, G. Smits, N. Deconinck, A. Barbuti, D. DiFrancesco, E. LeGuern, R. Guerrini, B. Santoro, K. Hamacher, G. Thiel, A. Moroni, J.C. DiFrancesco, and C. Depienne. (2018). HCN1 mutation spectrum: from neonatal epileptic encephalopathy to benign generalized epilepsy and beyond. Brain 141: 3160-3178. 30351409
Marino, J., N. Bordag, S. Keller, and O. Zerbe. (2015). Mistic''s membrane association and its assistance in overexpression of a human GPCR are independent processes. Protein. Sci. 24: 38-48. 25297828
Martin, D.C., H. Kim, N.A. Mackin, L. Maldonado-Báez, C.C. Evangelista, Jr, V.G. Beaudry, D.D. Dudgeon, D.Q. Naiman, S.E. Erdman, and K.W. Cunningham. (2011). New regulators of a high affinity Ca2+ influx system revealed through a genome-wide screen in yeast. J. Biol. Chem. 286: 10744-10754. 21252230
Mashanov, G.I., M. Nobles, S.C. Harmer, J.E. Molloy, and A. Tinker. (2010). Direct observation of individual KCNQ1 potassium channels reveals their distinctive diffusive behavior. J. Biol. Chem. 285: 3664-3675. 19940153
Matthies, D., C. Bae, G.E. Toombes, T. Fox, A. Bartesaghi, S. Subramaniam, and K.J. Swartz. (2018). Single-particle cryo-EM structure of a voltage-activated potassium channel in lipid nanodiscs. Elife 7:. 30109985
Mazzone, A., P.R. Strege, D.J. Tester, C.E. Bernard, G. Faulkner, R. De Giorgio, J.C. Makielski, V. Stanghellini, S.J. Gibbons, M.J. Ackerman, and G. Farrugia. (2008). A mutation in telethonin alters nav1.5 function. J. Biol. Chem. 283: 16537-16544. 18408010
McBride CM., Smith AM., Smith JL., Reloj AR., Velasco EJ., Powell J., Elayi CS., Bartos DC., Burgess DE. and Delisle BP. (2013). Mechanistic basis for type 2 long QT syndrome caused by KCNH2 mutations that disrupt conserved arginine residues in the voltage sensor. J Membr Biol. 246(5):355-64. 23546015
McClafferty, H., H. Runciman, and M.J. Shipston. (2020). Site specific deacylation by ABHD17a controls BK channel splice variant activity. J. Biol. Chem. [Epub: Ahead of Print] 32913120
McCoy JG., Rusinova R., Kim DM., Kowal J., Banerjee S., Jaramillo Cartagena A., Thompson AN., Kolmakova-Partensky L., Stahlberg H., Andersen OS. and Nimigean CM. (2014). A KcsA/MloK1 chimeric ion channel has lipid-dependent ligand-binding energetics. J Biol Chem. 289(14):9535-46. 24515111
McCusker, E.C., C. Bagnéris, C.E. Naylor, A.R. Cole, N. D'Avanzo, C.G. Nichols, and B.A. Wallace. (2012). Structure of a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing. Nat Commun 3: 1102. 23033078
McCusker, E.C., N. D'Avanzo, C.G. Nichols, and B.A. Wallace. (2011). Simplified bacterial "pore" channel provides insight into the assembly, stability, and structure of sodium channels. J. Biol. Chem. 286: 16386-16391. 21454659
McNair, W.P., G. Sinagra, M.R. Taylor, A. Di Lenarda, D.A. Ferguson, E.E. Salcedo, D. Slavov, X. Zhu, J.H. Caldwell, L. Mestroni, and. (2011). SCN5A mutations associate with arrhythmic dilated cardiomyopathy and commonly localize to the voltage-sensing mechanism. J Am Coll Cardiol 57: 2160-2168. 21596231
Mederos Y Schnitzler, M., S. Rinné, L. Skrobek, V. Renigunta, G. Schlichthörl, C. Derst, T. Gudermann, J. Daut, and R. Preisig-Müller. (2009). Mutation of histidine 105 in the T1 domain of the potassium channel Kv2.1 disrupts heteromerization with Kv6.3 and Kv6.4. J. Biol. Chem. 284: 4695-4704. 19074135
Medovoy, D., E. Perozo, and B. Roux. (2016). Multi-ion free energy landscapes underscore the microscopic mechanism of ion selectivity in the KcsA channel. Biochim. Biophys. Acta. [Epub: Ahead of Print] 26896693
Meng, J.G., L. Liang, P.F. Jia, Y.C. Wang, H.J. Li, and W.C. Yang. (2020). Integration of ovular signals and exocytosis of a Ca channel by MLOs in pollen tube guidance. Nat Plants 6: 143-153. 32055051
Mezghrani, A., A. Monteil, K. Watschinger, M.J. Sinnegger-Brauns, C. Barrère, E. Bourinet, J. Nargeot, J. Striessnig, and P. Lory. (2008). A destructive interaction mechanism accounts for dominant-negative effects of misfolded mutants of voltage-gated calcium channels. J. Neurosci. 28: 4501-4511. 18434528
Miceli, F., L. Carotenuto, V. Barrese, M.V. Soldovieri, E.L. Heinzen, A.M. Mandel, N. Lippa, L. Bier, D.B. Goldstein, E.C. Cooper, M.R. Cilio, M. Taglialatela, and T.T. Sands. (2020). A Novel Kv7.3 Variant in the Voltage-Sensing S Segment in a Family With Benign Neonatal Epilepsy: Functional Characterization and Rescue by β-Hydroxybutyrate. Front Physiol 11: 1040. 33013448
Miceli, F., M.V. Soldovieri, P. Ambrosino, M. De Maria, L. Manocchio, A. Medoro, and M. Taglialatela. (2015). Molecular pathophysiology and pharmacology of the voltage-sensing module of neuronal ion channels. Front Cell Neurosci 9: 259. 26236192
Michalakis, S., J. Reisert, H. Geiger, C. Wetzel, X. Zong, J. Bradley, M. Spehr, S. Hüttl, A. Gerstner, A. Pfeifer, H. Hatt, K.W. Yau, and M. Biel. (2006). Loss of CNGB1 protein leads to olfactory dysfunction and subciliary cyclic nucleotide-gated channel trapping. J. Biol. Chem. 281: 35156-35166. 16980309
Miller, A.N. and S.B. Long. (2012). Crystal structure of the human two-pore domain potassium channel K2P1. Science 335: 432-436. 22282804
Miller, W.C., A.J. Miles, and B.A. Wallace. (2016). Structure of the C-terminal domain of the prokaryotic sodium channel orthologue NsvBa. Eur Biophys. J. [Epub: Ahead of Print] 27106836
Miloshevsky, G.V., and P.C. Jordan. (2007). Open-state conformation of the KcsA K+ channel: Monte Carlo normal mode following simulations. Structure 15: 1654-1662. 18073114
Minor, D.L., Jr and F. Findeisen. (2010). Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation. Channels (Austin) 4: 459-474. 21139419
Mio, K., M. Mio, F. Arisaka, M. Sato, and C. Sato. (2010). The C-terminal coiled-coil of the bacterial voltage-gated sodium channel NaChBac is not essential for tetramer formation, but stabilizes subunit-to-subunit interactions. Prog Biophys Mol Biol 103: 111-121. 20678983
Mio, K., T. Ogura, and C. Sato. (2008). Structure of six-transmembrane cation channels revealed by single-particle analysis from electron microscopic images. J Synchrotron Radiat 15: 211-214. 18421141
Miranda, P., M. Holmgren, and T. Giraldez. (2018). Voltage-dependent dynamics of the BK channel cytosolic gating ring are coupled to the membrane-embedded voltage sensor. Elife 7:. 30526860
Mishima, E., Y. Sato, K. Nanatani, N. Hoshi, J.K. Lee, N. Schiller, G. von Heijne, M. Sakaguchi, and N. Uozumi. (2016). The topogenic function of S4 promotes membrane insertion of the voltage-sensor domain in the KvAP channel. Biochem. J. [Epub: Ahead of Print] 27694387
Mitchell, M.R. and S. Leibler. (2017). Elastic strain and twist analysis of protein structural data and allostery of the transmembrane channel KcsA. Phys Biol. [Epub: Ahead of Print] 29116053
Monteleone, S., A. Lieb, A. Pinggera, G. Negro, J.E. Fuchs, F. Hofer, J. Striessnig, P. Tuluc, and K.R. Liedl. (2017). Mechanisms Responsible for ω-Pore Currents in Cav Calcium Channel Voltage-Sensing Domains. Biophys. J. 113: 1485-1495. 28978442
Montini, G., J. Booker, A. Sula, and B.A. Wallace. (2018). Comparisons of voltage-gated sodium channel structures with open and closed gates and implications for state-dependent drug design. Biochem Soc Trans 46: 1567-1575. 30381338
Moran, Y. and H.H. Zakon. (2014). The evolution of the four subunits of voltage-gated calcium channels: ancient roots, increasing complexity, and multiple losses. Genome Biol Evol 6: 2210-2217. 25146647
Moran, Y., M.G. Barzilai, B.J. Liebeskind, and H.H. Zakon. (2015). Evolution of voltage-gated ion channels at the emergence of Metazoa. J Exp Biol 218: 515-525. 25696815
Moreau, A., P. Gosselin-Badaroudine, and M. Chahine. (2014). Biophysics, pathophysiology, and pharmacology of ion channel gating pores. Front Pharmacol 5: 53. 24772081
Moreau, A., P. Gosselin-Badaroudine, M. Boutjdir, and M. Chahine. (2015). Mutations in the Voltage Sensors of Domains I and II of Nav1.5 that are Associated with Arrhythmias and Dilated Cardiomyopathy Generate Gating Pore Currents. Front Pharmacol 6: 301. 26733869
Moreno, C., A. Oliveras, C. Bartolucci, C. Muñoz, A. de la Cruz, D.A. Peraza, J.R. Gimeno, M. Martín-Martínez, S. Severi, A. Felipe, P.D. Lambiase, T. Gonzalez, and C. Valenzuela. (2017). D242N, a KV7.1 LQTS mutation uncovers a key residue for IKs voltage dependence. J Mol. Cell Cardiol 110: 61-69. [Epub: Ahead of Print] 28739325
Morera FJ., Alioua A., Kundu P., Salazar M., Gonzalez C., Martinez AD., Stefani E., Toro L. and Latorre R. (2012). The first transmembrane domain (TM1) of beta2-subunit binds to the transmembrane domain S1 of alpha-subunit in BK potassium channels. FEBS Lett. 586(16):2287-93. 22710124
Morrill, J.A. and R. MacKinnon. (1999). Isolation of a single carboxyl proton binding site in the pore of a cyclic nucleotide-gated channel. J. Genet. Physiol. 114: 71-83. 10398693
Morton, M.J., A. Abohamed, A. Sivaprasadarao, and M. Hunter. (2005). pH sensing in the two-pore domain K+ channel, TASK2. Proc. Natl. Acad. Sci. USA 102: 16102-16106. 16239344
Mouline K., A.A. Very, F. Gaymard, J. Boucherez, G. Pilot, M. Devic, D. Bouchez, J.B. Thibaud, H. Sentenac. (2002). Pollen tube development and competitive ability are impaired by disruption of a Shaker K(+) channel in Arabidopsis. Genes Dev. 16:339-350. 11825875
Munsey, T.S., A. Mohindra, S.P. Yusaf, A. Grainge, M.H. Wang, D. Wray, and A. Sivaprasadarao. (2002). Functional properties of Kch, a prokaryotic homologue of eukaryotic potassium channels. Biochem. Biophys. Res. Commun. 297: 10-16. 12220501
Muona, M., S.F. Berkovic, L.M. Dibbens, K.L. Oliver, S. Maljevic, M.A. Bayly, T. Joensuu, L. Canafoglia, S. Franceschetti, R. Michelucci, S. Markkinen, S.E. Heron, M.S. Hildebrand, E. Andermann, F. Andermann, A. Gambardella, P. Tinuper, L. Licchetta, I.E. Scheffer, C. Criscuolo, A. Filla, E. Ferlazzo, J. Ahmad, A. Ahmad, B. Baykan, E. Said, M. Topcu, P. Riguzzi, M.D. King, C. Ozkara, D.M. Andrade, B.A. Engelsen, A. Crespel, M. Lindenau, E. Lohmann, V. Saletti, J. Massano, M. Privitera, A.J. Espay, B. Kauffmann, M. Duchowny, R.S. Møller, R. Straussberg, Z. Afawi, B. Ben-Zeev, K.E. Samocha, M.J. Daly, S. Petrou, H. Lerche, A. Palotie, and A.E. Lehesjoki. (2015). A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy. Nat. Genet. 47: 39-46. 25401298
Murry, C.R., I.V. Agarkova, J.S. Ghosh, F.C. Fitzgerald, R.M. Carlson, B. Hertel, K. Kukovetz, O. Rauh, G. Thiel, and J.L. Van Etten. (2020). Genetic Diversity of Potassium Ion Channel Proteins Encoded by Chloroviruses That Infect. Viruses 12:. 32585987
Nakagawa, H., T. Munakata, and A. Sunami. (2019). Mexiletine Block of Voltage-Gated Sodium Channels: Isoform- and State-Dependent Drug-Pore Interactions. Mol Pharmacol 95: 236-244. 30593458
Nakajo, K., M.H. Ulbrich, Y. Kubo, and E.Y. Isacoff. (2010). Stoichiometry of the KCNQ1 - KCNE1 ion channel complex. Proc. Natl. Acad. Sci. USA 107: 18862-18867. 20962273
Nakamura, K., M. Kato, H. Osaka, S. Yamashita, E. Nakagawa, K. Haginoya, J. Tohyama, M. Okuda, T. Wada, S. Shimakawa, K. Imai, S. Takeshita, H. Ishiwata, D. Lev, T. Lerman-Sagie, D.E. Cervantes-Barragán, C.E. Villarroel, M. Ohfu, K. Writzl, B. Gnidovec Strazisar, S. Hirabayashi, D. Chitayat, D. Myles Reid, K. Nishiyama, H. Kodera, M. Nakashima, Y. Tsurusaki, N. Miyake, K. Hayasaka, N. Matsumoto, and H. Saitsu. (2013). Clinical spectrum of SCN2A mutations expanding to Ohtahara syndrome. Neurology 81: 992-998. 23935176
Nakamura, R.L. and R.F. Gaber. (2009). Ion selectivity of the Kat1 K+ channel pore. Mol. Membr. Biol. 26: 293-308. 19742379
Nakao H., Ikeda K., Iwamoto M., Shimizu H., Oiki S., Ishihama Y. and Nakano M. (2015). pH-dependent promotion of phospholipid flip-flop by the KcsA potassium channel. Biochim Biophys Acta. 1848(1 Pt A):145-50. 25312694
Naso, A., I. Dreyer, L. Pedemonte, I. Testa, J.L. Gomez-Porras, C. Usai, B. Mueller-Rueber, A. Diaspro, F. Gambale, and C. Picco. (2009). The role of the C-terminus for functional heteromerization of the plant channel KDC1. Biophys. J. 96: 4063-4074. 19450478
Naula, C.M., F.M. Logan, P.E. Wong, M.P. Barrett, and R.J. Burchmore. (2010). A glucose transporter can mediate ribose uptake: definition of residues that confer substrate specificity in a sugar transporter. J. Biol. Chem. 285: 29721-29728. 20601430
Nelson, R.D., G. Kuan, M.H. Saier, Jr., and M. Montal. (1999). Modular assembly of voltage-gated channel proteins: a sequence analysis and phylogenetic study. J. Mol. Microbiol. Biotechnol. 2: 281-287. 10943557
Neupärtl, M., C. Meyer, I. Woll, F. Frohns, M. Kang, J.L. Van Etten, D. Kramer, B. Hertel, A. Moroni, and G. Thiel. (2008). Chlorella viruses evoke a rapid release of K+ from host cells during the early phase of infection. Virology 372(2): 340-348. 18045641
Nguyen, H.M., C.A. Galea, G. Schmunk, B.J. Smith, R.A. Edwards, R.S. Norton, and K.G. Chandy. (2013). Intracellular Trafficking of the KV1.3 Potassium Channel Is Regulated by the Prodomain of a Matrix Metalloprotease. J. Biol. Chem. 288: 6451-6464. 23300077
Niemeyer, M.I., L.P. Cid, L.F. Barros, and F.V. Sepúlveda. (2001). Modulation of the two-pore domain acid-sensitive K+ channel TASK-2 (KCNK5) by changes in cell volume. J. Biol. Chem. 276: 43166-43174. 11560934
Nieves-Cordones, M. and I. Gaillard. (2014). Involvement of the S4-S5 linker and the C-linker domain regions to voltage-gating in plant Shaker channels: comparison with animal HCN and Kv channels. Plant Signal Behav 9: e972892. 25482770
Nieves-Cordones, M., A. Chavanieu, L. Jeanguenin, C. Alcon, W. Szponarski, S. Estaran, I. Chérel, S. Zimmermann, H. Sentenac, and I. Gaillard. (2014). Distinct amino acids in the C-linker domain of the Arabidopsis K+ channel KAT2 determine its subcellular localization and activity at the plasma membrane. Plant Physiol. 164: 1415-1429. 24406792
Nieves-Cordones, M., F. Alemán, V. Martínez, and F. Rubio. (2014). K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms. J Plant Physiol. 171: 688-695. 24810767
Niitsu, A., A. Egawa, K. Ikeda, K. Tachibana, and T. Fujiwara. (2018). Veratridine binding to a transmembrane helix of sodium channel Na1.4 determined by solid-state NMR. Bioorg Med Chem 26: 5644-5653. 30389410
Núñez, E., A. Muguruza-Montero, and A. Villarroel. (2020). Atomistic Insights of Calmodulin Gating of Complete Ion Channels. Int J Mol Sci 21:. 32075037
Nurani, G., M. Radford, K. Charalambous, A.O. O'Reilly, N.B. Cronin, S. Haque, and B.A. Wallace. (2008). Tetrameric bacterial sodium channels: characterization of structure, stability, and drug binding. Biochemistry 47: 8114-8121. 18620425
O''Halloran, D.M., S. Altshuler-Keylin, X.D. Zhang, C. He, C. Morales-Phan, Y. Yu, J.A. Kaye, C. Brueggemann, T.Y. Chen, and N.D. L''Etoile. (2017). Contribution of the cyclic nucleotide gated channel subunit, CNG-3, to olfactory plasticity in Caenorhabditis elegans. Sci Rep 7: 169. 28279024
O''Reilly, A.O., A. Lattrell, A.J. Miles, A.B. Klinger, C. Nau, B.A. Wallace, and A. Lampert. (2017). Mutagenesis of the NaChBac sodium channel discloses a functional role for a conserved S6 asparagine. Eur Biophys. J. [Epub: Ahead of Print] 28825121
O'Brien, J.E. and M.H. Meisler. (2013). Sodium channel SCN8A (Nav1.6): properties and de novo mutations in epileptic encephalopathy and intellectual disability. Front Genet 4: 213. 24194747
O'Brien, J.E., L.M. Sharkey, C.N. Vallianatos, C. Han, J.C. Blossom, T. Yu, S.G. Waxman, S.D. Dib-Hajj, and M.H. Meisler. (2012). Interaction of Voltage-gated Sodium Channel Nav1.6 (SCN8A) with Microtubule-associated Protein Map1b. J. Biol. Chem. 287: 18459-18466. 22474336
Oliver, K.L., S. Franceschetti, C.J. Milligan, M. Muona, S.A. Mandelstam, L. Canafoglia, A.M. Boguszewska-Chachulska, A.D. Korczyn, F. Bisulli, C. Di Bonaventura, F. Ragona, R. Michelucci, B. Ben-Zeev, R. Straussberg, F. Panzica, J. Massano, D. Friedman, A. Crespel, B.A. Engelsen, F. Andermann, E. Andermann, K. Spodar, A. Lasek-Bal, P. Riguzzi, E. Pasini, P. Tinuper, L. Licchetta, E. Gardella, M. Lindenau, A. Wulf, R.S. Møller, F. Benninger, Z. Afawi, G. Rubboli, C.A. Reid, S. Maljevic, H. Lerche, A.E. Lehesjoki, S. Petrou, and S.F. Berkovic. (2017). Myoclonus epilepsy and ataxia due to KCNC1 mutation: Analysis of 20 cases and K+ channel properties. Ann Neurol 81: 677-689. 28380698
Olson, T.M., A.E. Alekseev, X.K. Liu, S. Park, L.V. Zingman, M. Bienengraeber, S. Sattiraju, J.D. Ballew, A. Jahangir, and A. Terzic. (2006). Kv1.5 channelopathy due to KCNA5 loss-of-function mutation causes human atrial fibrillation. Hum Mol Genet 15: 2185-2191. 16772329
Ooi, L., S. Gigout, L. Pettinger, and N. Gamper. (2013). Triple Cysteine Module within M-Type K+ Channels Mediates Reciprocal Channel Modulation by Nitric Oxide and Reactive Oxygen Species. J. Neurosci. 33: 6041-6046. 23554485
Orias, M., H. Velázquez, F. Tung, G. Lee, and G.V. Desir. (1997). Cloning and localization of a double-pore K channel, KCNK1: exclusive expression in distal nephron segments. Am. J. Physiol. Renal Physiol 273: F663-F666. 29587102
Ostacolo, C., F. Miceli, V. Di Sarno, P. Nappi, N. Iraci, M.V. Soldovieri, T. Ciaglia, P. Ambrosino, V. Vestuto, A. Lauritano, S. Musella, G. Pepe, M.G. Basilicata, M. Manfra, D.R. Perinelli, E. Novellino, A. Bertamino, I.M. Gomez-Monterrey, P. Campiglia, and M. Taglialatela. (2020). Synthesis and Pharmacological Characterization of Conformationally Restricted Retigabine Analogues as Novel Kv7 Channel Activators. J Med Chem 63: 163-185. 31815462
Osterbur ML., Zheng R., Marion R., Walsh C. and McDonald TV. (2015). An Interdomain KCNH2 Mutation Produces an Intermediate Long QT Syndrome. Hum Mutat. 36(8):764-73. 25914329
Ottschytsch, N., A.L. Raes, J.P. Timmermans, and D.J. Snyders. (2005). Domain analysis of Kv6.3, an electrically silent channel. J. Physiol. 568: 737-747. 16096342
Ouyang, Q., M. Goeritz, and R.M. Harris-Warrick. (2007). Panulirus interruptus Ih-channel gene PIIH: modification of channel properties by alternative splicing and role in rhythmic activity. J Neurophysiol 97: 3880-3892. 17409170
Page, D.A., K.E.A. Magee, J. Li, M. Jung, and E.C. Young. (2020). Cytoplasmic Autoinhibition in HCN Channels is Regulated by the Transmembrane Region. J. Membr. Biol. [Epub: Ahead of Print] 32146488
Paidhungat, M., and S. Garrett. (1997). A homolog of mammalian, voltage-gated calcium channels mediates yeast pheromone-stimulated Ca2+ uptake and exacerbates the cdc1(Ts) growth defect. Mol. Cell Biol. 17: 6339-6347. 9343395
Paldi, T. and M. Gurevitz. (2010). Coupling between residues on S4 and S1 defines the voltage-sensor resting conformation in NaChBac. Biophys. J. 99: 456-463. 20643063
Pan, X., Z. Li, Q. Zhou, H. Shen, K. Wu, X. Huang, J. Chen, J. Zhang, X. Zhu, J. Lei, W. Xiong, H. Gong, B. Xiao, and N. Yan. (2018). Structure of the human voltage-gated sodium channel Na1.4 in complex with β1. Science 362:. 30190309
Pan, Y. and T.R. Cummins. (2020). Distinct functional alterations in SCN8A epilepsy mutant channels. J. Physiol. 598: 381-401. 31715021
Pandey, A., J. P, S. Tripathi, and C. Gopi Mohan. (2012). Harnessing Human N-type Ca2+ Channel Receptor by Identifying the Atomic Hotspot Regions for Its Structure-Based Blocker Design. Mol Inform 31: 643-657. 27477815
Papanatsiou, M., J. Petersen, L. Henderson, Y. Wang, J.M. Christie, and M.R. Blatt. (2019). Optogenetic manipulation of stomatal kinetics improves carbon assimilation, water use, and growth. Science 363: 1456-1459. 30923223
Pappa, A.M., H.Y. Liu, W. Traberg-Christensen, Q. Thiburce, A. Savva, A. Pavia, A. Salleo, S. Daniel, and R.M. Owens. (2020). Optical and Electronic Ion Channel Monitoring from Native Human Membranes. ACS Nano. [Epub: Ahead of Print] 32469490
Parfenova, L.V., Crane, B.M., and Rothberg, B.S. (2006). Modulation of MthK potassium channel activity at the intracellular entrance to the pore. J. Biol. Chem. 281: 21131-21138. 16728395
Parfenova, L.V., K. Abarca-Heidemann, B.M. Crane, and B.S. Rothberg. (2007). Molecular architecture and divalent cation activation of TvoK, a prokaryotic potassium channel. J. Biol. Chem. 282: 24302-24309. 17588939
Park, C.Y., A. Shcheglovitov, and R. Dolmetsch. (2010). The CRAC channel activator STIM1 binds and inhibits L-type voltage-gated calcium channels. Science 330: 101-105. 20929812
Parrasia, S., A. Mattarei, A. Furlan, M. Zoratti, and L. Biasutto. (2019). Small-Molecule Modulators of Mitochondrial Channels as Chemotherapeutic Agents. Cell Physiol Biochem 53: 11-43. 31834993
Pascual-Caro, C., M. Berrocal, A.M. Lopez-Guerrero, A. Alvarez-Barrientos, E. Pozo-Guisado, C. Gutierrez-Merino, A.M. Mata, and F.J. Martin-Romero. (2018). STIM1 deficiency is linked to Alzheimer''s disease and triggers cell death in SH-SY5Y cells by upregulation of L-type voltage-operated Ca entry. J Mol Med (Berl) 96: 1061-1079. 30088035
Patel A.J., F. Maingret, V. Magnone, M. Fosset, M. Lazdunski, E. Honoré. (2000). TWIK-2, an inactivating 2P domain K+ channel. J Biol Chem. 275:28722-30. 10887187
Patel, N.H., J. Johannesen, K. Shah, S.K. Goswami, N.J. Patel, D. Ponnalagu, A.R. Kohut, and H. Singh. (2018). Inhibition of BK negatively alters cardiovascular function. Physiol Rep 6: e13748. 29932499
Patel, S., D. Churamani, and E. Brailoiu. (2017). NAADP-evoked Ca2+ signals through two-pore channel-1 require arginine residues in the first S4-S5 linker. Cell Calcium 68: 1-4. 29129203
Pau, V.P., F.J. Smith, A.B. Taylor, L.V. Parfenova, E. Samakai, M.M. Callaghan, K. Abarca-Heidemann, P.J. Hart, and B.S. Rothberg. (2011). Structure and function of multiple Ca2+-binding sites in a K+ channel regulator of K+ conductance (RCK) domain. Proc. Natl. Acad. Sci. USA 108: 17684-17689. 21997217
Pau, V.P., Y. Zhu, Z. Yuchi, Q.Q. Hoang, and D.S. Yang. (2007). Characterization of the C-terminal domain of a potassium channel from Streptomyces lividans (KcsA). J. Biol. Chem. 282: 29163-29169. 17693406
Paulhus, K., L. Ammerman, and E. Glasscock. (2020). Clinical Spectrum of Mutations: New Insights into Episodic Ataxia and Epilepsy Comorbidity. Int J Mol Sci 21:. 32316562
Payandeh, J., T. Scheuer, N. Zheng, and W.A. Catterall. (2011). The crystal structure of a voltage-gated sodium channel. Nature 475: 353-358. 21743477
Pearlstein, R.A., C.J. Dickson, and V. Hornak. (2016). Contributions of the membrane dipole potential to the function of voltage-gated cation channels and modulation by small molecule potentiators. Biochim. Biophys. Acta. 1859: 177-194. [Epub: Ahead of Print] 27836643
Pedarzani, P., J.E. McCutcheon, G. Rogge, B.S. Jensen, P. Christophersen, C. Hougaard, D. Strobaek, and M. Stocker. (2005). Specific enhancement of SK channel activity selectively potentiates the afterhyperpolarizing current IAHP and modulates the firing properties of hippocampal pyrimidal neurons. 16239218
Peiter, E., M. Fischer, K. Sidaway, S.K. Roberts, and D. Sanders. (2005). The Saccharomyces cerevisiae Ca2+ channel Cch1pMid1p is essential for tolerance to cold stress and iron toxicity. FEBS Lett. 579: 5697-5703. 16223494
Peloquin, J.B., R. Rehak, C.J. Doering, and J.E. McRory. (2007). Functional analysis of congenital stationary night blindness type-2 CACNA1F mutations F742C, G1007R, and R1049W. Neuroscience. 150(2):335-345. 17949918
Peretz, A., L. Pell, Y. Gofman, Y. Haitin, L. Shamgar, E. Patrich, P. Kornilov, O. Gourgy-Hacohen, N. Ben-Tal, and B. Attali. (2010). Targeting the voltage sensor of Kv7.2 voltage-gated K+ channels with a new gating-modifier. Proc. Natl. Acad. Sci. USA 107: 15637-15642. 20713704
Pérez-Verdaguer, M., J. Capera, R. Martínez-Mármol, M. Camps, N. Comes, M.M. Tamkun, and A. Felipe. (2016). Caveolin interaction governs Kv1.3 lipid raft targeting. Sci Rep 6: 22453. 26931497
Perissinotti, L.L., P.M. De Biase, J. Guo, P.C. Yang, M.C. Lee, C.E. Clancy, H.J. Duff, and S.Y. Noskov. (2018). Determinants of Isoform-Specific Gating Kinetics of hERG1 Channel: Combined Experimental and Simulation Study. Front Physiol 9: 207. 29706893
Peroz, D., N. Rodriguez, F. Choveau, I. Baró, J. Mérot, and G. Loussouarn. (2008). Kv7.1 (KCNQ1) properties and channelopathies. J. Physiol. 586(7): 1785-1789. 18174212
Perry, M.D., S. Wong, C.A. Ng, and J.I. Vandenberg. (2013). Hydrophobic interactions between the voltage sensor and pore mediate inactivation in Kv11.1 channels. J Gen Physiol 142: 275-288. 23980196
Peschel, A., F.C. Cardoso, A.A. Walker, T. Durek, M.R.L. Stone, N. Braga Emidio, P.E. Dawson, M. Muttenthaler, and G.F. King. (2020). Two for the Price of One: Heterobivalent Ligand Design Targeting Two Binding Sites on Voltage-Gated Sodium Channels Slows Ligand Dissociation and Enhances Potency. J Med Chem. [Epub: Ahead of Print] 33078946
Peters, C.J., M. Vaid, A.J. Horne, D. Fedida, and E.A. Accili. (2009). The molecular basis for the actions of KVbeta1.2 on the opening and closing of the KV1.2 delayed rectifier channel. Channels (Austin) 3: 314-322. 19713757
Phan, K., C.A. Ng, E. David, D. Shishmarev, P.W. Kuchel, J.I. Vandenberg, and M.D. Perry. (2017). The S1 Helix Critically Regulates the Finely-tuned Gating of Kv11.1 Channels. J. Biol. Chem. [Epub: Ahead of Print] 28280240
Phartiyal, P., E.M. Jones, and G.A. Robertson. (2007). Heteromeric assembly of human ether-à-go-go-related gene (hERG) 1a/1b channels occurs cotranslationally via N-terminal interactions. J. Biol. Chem. 282: 9874-9882. 17272276
Philippar, K., K. Büchsenschütz, M. Abshagen, I. Fuchs, D. Geiger, B. Lacombe, and R. Hedrich. (2003). The K+ channel KZM1 mediates potassium uptake into the phloem and guard cells of the C4 grass Zea mays. J. Biol. Chem. 278: 16973-16981. 12611901
Plugge, B., S. Gazzarrini, M. Nelson, R. Cerana, J.L. Van Etten, C. Derst, D. DiFrancesco, A. Moroni, and G. Thiel. (2000). A potassium channel protein encoded by Chlorella virus PBCV-1. Science 287: 1641. 10698737
Po, S., S. Roberds, D.J. Snyders, M.M. Tamkun, and P.B. Bennett. (1993). Heteromultimeric assembly of human potassium channels. Molecular basis of a transient outward current? Circ Res 72: 1326-1336. 8495559
Poirier, K., G. Viot, L. Lombardi, C. Jauny, P. Billuart, and T. Bienvenu. (2017). Loss of Function of KCNC1 is associated with intellectual disability without seizures. Eur J Hum Genet 25: 560-564. 28145425
Pope, L., C. Arrigoni, H. Lou, C. Bryant, A. Gallardo-Godoy, A.R. Renslo, and D.L. Minor, Jr. (2018). Protein and Chemical Determinants of BL-1249 Action and Selectivity for K Channels. ACS Chem Neurosci. [Epub: Ahead of Print] 30089357
Porro, A., G. Thiel, A. Moroni, and A. Saponaro. (2020). cyclic AMP Regulation and Its Command in the Pacemaker Channel HCN4. Front Physiol 11: 771. 32733276
Powl, A.M., A.J. Miles, and B.A. Wallace. (2012). Transmembrane and extramembrane contributions to membrane protein thermal stability: studies with the NaChBac sodium channel. Biochim. Biophys. Acta. 1818: 889-895. 22226848
Pozdnyakov, I., O. Matantseva, and S. Skarlato. (2018). Diversity and evolution of four-domain voltage-gated cation channels of eukaryotes and their ancestral functional determinants. Sci Rep 8: 3539. 29476068
Prindle, A., J. Liu, M. Asally, S. Ly, J. Garcia-Ojalvo, and G.M. Süel. (2015). Ion channels enable electrical communication in bacterial communities. Nature 527: 59-63. 26503040
Prontera, P., P. Sarchielli, S. Caproni, C. Bedetti, L.M. Cupini, P. Calabresi, and C. Costa. (2018). Epilepsy in hemiplegic migraine: Genetic mutations and clinical implications. Cephalalgia 38: 361-373. 28058944
Ptak, C.P., L.G. Cuello, and E. Perozo. (2005). Electrostatic interaction of a K+ channel RCK domain with charged membrane surfaces. Biochemistry 44: 62-71. 15628846
Pyo, Y.J., M. Gierth, J.I. Schroeder, and M.H. Cho. (2010). High-affinity K+ transport in Arabidopsis: AtHAK5 and AKT1 are vital for seedling establishment and postgermination growth under low-potassium conditions. Plant Physiol. 153: 863-875. 20413648
Qureshi, S.F., A. Ali, P. John, A.P. Jadhav, A. Venkateshwari, H. Rao, M.P. Jayakrishnan, C. Narasimhan, J. Shenthar, K. Thangaraj, and P. Nallari. (2015). Mutational analysis of SCN5A gene in long QT syndrome. Meta Gene 6: 26-35. 26401487
Qureshi, S.F., A. Ali, V. Ananthapur, M.P. Jayakrishnan, N. Calambur, K. Thangaraj, and P. Nallari. (2013). Novel mutations of KCNQ1 in Long QT syndrome. Indian Heart J 65: 552-560. 24206879
Radhakrishnan, K., M.A. Kamp, S.A. Siapich, J. Hescheler, M. Lüke, and T. Schneider. (2011). Ca(v)2.3 Ca2+ channel interacts with the G1-subunit of V-ATPase. Cell Physiol Biochem 27: 421-432. 21691059
Radicke, S., T. Riedel, D. Cotella, K. Turnow, U. Ravens, M. Schaefer, and E. Wettwer. (2013). Accessory subunits alter the temperature sensitivity of Kv4.3 channel complexes. J Mol. Cell Cardiol 56: 8-18. 23291429
Raja, M., N.K. Olrichs, E. Vales, and H. Schrempf. (2012). Transferring knowledge towards understanding the pore stabilizing variations in K+ channels: pore stability in K+ channels. J. Bioenerg. Biomembr. 44: 199-205. 22350010
Ramaswami, M., M. Gautam, A. Kamb, B. Rudy, M.A. Tanouye, and M.K. Mathew. (1990). Human potassium channel genes: Molecular cloning and functional expression. Mol. Cell Neurosci 1: 214-223. 19912772
Ramos Gomes F., Romaniello V., Sanchez A., Weber C., Narayanan P., Psol M. and Pardo LA. (2015). Alternatively Spliced Isoforms of KV10.1 Potassium Channels Modulate Channel Properties and Can Activate Cyclin-dependent Kinase in Xenopus Oocytes. J Biol Chem. 290(51):30351-65. 26518875
Randich, A.M., L.G. Cuello, S.S. Wanderling, and E. Perozo. (2014). Biochemical and structural analysis of the hyperpolarization-activated K+ channel MVP. Biochemistry 53: 1627-1636. 24490868
Rash, J.E., K.G. Vanderpool, T. Yasumura, J. Hickman, J.T. Beatty, and J.I. Nagy. (2016). KV1 channels identified in rodent myelinated axons, linked to Cx29 in innermost myelin: support for electrically active myelin in mammalian saltatory conduction. J Neurophysiol 115: 1836-1859. 26763782
Rasmussen, T. (2016). How do mechanosensitive channels sense membrane tension? Biochem Soc Trans 44: 1019-1025. 27528747
Rauh, O., M. Urban, L.M. Henkes, T. Winterstein, T. Greiner, J.L. Van Etten, A. Moroni, S.M. Kast, G. Thiel, and I. Schroeder. (2017). Identification of Intrahelical Bifurcated H-Bonds as a New Type of Gate in K+ Channels. J. Am. Chem. Soc. [Epub: Ahead of Print] 28499087
Raybaud, A., Y. Dodier, P. Bissonnette, M. Simoes, D.G. Bichet, R. Sauvé, and L. Parent. (2006). The role of the GX9GX3G motif in the gating of high voltage-activated Ca2+ channels. J. Biol. Chem. 281: 39424-39436. 17038321
Reed, A.P., G. Bucci, F. Abd-Wahab, and S.J. Tucker. (2016). Dominant-Negative Effect of a Missense Variant in the TASK-2 (KCNK5) K+ Channel Associated with Balkan Endemic Nephropathy. PLoS One 11: e0156456. 27228168
Rehak, R., T.M. Bartoletti, J.D. Engbers, G. Berecki, R.W. Turner, and G.W. Zamponi. (2013). Low Voltage Activation of KCa1.1 Current by Cav3-KCa1.1 Complexes. PLoS One 8: e61844. 23626738
Reher, T.A., Z. Wang, C.H. Hsueh, P.C. Chang, Z. Pan, M. Kumar, J. Patel, J. Tan, C. Shen, Z. Chen, M.C. Fishbein, M. Rubart, P. Boyden, and P.S. Chen. (2017). Small-Conductance Calcium-Activated Potassium Current in Normal Rabbit Cardiac Purkinje Cells. J Am Heart Assoc 6:. 28550095
Reimão, J.Q., F.A. Colombo, V.L. Pereira-Chioccola, and A.G. Tempone. (2011). In vitro and experimental therapeutic studies of the calcium channel blocker bepridil: detection of viable Leishmania (L.) chagasi by real-time PCR. Exp Parasitol 128: 111-115. 21354141
Reinson, K., E. Õiglane-Shlik, I. Talvik, U. Vaher, A. Õunapuu, M. Ennok, R. Teek, S. Pajusalu, &.#.2.2.0.;. Murumets, T. Tomberg, S. Puusepp, A. Piirsoo, T. Reimand, and K. Õunap. (2016). Biallelic CACNA1A mutations cause early onset epileptic encephalopathy with progressive cerebral, cerebellar, and optic nerve atrophy. Am J Med Genet A. [Epub: Ahead of Print] 27250579
Rems, L., M.A. Kasimova, I. Testa, and L. Delemotte. (2020). Pulsed Electric Fields Can Create Pores in the Voltage Sensors of Voltage-Gated Ion Channels. Biophys. J. [Epub: Ahead of Print] 32559411
Ren, D., B. Navarro, H. Xu, L. Yue, Q. Shi, and D.E. Clapham. (2001). A prokaryotic voltage-gated sodium channel. Science 294: 2372-2375. 11743207
Renart, M.L., F.N. Barrera, M.L. Molina, J.A. Encinar, J.A. Poveda, A.M. Fernandez, J. Gomez, and J.M. Gonzalez-Ros. (2006). Effects of conducting and blocking ions on the structure and stability of the potassium channel KcsA. J. Biol . Chem. 281: 29905-29915. 16815844
Rickert, V., D. Kramer, A.L. Schubert, C. Sommer, E. Wischmeyer, and N. Üçeyler. (2019). Globotriaosylceramide-induced reduction of K1.1 channel activity and activation of the Notch1 signaling pathway in skin fibroblasts of male Fabry patients with pain. Exp Neurol 324: 113134. [Epub: Ahead of Print] 31778662
Rivera-Torres, I.O., T.B. Jin, M. Cadene, B.T. Chait, and S.F. Poget. (2016). Discovery and characterisation of a novel toxin from Dendroaspis angusticeps, named Tx7335, that activates the potassium channel KcsA. Sci Rep 6: 23904. 27044983
Rizzi, S., C. Schwarzer, L. Kremser, H.H. Lindner, and H.G. Knaus. (2015). Identification of potential novel interaction partners of the sodium-activated potassium channels Slick and Slack in mouse brain. Biochem Biophys Rep 4: 291-298. 29124216
Robertson, G.A. and J.H. Morais-Cabral. (2019). hERG Function in Light of Structure. Biophys. J. [Epub: Ahead of Print] 31669064
Rocheleau, J.M., and W.R. Kobertz. (2007). KCNE Peptides Differently Affect Voltage Sensor Equilibrium and Equilibration Rates in KCNQ1 K+ Channels. J. Gen. Physiol. 131: 59-68. 18079560
Rödström, K.E.J., A.K. Kiper, W. Zhang, S. Rinné, A.C.W. Pike, M. Goldstein, L.J. Conrad, M. Delbeck, M.G. Hahn, H. Meier, M. Platzk, A. Quigley, D. Speedman, L. Shrestha, S.M.M. Mukhopadhyay, N.A. Burgess-Brown, S.J. Tucker, T. Müller, N. Decher, and E.P. Carpenter. (2020). A lower X-gate in TASK channels traps inhibitors within the vestibule. Nature. [Epub: Ahead of Print] 32499642
Roller, A., G. Natura, H. Bihler, C.L. Slayman, and A. Bertl. (2008). Functional consequences of leucine and tyrosine mutations in the dual pore motifs of the yeast K+ channel, Tok1p. Pflugers Arch 456: 883-896. 18421473
Romanenko, V., T. Nakamoto, A. Srivastava, J.E. Melvin, and T. Begenisich. (2006). Molecular identification and physiological roles of parotid acinar cell maxi-K channels. J. Biol. Chem. 281: 27964-27972. 16873365
Roosild, T.P., J. Greenwald, M. Vega, S. Castronovo, R. Riek, and S. Choe. (2005). NMR structure of Mistic, a membrane-integrating protein for membrane protein expression. Science 307: 1317-1321. 15731457
Rosendo-Pineda, M.J., C.M. Moreno, and L. Vaca. (2020). Role of ion channels during cell division. Cell Calcium 91: 102258. [Epub: Ahead of Print] 32736154
Roux, B. and R. MacKinnon. (1999). The cavity and pore helices in the KcsA K+ channel: electrostatic stabilization of monovalent cations. Science 285: 100-102. 10390357
Rowe, A.H., Y. Xiao, M.P. Rowe, T.R. Cummins, and H.H. Zakon. (2013). Voltage-gated sodium channel in grasshopper mice defends against bark scorpion toxin. Science 342: 441-446. 24159039
Rusconi, R., P. Scalmani, R.R. Cassulini, G. Giunti, A. Gambardella, S. Franceschetti, G. Annesi, E. Wanke, and M. Mantegazza. (2007). Modulatory Proteins Can Rescue a Trafficking Defective Epileptogenic Nav1.1 Na+ Channel Mutant. J. Neurosci. 27(41):11037-11036.
Ruta, V., J. Chen, and R. MacKinnon. (2005). Calibrated measurement of gating-charge arginine displacement in the KvAP voltage-dependent K+ channel. Cell 123: 463-475. 16269337
Ruta, V., Y. Jiang, A. Lee, J. Chan, and R. MacKinnon. (2003). Functional analysis of an archaebacterial voltage-dependent K+ channel. Nature 422: 180-185. 12629550
Saavedra-Rodriguez, K., L. Urdaneta-Marquez, S. Rajatileka, M. Moulton, A.E. Flores, I. Fernandez-Salas, J. Bisset, M. Rodriguez, P.J. McCall, M.J. Donnelly, H. Ranson, J. Hemingway, and W.C. Black, 4th. (2007). A mutation in the voltage-gated sodium channel gene associated with pyrethroid resistance in Latin American Aedes aegypti. Insect Mol Biol 16: 785-798. 18093007
Sahoo, N., R. Schönherr, T. Hoshi, and S.H. Heinemann. (2012). Cysteines control the N- and C-linker-dependent gating of KCNH1 potassium channels. Biochim. Biophys. Acta. 1818: 1187-1195. 22310694
Sait, L.G., A. Sula, M.R. Ghovanloo, D. Hollingworth, P.C. Ruben, and B.A. Wallace. (2020). Cannabidiol interactions with voltage-gated sodium channels. Elife 9:. 33089780
Saito, S., N. Hoshi, L. Zulkifli, S. Widyastuti, S. Goshima, I. Dreyer, and N. Uozumi. (2017). Identification of regions responsible for the function of the plant K+ channels KAT1 and AKT2 in Saccharomyces cerevisiae and Xenopus laevis oocytes. Channels (Austin) 1-7. [Epub: Ahead of Print] 28933647
Sajman, J., M. Trus, D. Atlas, and E. Sherman. (2017). The L-type Voltage-Gated Calcium Channel co-localizes with Syntaxin 1A in nano-clusters at the plasma membrane. Sci Rep 7: 11350. 28900128
Sakurai, Y., A.A. Kolokoltsov, C.C. Chen, M.W. Tidwell, W.E. Bauta, N. Klugbauer, C. Grimm, C. Wahl-Schott, M. Biel, and R.A. Davey. (2015). Ebola virus. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment. Science 347: 995-998. 25722412
Salkoff, L. and T. Jegla. (1995). Surfing the DNA databases for K+ channels nets yet more diversity. Neuron 15: 489-492. 7546728
Sanchez-Sandoval, A.L., Z. Herrera Carrillo, C.E. Díaz Velásquez, D.M. Delgadillo, H.M. Rivera, and J.C. Gomora. (2018). Contribution of S4 segments and S4-S5 linkers to the low-voltage activation properties of T-type CaV3.3 channels. PLoS One 13: e0193490. 29474447
Sánchez-Solano, A., A.A. Islas, T. Scior, B. Paiz-Candia, L. Millan-PerezPeña, and E.M. Salinas-Stefanon. (2016). Characterization of specific allosteric effects of the Na+ channel β1 subunit on the Nav1.4 isoform. Eur Biophys. J. [Epub: Ahead of Print] 28012039
Sansom, M.S. (1998). Ion channels: a first view of K+ channels in atomic glory. Curr. Biol. 8: R450-452. 9651671
Santi, C.M., A. Yuan, G. Fawcett, Z.W. Wang, A. Butler, M.L. Nonet, A. Wei, P. Rojas, and L. Salkoff. (2003). Dissection of K+ currents in Caenorhabditis elegans muscle cells by genetics and RNA interference. Proc. Natl. Acad. Sci. USA 100: 14391-14396. 14612577
Santos, J.S., S.M. Grigoriev, and M. Montal. (2008). Molecular template for a voltage sensor in a novel K+ channel. III. Functional reconstitution of a sensorless pore module from a prokaryotic Kv channel. J Gen Physiol 132: 651-666. 19029373
Savalli N., Pantazis A., Yusifov T., Sigg D. and Olcese R. (2012). The contribution of RCK domains to human BK channel allosteric activation. J Biol Chem. 287(26):21741-50. 22556415
Scherer, S., M. Arheit, J. Kowal, X. Zeng, and H. Stahlberg. (2014). Single particle 3D reconstruction for 2D crystal images of membrane proteins. J Struct Biol 185: 267-277. 24382495
Schiffer, C., S. Rieger, C. Brenker, S. Young, H. Hamzeh, D. Wachten, F. Tüttelmann, A. Röpke, U.B. Kaupp, T. Wang, A. Wagner, C. Krallmann, S. Kliesch, C. Fallnich, and T. Strünker. (2020). Rotational motion and rheotaxis of human sperm do not require functional CatSper channels and transmembrane Ca signaling. EMBO. J. 39: e102363. 31957048
Schmidt, D., Q.X. Jiang, and R. MacKinnon. (2006). Phospholipids and the origin of cationic gating charges in voltage sensors. Nature 444: 775-779. 17136096
Schmidt, R.S., J.P. Macêdo, M.E. Steinmann, A.G. Salgado, P. Bütikofer, E. Sigel, D. Rentsch, and P. Mäser. (2018). Transporters of Trypanosoma brucei-phylogeny, physiology, pharmacology. FEBS J. 285: 1012-1023. 29063677
Schroeder, J.I. (2003). Knockout of the guard cell K+ out channel and stomatal movements. Proc. Natl. Acad. Sci. USA 100: 4976-4977. 12704226
Schünke, S., M. Stoldt, J. Lecher, U.B. Kaupp, and D. Willbold. (2011). Structural insights into conformational changes of a cyclic nucleotide-binding domain in solution from Mesorhizobium loti K1 channel. Proc. Natl. Acad. Sci. USA 108: 6121-6126. 21430265
Schwarzer, S., L. Kolacna, H. Lichtenberg-Fraté, H. Sychrova, and J. Ludwig. (2008). Functional expression of the voltage-gated neuronal mammalian potassium channel rat ether à go-go1 in yeast. FEMS Yeast Res 8(3): 405-413. 18248412
Schwenk, J., G. Zolles, N.G. Kandias, I. Neubauer, H. Kalbacher, M. Covarrubias, B. Fakler, and D. Bentrop. (2008). NMR analysis of KChIP4a reveals structural basis for control of surface expression of Kv4 channel complexes. J. Biol. Chem. 283: 18937-18946. 18458082
Scicchitano, P., S. Carbonara, G. Ricci, C. Mandurino, M. Locorotondo, G. Bulzis, M. Gesualdo, A. Zito, R. Carbonara, I. Dentamaro, G. Riccioni, and M.M. Ciccone. (2012). HCN Channels and Heart Rate. Molecules 17: 4225-4235. 22481543
Seebohm, G., P. Westenskow, F. Lang, and M.C. Sanguinetti. (2005). Mutation of colocalized residues of the pore helix and transmembrane segments S5 and S6 disrupt deactivation and modify inactivation of KCNQ1 K+ channels. J. Physiol. 563: 359-368. 15649981
Seeger, H.M., L. Aldrovandi, A. Alessandrini, and P. Facci. (2010). Changes in single K+ channel behavior induced by a lipid phase transition. Biophys. J. 99: 3675-3683. 21112292
Seikel, E. and J.S. Trimmer. (2009). Convergent modulation of Kv4.2 channel alpha subunits by structurally distinct DPPX and KChIP auxiliary subunits. Biochemistry 48: 5721-5730. 19441798
Selvakumar, D., M.J. Drescher, J.R. Dowdall, K.M. Khan, J.S. Hatfield, N.A. Ramakrishnan, and D.G. Drescher. (2012). CNGA3 is expressed in inner ear hair cells and binds to an intracellular C-terminus domain of EMILIN1. Biochem. J. 443: 463-476. 22248097
Senatore A. and Spafford JD. (2013). A uniquely adaptable pore is consistent with NALCN being an ion sensor. Channels (Austin). 7(2):60-8. 23442378
Shakkottai, V.G., I. Regaya, H. Wulff, Z. Fajloun, H. Tomita, M. Fathallah, M.D. Cahalan, J.J. Gargus, J.-M. Sabatier, and K.G. Chandy. (2001). Design and characterization of a highly selective peptide inhibitor of the small conductance calcium-activated K+ channel, SkCa2. J. Biol. Chem. 276: 43145-43151. 11527975
Sharmin, N. and W.J. Gallin. (2016). Intramolecular interactions that control voltage sensitivity in the jShak1 potassium channel from Polyorchis penicillatus. J Exp Biol. [Epub: Ahead of Print] 27872215
Shaya, D., M. Kreir, R.A. Robbins, S. Wong, J. Hammon, A. Brüggemann, and D.L. Minor, Jr. (2011). Voltage-gated sodium channel (NaV) protein dissection creates a set of functional pore-only proteins. Proc. Natl. Acad. Sci. USA 108: 12313-12318. 21746903
She, J., J. Guo, Q. Chen, W. Zeng, Y. Jiang, and X.C. Bai. (2018). Structural insights into the voltage and phospholipid activation of the mammalian TPC1 channel. Nature. [Epub: Ahead of Print] 29562233
Sheikh, A.S. and K. Ranjan. (2014). Brugada syndrome: a review of the literature. Clin Med 14: 482-489. 25301907
Shen, H., Q. Zhou, X. Pan, Z. Li, J. Wu, and N. Yan. (2017). Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution. Science 355:. 28183995
Shen, H., Z. Li, Y. Jiang, X. Pan, J. Wu, B. Cristofori-Armstrong, J.J. Smith, Y.K.Y. Chin, J. Lei, Q. Zhou, G.F. King, and N. Yan. (2018). Structural basis for the modulation of voltage-gated sodium channels by animal toxins. Science 362:. 30049784
Shepard A.R., Rae J.L.. (1999). Electrically silent potassium channel subunits from human lens epithelium. Am. J. Physiol. 277: C412-424 10484328
Shi W., R.S. Wymore, H.S. Wang, Z. Pan, I.S. Cohen, D. McKinnon, J.E. Dixon. (1997). Identification of two nervous system-specific members of the erg potassium channel gene family. J. Neurosci. 17: 9423-9432 9390998
Shi, J., G. Krishnamoorthy, Y. Yang, L. Hu, N. Chaturvedi, D. Harilal, J. Qin, and J. Cui. (2002). Mechanism of magnesium activation of calcium-activated potassium channels. Nature 418: 876-880. 12192410
Shi, N., S. Ye, A. Alam, L. Chen, and Y. Jiang. (2006). Atomic structure of a Na+- and K+-conducting channel. Nature 440: 570-574. 16467789
Shimizu, H., M. Iwamoto, T. Konno, A. Nihei, Y.C. Sasaki, and S. Oiki. (2008). Global twisting motion of single molecular KcsA potassium channel upon gating. Cell 132: 67-78. 18191221
Shimomura, T., K. Irie, H. Nagura, T. Imai, and Y. Fujiyoshi. (2011). Arrangement and mobility of the voltage sensor domain in prokaryotic voltage-gated sodium channels. J. Biol. Chem. 286: 7409-7417. 21177850
Shishmarev, D. (2020). Excitation-contraction coupling in skeletal muscle: recent progress and unanswered questions. Biophys Rev. [Epub: Ahead of Print] 31950344
Sigworth, F.J. (1993). Voltage gating of ion channels. Quart. Rev. Biophys. 27: 1-40. 7520590
Silverman, W.R., and L. Heginbotham. (2007). The MlotiK1 channel transports ions along the canonical conduction pore. FEBS Lett. 581: 5024-5028. 17935718
Silverman, W.R., J.P. Bannister, and D.M. Papazian. (2004). Binding site in eag voltage sensor accommodates a variety of ions and is accessible in closed channel. Biophys. J. 87: 3110-3121. 15347589
Singh, A., M. Gebhart, R. Fritsch, M.J. Sinnegger-Brauns, C. Poggiani, J.C. Hoda, J. Engel, C. Romanin, J. Striessnig, and A. Koschak. (2008). Modulation of voltage- and Ca2+-dependent gating of CaV1.3 L-type calcium channels by alternative splicing of a C-terminal regulatory domain. J. Biol. Chem. 283: 20733-20744. 18482979
Siotto, F., C. Martin, O. Rauh, J.L. Van Etten, I. Schroeder, A. Moroni, and G. Thiel. (2014). Viruses infecting marine picoplancton encode functional potassium ion channels. Virology 466-467: 103-111. 25441713
Skerritt, M.R. and D.L. Campbell. (2007). Role of S4 positively charged residues in the regulation of Kv4.3 inactivation and recovery. Am. J. Physiol. Cell Physiol. 293: C906-914. 17581856
Sklodowski, K., J. Riedelsberger, N. Raddatz, G. Riadi, J. Caballero, I. Chérel, W. Schulze, A. Graf, and I. Dreyer. (2017). The receptor-like pseudokinase MRH1 interacts with the voltage-gated potassium channel AKT2. Sci Rep 7: 44611. 28300158
Smith, J.J., T.R. Cummins, S. Alphy, and K.M. Blumenthal. (2007). Molecular interactions of the gating modifier toxin ProTx-II with NaV 1.5: implied existence of a novel toxin binding site coupled to activation. J. Biol. Chem. 282: 12687-12697. 17339321
Soh, H. and S.A. Goldstein. (2008). I SA channel complexes include four subunits each of DPP6 and Kv4.2. J. Biol. Chem. 283: 15072-15077. 18364354
Sojo, L.E., R. Kwan, C. Dang, M. Tung, and J. Li. (2019). On the Feasibility of Quantifying Sodium Channel Na 1.6 Protein in Mouse Brain using targeted UHPLC-ESI- MRM Mass Spectrometry. Rapid Commun Mass Spectrom. [Epub: Ahead of Print] 30724401
Sokolov, S., T. Scheuer, and W.A. Catterall. (2007). Gating pore current in an inherited ion channelopathy. Nature 446: 76-78. 17330043
Sokolov, S., T. Scheuer, and W.A. Catterall. (2010). Ion permeation and block of the gating pore in the voltage sensor of NaV1.4 channels with hypokalemic periodic paralysis mutations. J Gen Physiol 136: 225-236. 20660662
Soldovieri, M.V., Castaldo, P., Iodice, L., Miceli, F., Barrese, V., Bellini, G., Miraglia del Giudice, E., Pascotto, A., Bonatti, S., Annunziato, L., and Taglialatela M. (2006). Decreased subunit stability as a novel mechanism for potassium current impairment by a KCNQ2 C terminus mutation causing benign familial neonatal convulsions. J. Biol. Chem. 281: 418-428. 16260777
Soldovieri, M.V., P. Ambrosino, I. Mosca, F. Miceli, C. Franco, L.M.T. Canzoniero, B. Kline-Fath, E.C. Cooper, C. Venkatesan, and M. Taglialatela. (2019). Epileptic Encephalopathy In A Patient With A Novel Variant In The Kv7.2 S2 Transmembrane Segment: Clinical, Genetic, and Functional Features. Int J Mol Sci 20:. 31295832
Song, L., Z.F. Zhang, L.K. Hu, P.H. Zhang, Z.Z. Cao, Z.P. Liu, P.P. Zhang, and J.H. Ma. (2020). Curcumin, a Multi-Ion Channel Blocker That Preferentially Blocks Late Na Current and Prevents I/R-Induced Arrhythmias. Front Physiol 11: 978. 32973546
Sonkusare, S.K., A.D. Bonev, J. Ledoux, W. Liedtke, M.I. Kotlikoff, T.J. Heppner, D.C. Hill-Eubanks, and M.T. Nelson. (2012). Elementary Ca2+ signals through endothelial TRPV4 channels regulate vascular function. Science 336: 597-601. 22556255
Sottocornola, B., S. Visconti, S. Orsi, S. Gazzarrini, S. Giacometti, C. Olivari, L. Camoni, P. Aducci, M. Marra, A. Abenavoli, G. Thiel, and A. Moroni. (2006). The potassium channel KAT1 is activated by plant and animal 14-3-3 proteins. J. Biol. Chem. 281: 35735-35741. 16990282
Splawski, I., Yoo, D.S., Stotz, S.C., Cherry, A., Clapham, D.E., and Keating, M.T. (2006). CACNA1H mutations in autism spectrum disorders. J. Biol. Chem. 281: 22085-22091. 16754686
Spork, S., J.A. Hiss, K. Mandel, M. Sommer, T.W. Kooij, T. Chu, G. Schneider, U.G. Maier, and J.M. Przyborski. (2009). An unusual ERAD-like complex is targeted to the apicoplast of Plasmodium falciparum. Eukaryot. Cell. 8: 1134-1145. 19502583
Stingl, K., S. Brandt, E.M. Uhlemann, R. Schmid, K. Altendorf, C. Zeilinger, C. Ecobichon, A. Labigne, E.P. Bakker, and H. de Reuse. (2007). Channel-mediated potassium uptake in Helicobacter pylori is essential for gastric colonization. EMBO. J. 26: 232-241. 17159901
Struyk, A.F. and S.C. Cannon. (2007). A Na+ channel mutation linked to hypokalemic periodic paralysis exposes a proton-selective gating pore. J Gen Physiol 130: 11-20. 17591984
Su, K., H. Kyaw, P. Fan, Z. Zeng, B.K. Shell, K.C. Carter, and Y. Li. (1997). Isolation, characterization, and mapping of two human potassium channels. Biochem. Biophys. Res. Commun. 241: 675-681. 9434767
Suh, B.C., K. Leal, and B. Hille. (2010). Modulation of high-voltage activated Ca2+ channels by membrane phosphatidylinositol 4,5-bisphosphate. Neuron. 67: 224-238. 20670831
Sun, A.X., Q. Yuan, M. Fukuda, W. Yu, H. Yan, G.G.Y. Lim, M.H. Nai, G.A. D''Agostino, H.D. Tran, Y. Itahana, D. Wang, H. Lokman, K. Itahana, S.W.L. Lim, J. Tang, Y.Y. Chang, M. Zhang, S.A. Cook, O.J.L. Rackham, C.T. Lim, E.K. Tan, H.H. Ng, K.L. Lim, Y.H. Jiang, and H.S. Je. (2019). Potassium channel dysfunction in human neuronal models of Angelman syndrome. Science 366: 1486-1492. 31857479
Suzuki, T. and K. Takimoto. (2004). Selective expression of HERG and Kv2 channels influences proliferation of uterine cancer cells. Int J Oncol 25: 153-159. 15202000
Suzuki, T., A. Hansen, and M.C. Sanguinetti. (2016). Hydrophobic interactions between the S5 segment and the pore helix stabilizes the closed state of Slo2.1 potassium channels. Biochim. Biophys. Acta. 1858: 783-792. 26724206
Swayne, L.A., A. Mezghrani, P. Lory, J. Nargeot, and A. Monteil. (2010). The NALCN ion channel is a new actor in pancreatic β-cell physiology. Islets 2: 54-56. 21099296
Sweet, T.B. and D.H. Cox. (2008). Measurements of the BKCa channel's high-affinity Ca2+ binding constants: effects of membrane voltage. J Gen Physiol 132: 491-505. 18955592
Szabó, G., V. Farkas, M. Grunnet, A. Mohácsi, and P.P. Nánási. (2011). Enhanced repolarization capacity: new potential antiarrhythmic strategy based on HERG channel activation. Curr. Med. Chem. 18: 3607-3621. 21774764
Szabò, I., J. Bock, A. Jekle, M. Soddemann, C. Adams, F. Lang, M. Zoratti, and E. Gulbins. (2005). A novel potassium channel in lymphocyte mitochondria. J. Biol. Chem. 280: 12790-12798. 15632141
Tada, Y., K. Kume, Y. Matsuda, T. Kurashige, Y. Kanaya, R. Ohsawa, H. Morino, H. Tabu, S. Kaneko, T. Suenaga, A. Kakizuka, and H. Kawakami. (2020). Genetic screening for potassium channel mutations in Japanese autosomal dominant spinocerebellar ataxia. J Hum Genet. [Epub: Ahead of Print] 31907387
Takahashi, S., K. Inamura, J. Yarimizu, M. Yamazaki, N. Murai, and K. Ni. (2017). Neurochemical and neuropharmacological characterization of ASP2905, a novel potent selective inhibitor of the potassium channel KCNH3. Eur J Pharmacol 810: 26-35. 28552344
Tang, C., X. Zhou, P.T. Nguyen, Y. Zhang, Z. Hu, C. Zhang, V. Yarov-Yarovoy, P.G. DeCaen, S. Liang, and Z. Liu. (2017). A novel tarantula toxin stabilizes the deactivated voltage sensor of bacterial sodium channel. FASEB J. 31: 3167-3178. 28400471
Tang, X.D., R. Xu, M.F. Reynolds, M.L. Garcia, S.H. Heinemann, and T. Hoshi. (2003). Haem can bind to and inhibit mammalian calcium-dependent Slo1 BK channels. Nature 425: 531-535. 14523450
Tao, X. and R. MacKinnon. (2019). Molecular structures of the human Slo1 K channel in complex with β4. Elife 8:. 31815672
Tao, X., A. Lee, W. Limapichat, D.A. Dougherty, and R. MacKinnon. (2010). A gating charge transfer center in voltage sensors. Science 328: 67-73. 20360102
Tariq, K., A. Ali, T.G.E. Davies, E. Naz, L. Naz, S. Sohail, M. Hou, and F. Ullah. (2019). RNA interference-mediated knockdown of voltage-gated sodium channel (MpNa) gene causes mortality in peach-potato aphid, Myzus persicae. Sci Rep 9: 5291. 30923355
Tavassoli, T., A. Kolevzon, A.T. Wang, J. Curchack-Lichtin, D. Halpern, L. Schwartz, S. Soffes, L. Bush, D. Grodberg, G. Cai, and J.D. Buxbaum. (2014). De novo SCN2A splice site mutation in a boy with Autism spectrum disorder. BMC Med Genet 15: 35. 24650168
Taylor, K.C. and C.R. Sanders. (2016). Regulation of KCNQ/Kv7 family voltage-gated K+ channels by lipids. Biochim. Biophys. Acta. [Epub: Ahead of Print] 27818172
Telezhkin V., Thomas AM., Harmer SC., Tinker A. and Brown DA. (2013). A basic residue in the proximal C-terminus is necessary for efficient activation of the M-channel subunit Kv7.2 by PI(4,5)P(2). Pflugers Arch. 465(7):945-53. 23291709
Tempone, A.G., N.N. Taniwaki, and J.Q. Reimão. (2009). Antileishmanial activity and ultrastructural alterations of Leishmania (L.) chagasi treated with the calcium channel blocker nimodipine. Parasitol Res 105: 499-505. 19352709
Terlau, H. and W. Stühmer. (1998). Structure and function of voltage-gated ion channels. Naturwissenschaften 85: 437-444. 9802045
Thiel G., Baumeister D., Schroeder I., Kast SM., Van Etten JL. and Moroni A. (2011). Minimal art: or why small viral K(+) channels are good tools for understanding basic structure and function relations. Biochim Biophys Acta. 1808(2):580-8. 20417613
Thomas, D., L.D. Plant, C.M. Wilkens, Z.A. McCrossan, and S.A. Goldstein. (2008). Alternative translation initiation in rat brain yields K2P2.1 potassium channels permeable to sodium. Neuron. 58: 859-870. 18579077
Thomson, A.S. and B.S. Rothberg. (2010). Voltage-dependent inactivation gating at the selectivity filter of the MthK K+ channel. J Gen Physiol 136: 569-579. 20937694
Tian, F., Y. Qiu, X. Lan, M. Li, H. Yang, and Z. Gao. (2019). A Small-Molecule Compound Selectively Activates K2P Channel TASK-3 by Acting at Two Distant Clusters of Residues. Mol Pharmacol 96: 26-35. 31015283
Tian, L., H. McClafferty, L. Chen, and M.J. Shipston. (2008). Reversible tyrosine protein phosphorylation regulates large conductance voltage- and calcium-activated potassium channels via cortactin. J. Biol. Chem. 283: 3067-3076. 18039661
Tian, L., O. Jeffries, H. McClafferty, A. Molyvdas, I.C. Rowe, F. Saleem, L. Chen, J. Greaves, L.H. Chamberlain, H.G. Knaus, P. Ruth, and M.J. Shipston. (2008). Palmitoylation gates phosphorylation-dependent regulation of BK potassium channels. Proc. Natl. Acad. Sci. USA 105: 21006-21011. 19098106
Tian, Y., S.H. Heinemann, and T. Hoshi. (2019). Large-conductance Ca- and voltage-gated K channels form and break interactions with membrane lipids during each gating cycle. Proc. Natl. Acad. Sci. USA 116: 8591-8596. 30967508
Tikhonov, D.B. and B.S. Zhorov. (2017). Conservation and Variability of the Pore-Lining Helices in P-Loop Channels. Channels (Austin) 0. [Epub: Ahead of Print] 29095093
Tipparaju, S.M., X.P. Li, P.J. Kilfoil, B. Xue, V.N. Uversky, A. Bhatnagar, and O.A. Barski. (2012). Interactions between the C-terminus of Kv1.5 and Kvβ regulate pyridine nucleotide-dependent changes in channel gating. Pflugers Arch 463: 799-818. 22426702
Tippens, A.L. and A. Lee. (2007). Caldendrin, a neuron-specific modulator of Cav1.2 (L-type) Ca2+ channels. J. Biol. Chem. 282: 8464-8473. 17224447
Tombola, F., M.M. Pathak, and E.Y. Isacoff. (2005). Voltage-sensing arginines in a potassium channel permeate and occlude cation-selective pores. Neuron. 45: 379-388. 15694325
Tombola, F., M.M. Pathak, P. Gorostiza, and E.Y. Isacoff. (2007). The twisted ion-permeation pathway of a resting voltage-sensing domain. Nature 445: 546-549. 17187057
Tomczak, A.P., J. Fernández-Trillo, S. Bharill, F. Papp, G. Panyi, W. Stühmer, E.Y. Isacoff, and L.A. Pardo. (2017). A new mechanism of voltage-dependent gating exposed by KV10.1 channels interrupted between voltage sensor and pore. J Gen Physiol. [Epub: Ahead of Print] 28360219
Toro L., Li M., Zhang Z., Singh H., Wu Y. and Stefani E. (2014). MaxiK channel and cell signalling. Pflugers Arch. 466(5):875-86. 24077696
Triano, I., F.N. Barrera, M.L. Renart, M.L. Molina, G. Fernández-Ballester, J.A. Poveda, A.M. Fernández, J.A. Encinar, A.V. Ferrer-Montiel, D. Otzen, and J.M. González-Ros. (2010). Occupancy of nonannular lipid binding sites on KcsA greatly increases the stability of the tetrameric protein. Biochemistry 49: 5397-5404. 20481584
Tronin, A.Y., L.J. Maciunas, K.C. Grasty, P.J. Loll, H.A. Ambaye, A.A. Parizzi, V. Lauter, A.D. Geragotelis, J.A. Freites, D.J. Tobias, and J.K. Blasie. (2019). Voltage-Dependent Profile Structures of a Kv-Channel via Time-Resolved Neutron Interferometry. Biophys. J. [Epub: Ahead of Print] 31378315
Tsai, C.J., K. Tani, K. Irie, Y. Hiroaki, T. Shimomura, D.G. McMillan, G.M. Cook, G.F. Schertler, Y. Fujiyoshi, and X.D. Li. (2013). Two alternative conformations of a voltage-gated sodium channel. J. Mol. Biol. 425: 4074-4088. 23831224
Tu, L. and C. Deutsch. (2017). Determinants of Helix Formation for a Kv1.3 Transmembrane Segment inside the Ribosome Exit Tunnel. J. Mol. Biol. [Epub: Ahead of Print] 28478285
Tuluc, P., B. Benedetti, P. Coste de Bagneaux, M. Grabner, and B.E. Flucher. (2016). Two distinct voltage-sensing domains control voltage sensitivity and kinetics of current activation in CaV1.1 calcium channels. J Gen Physiol 147: 437-449. 27185857
Turner, R.W., H. Asmara, J.D. Engbers, J. Miclat, A.P. Rizwan, G. Sahu, and G.W. Zamponi. (2016). Assessing the role of IKCa channels in generating the sAHP of CA1 hippocampal pyramidal cells. Channels (Austin) 0. [Epub: Ahead of Print] 26950800
Twiner, M.J., G.J. Doucette, A. Rasky, X.P. Huang, B.L. Roth, and M.C. Sanguinetti. (2012). Marine algal toxin azaspiracid is an open-state blocker of HERG potassium channels. Chem Res Toxicol 25: 1975-1984. 22856456
Uehara, A., Y. Nakamura, T. Shioya, S. Hirose, M. Yasukochi, and K. Uehara. (2008). Altered KCNQ3 Potassium Channel Function Caused by the W309R Pore-Helix Mutation Found in Human Epilepsy. J. Membr Biol. 222: 55-63. 18425618
Ulmschneider, M.B., C. Bagnéris, E.C. McCusker, P.G. Decaen, M. Delling, D.E. Clapham, J.P. Ulmschneider, and B.A. Wallace. (2013). Molecular dynamics of ion transport through the open conformation of a bacterial voltage-gated sodium channel. Proc. Natl. Acad. Sci. USA 110: 6364-6369. 23542377
Ungar, D., A. Barth, W. Haase, A. Kaunzinger, E. Lewitzki, T. Ruiz, H. Reiländer, and H. Michel. (2001). Analysis of a putative voltage-gated prokaryotic potassium channel. Eur. J. Biochem. 268: 5386-5396. 11606201
Verma, R., C. Malik, S. Azmi, S. Srivastava, S. Ghosh, and J.K. Ghosh. (2011). A synthetic S6 segment derived from KvAP channel self-assembles, permeabilizes lipid vesicles, and exhibits ion channel activity in bilayer lipid membrane. J. Biol. Chem. 286: 24828-24841. 21592970
Vicente, R., A. Escalada, N. Villalonga, L. Texido, M. Roura-Ferrer, M. Martin-Satue, C. Lopez-Iglesias, C. Soler, C. Solsona, M.M. Tamkun, and A. Felipe. (2006). Association of Kv1.5 and Kv1.3 contributes to the major voltage-dependent K+ channel in macrophages. J. Biol. Chem. 281: 37675-37685. 17038323
Vicente-Carrillo, A., M. Álvarez-Rodríguez, and H. Rodríguez-Martínez. (2017). The CatSper channel modulates boar sperm motility during capacitation. Reprod Biol. [Epub: Ahead of Print] 28077244
Vinekar, R.S. and R. Sowdhamini. (2016). Three-dimensional modelling of the voltage-gated sodium ion channel from Anopheles gambiae reveals spatial clustering of evolutionarily conserved acidic residues at the extracellular sites. Curr Neuropharmacol. [Epub: Ahead of Print] 27919210
Wagnon, J.L., B.S. Barker, M. Ottolini, Y. Park, A. Volkheimer, P. Valdez, M.E.M. Swinkels, M.K. Patel, and M.H. Meisler. (2017). Loss-of-function variants of in intellectual disability without seizures. Neurol Genet 3: e170. 28702509
Wang, A.W., R. Yang, and H.T. Kurata. (2016). Sequence determinants of subtype-specific actions of KCNQ channel openers. J. Physiol. [Epub: Ahead of Print] 27506413
Wang, C., Y.F. Chen, X.Q. Quan, H. Wang, R. Zhang, J.H. Xiao, J.L. Wang, C.T. Zhang, J.Z. Xiang, and Q. Tang. (2015). Effects of neferine on Kv4.3 channels expressed in HEK293 cells and ex vivo electrophysiology of rabbit hearts. Acta Pharmacol Sin 36: 1451-1461. 26592512
Wang, G. and M. Covarrubias. (2006). Voltage-dependent gating rearrangements in the intracellular T1-T1 interface of a K+ channel. J Gen Physiol 127: 391-400. 16533897
Wang, G.K., C. Russell, and S.Y. Wang. (2004). State-dependent block of voltage-gated Na+ channels by amitriptyline via the local anesthetic receptor and its implication for neuropathic pain. Pain 110: 166-174. 15275764
Wang, H., Y. Yan, Q. Liu, Y. Huang, Y. Shen, L. Chen, Y. Chen, Q. Yang, Q. Hao, K. Wang, and J. Chai. (2007). Structural basis for modulation of Kv4 K+ channels by auxiliary KChIP subunits. Nat Neurosci 10: 32-39. 17187064
Wang, L., X. Meng, Z. Yuchi, Z. Zhao, D. Xu, D. Fedida, Z. Wang, and C. Huang. (2015). De Novo Mutation in the SCN5A Gene Associated with Brugada Syndrome. Cell Physiol Biochem 36: 2250-2262. 26279430
Wang, T., S. Young, H. Krenz, F. Tüttelmann, A. Röpke, C. Krallmann, S. Kliesch, X.H. Zeng, C. Brenker, and T. Strünker. (2020). The Ca2+ channel CatSper is not activated by cAMP/PKA signaling but directly affected by chemicals used to probe the action of cAMP and PKA. J. Biol. Chem. [Epub: Ahead of Print] 32703901
Wang, X., X. Zhang, X.P. Dong, M. Samie, X. Li, X. Cheng, A. Goschka, D. Shen, Y. Zhou, J. Harlow, M.X. Zhu, D.E. Clapham, D. Ren, and H. Xu. (2012). TPC Proteins Are Phosphoinositide- Activated Sodium-Selective Ion Channels in Endosomes and Lysosomes. Cell 151: 372-383. 23063126
Wang, Y. and F. Sesti. (2007). Molecular mechanisms underlying KVS-1-MPS-1 complex assembly. Biophys. J. 93: 3083-3091. 17604313
Wang, Y., S. Tang, K.E. Harvey, A.E. Salyer, T.A. Li, E.K. Rantz, M.A. Lill, and G.H. Hockerman. (2018). Molecular determinants of the differential modulation of Cav1.2 and Cav1.3 by nifedipine and FPL 64176. Mol Pharmacol. [Epub: Ahead of Print] 29980657
Wang, Z.J., I. Blanco, S. Hayoz, and T.I. Brelidze. (2020). The HCN domain is required for HCN channel cell-surface expression and couples voltage- and cAMP-dependent gating mechanisms. J. Biol. Chem. [Epub: Ahead of Print] 32341127
Welch, M.A., L.A. Forster, S.I. Atlas, and D.J. Baro. (2019). SUMOylating Two Distinct Sites on the A-type Potassium Channel, Kv4.2, Increases Surface Expression and Decreases Current Amplitude. Front Mol Neurosci 12: 144. 31213982
Wheeler, G.L. and C. Brownlee. (2008). Ca2+ signalling in plants and green algae--changing channels. Trends Plant Sci. 13: 506-514. 18703378
Whicher, J.R. and R. MacKinnon. (2016). Structure of the voltage-gated K⁺ channel Eag1 reveals an alternative voltage sensing mechanism. Science 353: 664-669. 27516594
Whicher, J.R. and R. MacKinnon. (2019). Regulation of Eag1 gating by its intracellular domains. Elife 8:. 31490124
Williams, B.S., J.P. Felix, B.T. Priest, R.M. Brochu, K. Dai, S.B. Hoyt, C. London, Y.S. Tang, J.L. Duffy, W.H. Parsons, G.J. Kaczorowski, and M.L. Garcia. (2007). Characterization of a new class of potent inhibitors of the voltage-gated sodium channel Nav1.7. Biochemistry. 46: 14693-14703. 18027973
Williams, S.E., S.P. Brazier, N. Baban, V. Telezhkin, C.T. Müller, D. Riccardi, and P.J. Kemp. (2008). A structural motif in the C-terminal tail of slo1 confers carbon monoxide sensitivity to human BK(Ca) channels. Pflugers Arch 456(3): 561-572. 18180950
Wisedchaisri, G., L. Tonggu, E. McCord, T.M. Gamal El-Din, L. Wang, N. Zheng, and W.A. Catterall. (2019). Resting-State Structure and Gating Mechanism of a Voltage-Gated Sodium Channel. Cell. [Epub: Ahead of Print] 31353218
Wojtovich, A.P., T.A. Sherman, S.M. Nadtochiy, W.R. Urciuoli, P.S. Brookes, and K. Nehrke. (2011). SLO-2 is cytoprotective and contributes to mitochondrial potassium transport. PLoS One 6: e28287. 22145034
Wojtyniak, M., A.G. Brear, D.M. O'Halloran, and P. Sengupta. (2013). Cell- and subunit-specific mechanisms of CNG channel ciliary trafficking and localization in C. elegans. J Cell Sci 126: 4381-4395. 23886944
Wolters, M., M. Madeja, A.M. Farrell, and O. Pongs. (1999). Bacillus stearothermophilus lctB gene gives rise to functional K+ channels in Escherichia coli and in Xenopus oocytes. Receptors Channels 6: 477-491. 10635064
Woo, D.H., K.S. Han, J.W. Shim, B.E. Yoon, E. Kim, J.Y. Bae, S.J. Oh, E.M. Hwang, A.D. Marmorstein, Y.C. Bae, J.Y. Park, and C.J. Lee. (2012). TREK-1 and Best1 channels mediate fast and slow glutamate release in astrocytes upon GPCR activation. Cell 151: 25-40. 23021213
Wright, P.D., E.L. Veale, D. McCoull, D.C. Tickle, J.M. Large, E. Ococks, G. Gothard, C. Kettleborough, A. Mathie, and J. Jerman. (2017). Terbinafine is a novel and selective activator of the two-pore domain potassium channel TASK3. Biochem. Biophys. Res. Commun. 493: 444-450. 28882594
Wright, P.D., G. Weir, J. Cartland, D. Tickle, C. Kettleborough, M.Z. Cader, and J. Jerman. (2013). Cloxyquin (5-chloroquinolin-8-ol) is an activator of the two-pore domain potassium channel TRESK. Biochem. Biophys. Res. Commun. 441: 463-468. 24383077
Wu, L., S.L. Yong, C. Fan, Y. Ni, S. Yoo, T. Zhang, X. Zhang, C.A. Obejero-Paz, H.J. Rho, T. Ke, P. Szafranski, S.W. Jones, Q. Chen, and Q.K. Wang. (2008). Identification of a new co-factor, MOG1, required for the full function of cardiac sodium channel Nav 1.5. J. Biol. Chem. 283(11): 6968-6978. 18184654
Wu, R.S., G. Liu, S.I. Zakharov, N. Chudasama, H. Motoike, A. Karlin, and S.O. Marx. (2013). Positions of β2 and β3 subunits in the large-conductance calcium- and voltage-activated BK potassium channel. J Gen Physiol 141: 105-117. 23277477
Wu, Y., Y. Yang, S. Ye, and Y. Jiang. (2010). Structure of the gating ring from the human large-conductance Ca2+-gated K+ channel. Nature 466: 393-397. 20574420
Xia, J., N. Yamaji, T. Kasai, and J.F. Ma. (2010). Plasma membrane-localized transporter for aluminum in rice. Proc. Natl. Acad. Sci. USA 107: 18381-18385. 20937890
Xia, X.-M., X. Zeng, and C.J. Lingle. (2002). Multiple regulatory sites in large-conductance calcium-activated potassium channels. Nature 418: 880-884. 12192411
Xia, X.M., X. Zhang, and C.J. Lingle. (2004). Ligand-dependent activation of Slo family channels is defined by interchangeable cytosolic domains. J. Neurosci. 24: 5585-5591. 15201331
Xia, Z., X. Huang, K. Chen, H. Wang, J. Xiao, K. He, R. Huang, X. Duan, H. Liu, J. Zhang, and G. Xiang. (2016). Proapoptotic Role of Potassium Ions in Liver Cells. Biomed Res Int 2016: 1729135. 27069917
Xiao, K., Z. Sun, X. Jin, W. Ma, Y. Song, S. Lai, Q. Chen, M. Fan, J. Zhang, W. Yue, and Z. Huang. (2018). ERG3 potassium channel-mediated suppression of neuronal intrinsic excitability and prevention of seizure generation in mice. J. Physiol. 596: 4729-4752. 30016551
Xicluna, J., B. Lacombe, I. Dreyer, C. Alcon, L. Jeanguenin, H. Sentenac, J.B. Thibaud, and I. Cherel. (2007). Increased functional diversity of plant K+ channels by preferential heteromerization of the shaker-like subunits AKT2 and KAT2. J. Biol. Chem. 282: 486-494. 17085433
Xie, L., S. Dolai, Y. Kang, T. Liang, H. Xie, T. Qin, L. Yang, L. Chen, and H.Y. Gaisano. (2016). Syntaxin-3 Binds and Regulates Both R- and L-Type Calcium Channels in Insulin-Secreting INS-1 832/13 Cells. PLoS One 11: e0147862. 26848587
Xu H., Abuhatzira L., Carmona GN., Vadrevu S., Satin LS. and Notkins AL. (2015). The Ia-2beta intronic miRNA, miR-153, is a negative regulator of insulin and dopamine secretion through its effect on the Cacna1c gene in mice. Diabetologia. 58(10):2298-306. 26141787
Xu Y., Ramu Y., Shin HG., Yamakaze J. and Lu Z. (2013). Energetic role of the paddle motif in voltage gating of Shaker K(+) channels. Nat Struct Mol Biol. 20(5):574-81. 23542156
Xu, D., D. Su, S. Nusinowitz, and D. Sarraf. (2017). CENTRAL ELLIPSOID LOSS ASSOCIATED WITH CONE DYSTROPHY AND KCNV2 MUTATION. Retin Cases Brief Rep. [Epub: Ahead of Print] 29210963
Xu, F., X. Wu, L.H. Jiang, H. Zhao, and J. Pan. (2016). An organelle K+ channel is required for osmoregulation in Chlamydomonas reinhardtii. J Cell Sci. [Epub: Ahead of Print] 27311484
Xu, L., X. Ding, T. Wang, S. Mou, H. Sun, and T. Hou. (2019). Voltage-gated sodium channels: structures, functions, and molecular modeling. Drug Discov Today 24: 1389-1397. 31129313
Xu, T., L. Nie, Y. Zhang, J. Mo, W. Feng, D. Wei, E. Petrov, L.E. Calisto, B. Kachar, K.W. Beisel, A.E. Vazquez, and E.N. Yamoah. (2007). Roles of alternative splicing in the functional properties of inner ear-specific KCNQ4 channels. J. Biol. Chem. 282: 23899-23909. 17561493
Yagi, N., H. Itoh, T. Hisamatsu, Y. Tomita, H. Kimura, Y. Fujii, T. Makiyama, M. Horie, and S. Ohno. (2018). A challenge for mutation specific risk stratification in long QT syndrome type 1. J Cardiol 72: 56-65. 29439887
Yamagata, K., T. Senokuchi, M. Lu, M. Takemoto, M. Fazlul Karim, C. Go, Y. Sato, M. Hatta, T. Yoshizawa, E. Araki, J. Miyazaki, and W.J. Song. (2011). Voltage-gated K+ channel KCNQ1 regulates insulin secretion in MIN6 β-cell line. Biochem. Biophys. Res. Commun. 407: 620-625. 21426901
Yan, Z., Q. Zhou, L. Wang, J. Wu, Y. Zhao, G. Huang, W. Peng, H. Shen, J. Lei, and N. Yan. (2017). Structure of the Nav1.4-β1 Complex from Electric Eel. Cell 170: 470-482.e11. 28735751
Yang, H., L. Hu, J. Shi, K. Delaloye, F.T. Horrigan, and J. Cui. (2007). Mg2+ mediates interaction between the voltage sensor and cytosolic domain to activate BK channels. Proc. Natl. Acad. Sci. U.S.A. 104: 18270-18275. 17984060
Yang, J., G. Krishnamoorthy, A. Saxena, G. Zhang, J. Shi, H. Yang, K. Delaloye, D. Sept, and J. Cui. (2010). An epilepsy/dyskinesia-associated mutation enhances BK channel activation by potentiating Ca2+ sensing. Neuron. 66: 871-883. 20620873
Yang, J.K., J. Lu, S.S. Yuan, Asan, X. Cao, H.Y. Qiu, T.T. Shi, F.Y. Yang, Q. Li, C.P. Liu, Q. Wu, Y.H. Wang, H.X. Huang, A. Kayoumu, J.P. Feng, R.R. Xie, X.R. Zhu, C. Liu, G.R. Yang, M.R. Zhang, C.L. Xie, C. Chen, B. Zhang, G. Liu, X.Q. Zhang, and A. Xu. (2018). From Hyper- to Hypoinsulinemia and Diabetes: Effect of KCNH6 on Insulin Secretion. Cell Rep 25: 3800-3810.e6. 30590050
Yang, L., A. Katchman, J.P. Morrow, D. Doshi, and S.O. Marx. (2011). Cardiac L-type calcium channel (Cav1.2) associates with gamma subunits. FASEB J. 25: 928-936. 21127204
Yazdani, M., G. Zhang, Z. Jia, J. Shi, J. Cui, and J. Chen. (2020). Aromatic interactions with membrane modulate human BK channel activation. Elife 9:. 32597752
Yazdani, M., Z. Jia, and J. Chen. (2020). Hydrophobic dewetting in gating and regulation of transmembrane protein ion channels. J Chem Phys 153: 110901. 32962356
Ye, B. and J.M. Nerbonne. (2009). Proteolytic processing of HCN2 and co-assembly with HCN4 in the generation of cardiac pacemaker channels. J. Biol. Chem. 284: 25553-25559. 19574228
Yellen, G. (2002). The voltage-gated potassium channels and their relatives. Nature 419: 35-42. 12214225
Yellen, G. (1998). The moving parts of voltage-gated ion channels. Quat. Rev. Biophys. 31: 239-295. 10384687
Yu, R., X.F. Fan, C. Chen, and Z.H. Liu. (2017). Whole‑exome sequencing identifies a novel mutation (R367G) in SCN5A to be associated with familial cardiac conduction disease. Mol Med Rep 16: 410-414. 28534967
Yuan, A., C.M. Santi, A. Wei, Z.W. Wang, K. Pollak, M. Nonet, L. Kaczmarek, C.M. Crowder, and L. Salkoff. (2003). The sodium-activated potassium channel is encoded by a member of the Slo gene family. Neuron. 37: 765-773. 12628167
Yuan, A., M. Dourado, A. Butler, N. Walton, A. Wei, and L. Salkoff. (2000). SLO-2, a K+ channel with an unusual Cl- dependence. Nat Neurosci 3: 771-779. 10903569
Yuan, F.F., X. Gu, X. Huang, Y.W. Hou, Y. Zhong, J. Lin, and J. Wu. (2017). Attention-deficit/hyperactivity disorder associated with KChIP1 rs1541665 in Kv channels accessory proteins. PLoS One 12: e0188678. 29176790
Yuan, H., H. Yuan, Q. Wang, W. Ye, R. Yao, W. Xu, and Y. Liu. (2020). Two novel KCNA1 variants identified in two unrelated Chinese families affected by episodic ataxia type 1 and neurodevelopmental disorders. Mol Genet Genomic Med e1434. [Epub: Ahead of Print] 32705822
Yuan, P., M.D. Leonetti, Y. Hsiung, and R. MacKinnon. (2012). Open structure of the Ca2+ gating ring in the high-conductance Ca2+-activated K+ channel. Nature 481: 94-97. 22139424
Yuchi, Z., V.P. Pau, and D.S. Yang. (2008). GCN4 enhances the stability of the pore domain of potassium channel KcsA. FEBS J. 275: 6228-6236. 19016844
Yusifov, T., N. Savalli, C.S. Gandhi, M. Ottolia, and R. Olcese. (2008). The RCK2 domain of the human BKCa channel is a calcium sensor. Proc. Natl. Acad. Sci. U.S.A. 105: 376-381. 18162557
Zaman, T., K.L. Helbig, J. Clatot, C.H. Thompson, S.K. Kang, K. Stouffs, A.E. Jansen, L. Verstraete, A. Jacquinet, E. Parrini, R. Guerrini, Y. Fujiwara, S. Miyatake, B. Ben-Zeev, H. Bassan, O. Reish, D. Marom, N. Hauser, T.A. Vu, S. Ackermann, C.E. Spencer, N. Lippa, S. Srinivasan, A. Charzewska, D. Hoffman-Zacharska, D. Fitzpatrick, V. Harrison, P. Vasudevan, S. Joss, D.T. Pilz, K.A. Fawcett, I. Helbig, N. Matsumoto, J.A. Kearney, A.E. Fry, and E.M. Goldberg. (2020). SCN3A-related neurodevelopmental disorder: A spectrum of epilepsy and brain malformation. Ann Neurol. [Epub: Ahead of Print] 32515017
Zaydman MA., Silva JR., Delaloye K., Li Y., Liang H., Larsson HP., Shi J. and Cui J. (2013). Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening. Proc Natl Acad Sci U S A. 110(32):13180-5. 23861489
Zelman, A.K., A. Dawe, C. Gehring, and G.A. Berkowitz. (2012). Evolutionary and structural perspectives of plant cyclic nucleotide-gated cation channels. Front Plant Sci 3: 95. 22661976
Zhan, H., R. Stanciauskas, C. Stigloher, K.K. Dizon, M. Jospin, J.L. Bessereau, and F. Pinaud. (2014). In vivo single-molecule imaging identifies altered dynamics of calcium channels in dystrophin-mutant C. elegans. Nat Commun 5: 4974. 25232639
Zhang, D., L. Sun, S. Li, W. Wang, Y. Ding, S.A. Swarm, L. Li, X. Wang, X. Tang, Z. Zhang, Z. Tian, P.J. Brown, C. Cai, R.L. Nelson, and J. Ma. (2018). Elevation of soybean seed oil content through selection for seed coat shininess. Nat Plants. [Epub: Ahead of Print] 29292374
Zhang, F., Y. Liu, F. Tang, B. Liang, H. Chen, H. Zhang, and K. Wang. (2019). Electrophysiological and pharmacological characterization of a novel and potent neuronal Kv7 channel opener SCR2682 for antiepilepsy. FASEB J. fj201802848RR. [Epub: Ahead of Print] 31063701
Zhang, G., S.Y. Huang, J. Yang, J. Shi, X. Yang, A. Moller, X. Zou, and J. Cui. (2010). Ion sensing in the RCK1 domain of BK channels. Proc. Natl. Acad. Sci. USA 107: 18700-18705. 20937866
Zhang, X., F. Bertaso, J.W. Yoo, K. Baumgärtel, S.M. Clancy, V. Lee, C. Cienfuegos, C. Wilmot, J. Avis, T. Hunyh, C. Daguia, C. Schmedt, J. Noebels, and T. Jegla. (2010). Deletion of the potassium channel Kv12.2 causes hippocampal hyperexcitability and epilepsy. Nat Neurosci 13: 1056-1058. 20676103
Zhang, Y., Y. Zhao, H. Liu, W. Yu, F. Yang, W. Li, Z. Cao, and Y. Wu. (2018). Mouse β-Defensin 3, A Defensin Inhibitor of Both Its Endogenous and Exogenous Potassium Channels. Molecules 23:. 29925780
Zhang, Y., Z. Wang, L. Zhang, Y. Cao, D. Huang, and K. Tang. (2006). Molecular cloning and stress-dependent regulation of potassium channel gene in Chinese cabbage (Brassica rapa ssp. Pekinensis). J Plant Physiol. 163: 968-978. 16949960
Zhang, Z., H.A. Ledford, S. Park, W. Wang, S. Rafizadeh, H.J. Kim, W. Xu, L. Lu, V.C. Lau, A.A. Knowlton, X.D. Zhang, E.N. Yamoah, and N. Chiamvimonvat. (2016). Distinct subcellular mechanisms for the enhancement of the surface membrane expression of SK2 channel by its interacting proteins, α-actinin2 and filamin A. J. Physiol. [Epub: Ahead of Print] 27779751
Zhao, F., J.L. Wang, H.Y. Ming, Y.N. Zhang, Y.Q. Dun, J.H. Zhang, and Y.B. Song. (2019). Insights into the binding mode and functional components of the analgesic-antitumour peptide from Karsch to human voltage-gated sodium channel 1.7 based on dynamic simulation analysis. J Biomol Struct Dyn 1-12. [Epub: Ahead of Print] 31099313
Zhao, G., Z.P. Neeb, M.D. Leo, J. Pachuau, A. Adebiyi, K. Ouyang, J. Chen, and J.H. Jaggar. (2010). Type 1 IP3 receptors activate BKCa channels via local molecular coupling in arterial smooth muscle cells. J Gen Physiol 136: 283-291. 20713546
Zhao, J. and R. Blunck. (2016). The isolated voltage sensing domain of the Shaker potassium channel forms a voltage-gated cation channel. Elife 5:. [Epub: Ahead of Print] 27710769
Zhao, Y., T. Scheuer, and W.A. Catterall. (2004). Reversed voltage-dependent gating of a bacterial sodium channel with proline substitutions in the S6 transmembrane segment. Proc. Natl. Acad. Sci. USA 101: 17873-17878. 15583130
Zheng, Z., H. Chen, P. Xie, C.A. Dickerson, J.A.C. King, M.F. Alexeyev, H.S. Shin, and S. Wu. (2019). α1G T-type Calcium Channel Determines the Angiogenic Potential of Pulmonary Microvascular Endothelial Cells. Am. J. Physiol. Cell Physiol. [Epub: Ahead of Print] 30649917
Zhong, H., L.L. Molday, R.S. Molday, and K.-W. Yau. (2002). The heteromeric cyclic nucleotide-gated channel adopts a 3A:1B stoichiometry. Nature 420: 193-198. 12432397
Zhong, T., X. Pan, J. Wang, B. Yang, and L. Ding. (2019). The regulatory roles of calcium channels in tumors. Biochem Pharmacol 169: 113603. [Epub: Ahead of Print] 31415738
Zhu, L., K. Ploessl, and H.F. Kung. (2013). Chemistry. Expanding the scope of fluorine tags for PET imaging. Science 342: 429-430. 24159034
Zhuo, R.G., P. Peng, J.Q. Zheng, Y.L. Zhang, L. Wen, X.L. Wei, and X.Y. Ma. (2017). The glycine hinge of transmembrane segment 2 modulates the subcellular localization and gating properties in TREK channels. Biochem. Biophys. Res. Commun. 490: 1125-1131. 28676394
Zhuo, R.G., P. Peng, X.Y. Liu, H.T. Yan, J.P. Xu, J.Q. Zheng, X.L. Wei, and X.Y. Ma. (2016). Allosteric coupling between proximal C-terminus and selectivity filter is facilitated by the movement of transmembrane segment 4 in TREK-2 channel. Sci Rep 6: 21248. 26879043
Zimmermann, K., A. Leffler, A. Babes, C.M. Cendan, R.W. Carr, J. Kobayashi, C. Nau, J.N. Wood, and P.W. Reeh. (2007). Sensory neuron sodium channel Nav1.8 is essential for pain at low temperatures. Nature. 447: 855-888. 17568746


Aguilar-Bryan, L., J.P. Clement IV, G. Gonzalez, K. Kunjilwar, A. Babenko, and J. Bryan. (1998). Toward understanding the assembly and structure of KATP channels. Physiol. Rev. 78: 227-245. 9457174
Alvin, Z.V., R.M. Millis, W. Hajj-Mousssa, and G.E. Haddad. (2011). ATP-Sensitive Potassium Channel Currents in Eccentrically Hypertrophied Cardiac Myocytes of Volume-Overloaded Rats. Int J. Cell Biol. 2011: 838951. 21845191
Amani, R., C.G. Borcik, N.H. Khan, D.B. Versteeg, M. Yekefallah, H.Q. Do, H.R. Coats, and B.J. Wylie. (2020). Conformational changes upon gating of KirBac1.1 into an open-activated state revealed by solid-state NMR and functional assays. Proc. Natl. Acad. Sci. USA 117: 2938-2947. 31980523
Aréchiga-Figueroa, I.A., L.G. Marmolejo-Murillo, M. Cui, M. Delgado-Ramírez, M.A.G. van der Heyden, J.A. Sánchez-Chapula, and A.A. Rodríguez-Menchaca. (2017). High-potency block of Kir4.1 channels by pentamidine: Molecular basis. Eur J Pharmacol 815: 56-63. 28993158
Ashen, M.D., B. O’Rourke, K.A. Kluge, D.C. Johns, and G.F. Tomaselli. (1995). Inward rectifier K+ channel from human heart and brain: cloning and stable expression in a human cell line. Am. J. Physiol. 268: H506-H511. 7840300
Babenko, A.P., G. Gonzalez, and J. Bryan. (1999). Two regions of sulfonylurea receptor specify the spontaneous bursting and ATP inhibition of KATP channel isoforms. J. Biol. Chem. 274: 11587-11592. 10206966
Bendahhou, S., M.R. Donaldson, N.M. Plaster, M. Tristani-Firouzi, Y.-H. Fu, and L.J. Ptácek. (2003). Defective potassium channel Kir2.1 trafficking underlies Andersen-Tawil Syndrome. J. Biol. Chem. 278: 51779-51785. 14522976
Bensassi F., Gallerne C., Sharaf El Dein O., Hajlaoui MR., Bacha H. and Lemaire C. (2012). Cell death induced by the Alternaria mycotoxin Alternariol. Toxicol In Vitro. 26(6):915-23. 22542754
Black, K.A., S. He, R. Jin, D.M. Miller, J.R. Bolla, O.B. Clarke, P. Johnson, M. Windley, C.J. Burns, A.P. Hill, D. Laver, C.V. Robinson, B.J. Smith, and J.M. Gulbis. (2020). A constricted opening in Kir channels does not impede potassium conduction. Nat Commun 11: 3024. 32541684
Boim, M.A., K. Ho, M.E. Shuck, M.J. Bienkowski, J.H. Block, J.L. Slightom, Y. Yang, B.M. Brenner, and S.C. Hebert. (1995). ROMK inwardly rectifying ATP-sensitive K+ channel. II. Cloning and distribution of alternative forms. Am. J. Physiol. 268: F1132-1140. 7611454
Bonfanti DH., Alcazar LP., Arakaki PA., Martins LT., Agustini BC., de Moraes Rego FG. and Frigeri HR. (2015). ATP-dependent potassium channels and type 2 diabetes mellitus. Clin Biochem. 48(7-8):476-82. 25583094
Borcik, C.G., D.B. Versteeg, R. Amani, M. Yekefallah, N.H. Khan, and B.J. Wylie. (2020). The Lipid Activation Mechanism of a Transmembrane Potassium Channel. J. Am. Chem. Soc. [Epub: Ahead of Print] 32702990
Bossu, J.L., L. Wioland, F. Doussau, P. Isope, M.R. Popoff, and B. Poulain. (2020). Epsilon Toxin from Causes Inhibition of Potassium inward Rectifier (Kir) Channels in Oligodendrocytes. Toxins (Basel) 12:. 31935961
Bukiya, A.N., S. Durdagi, S. Noskov, and A. Rosenhouse-Dantsker. (2017). Cholesterol Up-regulates G Protein-Gated Inwardly Rectifying Potassium (GIRK) Channel Activity in the Hippocampus. J. Biol. Chem. [Epub: Ahead of Print] 28213520
Bushman, J.D., Q. Zhou, and S.L. Shyng. (2013). A Kir6.2 Pore Mutation Causes Inactivation of ATP-Sensitive Potassium Channels by Disrupting PIP2-Dependent Gating. PLoS One 8: e63733. 23700433
Caballero, R., P. Dolz-Gaitón, R. Gómez, I. Amorós, A. Barana, M. González de la Fuente, L. Osuna, J. Duarte, A. López-Izquierdo, I. Moraleda, E. Gálvez, J.A. Sánchez-Chapula, J. Tamargo, and E. Delpón. (2010). Flecainide increases Kir2.1 currents by interacting with cysteine 311, decreasing the polyamine-induced rectification. Proc. Natl. Acad. Sci. USA 107: 15631-15636. 20713726
Chen, I.S., M. Tateyama, Y. Fukata, M. Uesugi, and Y. Kubo. (2017). Ivermectin activates GIRK channels in a PIP -dependent, G -independent manner and an amino acid residue at the slide helix governs the activation. J. Physiol. 595: 5895-5912. 28715108
Cheng, W.W., D. Enkvetchakul, and C.G. Nichols. (2009). KirBac1.1: it's an inward rectifying potassium channel. J Gen Physiol 133: 295-305. 19204189
Choi, S.B., J.U. Kim, H. Joo, and C.K. Min. (2010). Identification and characterization of a novel bacterial ATP-sensitive K+ channel. J Microbiol 48: 325-330. 20571950
Clement, J.P., IV, K. Kunjilwar, G. Gonzalez, M. Schwanstecher, U. Panten, L. Aguilar-Bryan, and J. Bryan. (1997). Association and stoichiometry of KATP channel subunits. Neuron 18: 827-838. 9182806
Coulson, E.J., L.M. May, S.L. Osborne, K. Reid, C.K. Underwood, F.A. Meunier, P.F. Bartlett, and P. Sah. (2008). p75 neurotrophin receptor mediates neuronal cell death by activating GIRK channels through phosphatidylinositol 4,5-bisphosphate. J. Neurosci. 28: 315-324. 18171948
Doupnik, C.A. (2008). GPCR-Kir channel signaling complexes: defining rules of engagement. J Recept Signal Transduct Res 28: 83-91. 18437632
Enkvetchakul, D., J. Bhattacharyya, I. Jeliazkova, D.K. Groesbeck, C.A. Cukras, and C.G. Nichols. (2004). Functional characterization of a prokaryotic Kir channel. J. Biol. Chem. 279: 47076-47080. 15448150
Epshtein, Y., A.P. Chopra, A. Rosenhouse-Dantsker, G.B. Kowalsky, D.E. Logothetis, and I. Levitan. (2009). Identification of a C-terminus domain critical for the sensitivity of Kir2.1 to cholesterol. Proc. Natl. Acad. Sci. USA 106: 8055-8060. 19416905
Fernandes, M.A., M.S. Santos, A.J. Moreno, G. Duburs, C.R. Oliveira, and J.A. Vicente. (2004). Glibenclamide interferes with mitochondrial bioenergetics by inducing changes on membrane ion permeability. J Biochem Mol Toxicol 18: 162-169. 15252873
Fodstad, H., H. Swan, M. Auberson, I. Gautschi, J. Loffing, L. Schild, and K. Kontula. (2004). Loss-of-function mutations of the K+ channel gene KCNJ2 constitute a rare cause of long QT syndrome. J Mol. Cell Cardiol 37: 593-602. 15276028
Fürst, O., C.G. Nichols, G. Lamoureux, and N. D''Avanzo. (2014). Identification of a cholesterol-binding pocket in inward rectifier K+ (Kir) channels. Biophys. J. 107: 2786-2796. 25517146
Garcia ML., Priest BT., Alonso-Galicia M., Zhou X., Felix JP., Brochu RM., Bailey T., Thomas-Fowlkes B., Liu J., Swensen A., Pai LY., Xiao J., Hernandez M., Hoagland K., Owens K., Tang H., de Jesus RK., Roy S., Kaczorowski GJ. and Pasternak A. (2014). Pharmacologic inhibition of the renal outer medullary potassium channel causes diuresis and natriuresis in the absence of kaliuresis. J Pharmacol Exp Ther. 348(1):153-64. 24142912
Glaaser, I.W. and P.A. Slesinger. (2015). Structural Insights into GIRK Channel Function. Int Rev Neurobiol 123: 117-160. 26422984
Haider, S., A.I. Tarasov, T.J. Craig, M.S. Sansom, and F.M. Ashcroft. (2007). Identification of the PIP2-binding site on Kir6.2 by molecular modelling and functional analysis. EMBO. J. 26: 3749-3759. 17673911
Hansen, S.B., X. Tao, and R. MacKinnon. (2011). Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature 477: 495-498. 21874019
Hill, C.E., M.M. Briggs, J. Liu, and L. Magtanong. (2002). Cloning, expression, and localization of a rat hepatocyte inwardly rectifying potassium channel. Am. J. Physiol. Gastrointest. Liver Physiol. 282: G233-G240. 11804844
Hille, B. (1992). Ionic Channels of Excitable Membranes, 2nd ed. Sinaur Associates, Inc., Sunderland, MA.
Ho, I.H.M. and R.D. Murrell-Lagnado. (1999). Molecular determinants for sodium-dependent activation of G protein-gated K+ channels. J. Biol. Chem. 274: 8639-8648. 10085101
Huang, C.W. and C.C. Kuo. (2016). A synergistic blocking effect of Mg2+ and spermine on the inward rectifier K+ (Kir2.1) channel pore. Sci Rep 6: 21493. 26869275
Inanobe, A., A. Nakagawa, and Y. Kurachi. (2011). Interactions of cations with the cytoplasmic pores of inward rectifier K+ channels in the closed state. J. Biol. Chem. 286: 41801-41811. 21982822
Ishihara, K., T. Yamamoto, and Y. Kubo. (2009). Heteromeric assembly of inward rectifier channel subunit Kir2.1 with Kir3.1 and with Kir3.4. Biochem. Biophys. Res. Commun. 380: 832-837. 19338762
Jaroslawski, S., B. Zadek, F. Ashcroft, C. Venien-Bryan, and S. Scheuring. (2007). Direct visualization of KirBac3.1 potassium channel gating by atomic force microscopy. J. Mol. Biol. 374(2):500-505. 17936299
Kuo, A., J.M. Gulbis, J.F. Antcliff, T. Rahman, E.D. Lowe, J. Zimmer, J. Cuthbertson, F.M. Ashcroft, T. Ezaki, and D.A. Doyle. (2003). Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300: 1922-1926. 12738871
Kurata, H.T., M. Rapedius, M.J. Kleinman, T. Baukrowitz, and C.G. Nichols. (2010). Voltage-dependent gating in a "voltage sensor-less" ion channel. PLoS Biol 8: e1000315. 20208975
Kuß, J., B. Stallmeyer, M. Goldstein, S. Rinné, C. Pees, S. Zumhagen, G. Seebohm, N. Decher, L. Pott, M.C. Kienitz, and E. Schulze-Bahr. (2019). Familial Sinus Node Disease Caused by a Gain of GIRK (G-Protein Activated Inwardly Rectifying K Channel) Channel Function. Circ Genom Precis Med 12: e002238. 30645171
Leal-Pinto, E., Y. Gómez-Llorente, S. Sundaram, Q.Y. Tang, T. Ivanova-Nikolova, R. Mahajan, L. Baki, Z. Zhang, J. Chavez, I. Ubarretxena-Belandia, and D.E. Logothetis. (2010). Gating of a G protein-sensitive mammalian Kir3.1 prokaryotic Kir channel chimera in planar lipid bilayers. J. Biol. Chem. 285: 39790-39800. 20937804
Lee, A.G. (2020). Interfacial Binding Sites for Cholesterol on Kir, Kv, K, and Related Potassium Channels. Biophys. J. [Epub: Ahead of Print] 32553129
Li, D., T. Jin, D. Gazgalis, M. Cui, and D.E. Logothetis. (2019). On the mechanism of the GIRK2 channel gating by phosphatidylinositol bisphosphate (PIP2), sodium, and the Gβγ dimer. J. Biol. Chem. [Epub: Ahead of Print] 31659119
Li, J., C.F. Kline, T.J. Hund, M.E. Anderson, and P.J. Mohler. (2010). Ankyrin-B regulates Kir6.2 membrane expression and function in heart. J. Biol. Chem. 285: 28723-28730. 20610380
Lin, Y.W., J.D. Bushman, F.F. Yan, S. Haidar, C. Macmullen, A. Ganguly, C.A. Stanley, and S.L. Shyng. (2008). Destabilization of ATP-sensitive potassium channel activity by novel KCNJ11 mutations identified in congenital hyperinsulinism. J. Biol. Chem. 283: 9146-9156. 18250167
Lyu, C., G.W. Lyu, J. Mulder, A. Martinez, and T.S. Shi. (2020). G Protein-Gated Inwardly Rectifying Potassium Channel Subunit 3 is Upregulated in Rat DRGs and Spinal Cord After Peripheral Nerve Injury. J Pain Res 13: 419-429. 32110090
Ma, D., X.D. Tang, T.B. Rogers, and P.A. Welling. (2007). An Andersen-Tawil syndrome mutation in Kir2.1 (V302M) alters the G-loop cytoplasmic K+ conduction pathway. J. Biol. Chem. 282: 5781-5789. 17166852
Makary, S.M., T.W. Claydon, K.M. Dibb, and M.R. Boyett. (2006). Base of pore loop is important for rectification, activation, permeation, and block of Kir3.1/Kir3.4. Biophys. J. 90: 4018-4034. 16513790
Marmolejo-Murillo, L.G., I.A. Aréchiga-Figueroa, E.G. Moreno-Galindo, R.A. Navarro-Polanco, A.A. Rodríguez-Menchaca, M. Cui, J.A. Sánchez-Chapula, and T. Ferrer. (2017). Chloroquine blocks the Kir4.1 channels by an open-pore blocking mechanism. Eur J Pharmacol 800: 40-47. 28216048
Martin, G.M., B. Kandasamy, F. DiMaio, C. Yoshioka, and S.L. Shyng. (2017). Anti-diabetic drug binding site in a mammalian K channel revealed by Cryo-EM. Elife 6:. 29035201
Martin, G.M., C. Yoshioka, E.A. Rex, J.F. Fay, Q. Xie, M.R. Whorton, J.Z. Chen, and S.L. Shyng. (2017). Cryo-EM structure of the ATP-sensitive potassium channel illuminates mechanisms of assembly and gating. Elife 6:. [Epub: Ahead of Print] 28092267
Meng, X.Y., H.X. Zhang, D.E. Logothetis, and M. Cui. (2012). The molecular mechanism by which PIP(2) opens the intracellular G-loop gate of a Kir3.1 channel. Biophys. J. 102: 2049-2059. 22824268
Meng, X.Y., S. Liu, M. Cui, R. Zhou, and D.E. Logothetis. (2016). The Molecular Mechanism of Opening the Helix Bundle Crossing (HBC) Gate of a Kir Channel. Sci Rep 6: 29399. 27439597
Minor, D.L., Jr., S.J. Masseling, Y.N. Jan, and L.Y. Jan. (1999). Transmembrane structure of an inwardly rectifying potassium channel. Cell 96: 879-891. 10102275
Morin, M., A.L. Forst, P. Pérez-Torre, A. Jiménez-Escrig, V. Barca-Tierno, E. García-Galloway, R. Warth, J.L. Lopez-Sendón Moreno, and M.A. Moreno-Pelayo. (2020). Novel mutations in the KCNJ10 gene associated to a distinctive ataxia, sensorineural hearing loss and spasticity clinical phenotype. Neurogenetics. [Epub: Ahead of Print] 32062759
Ortiz, D. and J. Bryan. (2015). Neonatal Diabetes and Congenital Hyperinsulinism Caused by Mutations in ABCC8/SUR1 are Associated with Altered and Opposite Affinities for ATP and ADP. Front Endocrinol (Lausanne) 6: 48. 25926814
Partridge, C.J., D.J. Beech, and A. Sivaprasadarao. (2001). Identification and pharmacological correction of a membrane trafficking defect associated with a mutation in the sulfonylurea receptor causing familial hyperinsulinism. J. Biol. Chem. 276: 35947-35952. 11457841
Payne, J.E., A.V. Dubois, R.J. Ingram, S. Weldon, C.C. Taggart, J.S. Elborn, and M.M. Tunney. (2017). Activity of innate antimicrobial peptides and ivacaftor against clinical cystic fibrosis respiratory pathogens. Int J Antimicrob Agents 50: 427-435. 28666755
Pegan, S., C. Arrabit, W. Zhou, W. Kwiatkowski, A. Collins, P.A. Slesinger, and S. Choe. (2005). Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification. Nat Neurosci 8: 279-287. 15723059
Pratt, E.B. and S.L. Shyng. (2011). ATP activates ATP-sensitive potassium channels composed of mutant sulfonylurea receptor 1 and Kir6.2 with diminished PIP2 sensitivity. Channels (Austin) 5: 314-319. 21654216
Principalli, M.A., J.P. Dupuis, C.J. Moreau, M. Vivaudou, and J. Revilloud. (2015). Kir6.2 activation by sulfonylurea receptors: a different mechanism of action for SUR1 and SUR2A subunits via the same residues. Physiol Rep 3:. 26416970
Rapedius, M., S. Haider, K.F. Browne, L. Shang, M.S. Sansom, T. Baukrowitz, and S.J. Tucker. (2006). Structural and functional analysis of the putative pH sensor in the Kir1.1 (ROMK) potassium channel. EMBO Rep 7: 611-616. 16641935
Raphemot, R., T.Y. Estévez-Lao, M.F. Rouhier, P.M. Piermarini, J.S. Denton, and J.F. Hillyer. (2014). Molecular and functional characterization of Anopheles gambiae inward rectifier potassium (Kir1) channels: a novel role in egg production. Insect Biochem Mol Biol 51: 10-19. 24855023
Remedi, M.S., J.B. Friedman, and C.G. Nichols. (2017). Diabetes induced by gain-of-function mutations in the Kir6.1 subunit of the KATP channel. J Gen Physiol 149: 75-84. 27956473
Rodríguez-Menchaca, A.A., R.A. Navarro-Polanco, T. Ferrer-Villada, J. Rupp, F.B. Sachse, M. Tristani-Firouzi, and J.A. Sánchez-Chapula. (2008). The molecular basis of chloroquine block of the inward rectifier Kir2.1 channel. Proc. Natl. Acad. Sci. U.S.A. 105: 1364-1368. 18216262
Rodríguez-Menchaca, A.A., I.A. Aréchiga-Figueroa, and J.A. Sánchez-Chapula. (2016). The molecular basis of chloroethylclonidine block of inward rectifier (Kir2.1 and Kir4.1) K+ channels. Pharmacol Rep 68: 383-389. 26922543
Rosenhouse-Dantsker, A. (2018). Cholesterol-Binding Sites in GIRK Channels: The Devil is in the Details. Lipid Insights 11: 1178635317754071. 29467578
Rosenhouse-Dantsker, A. (2019). Cholesterol Binding Sites in Inwardly Rectifying Potassium Channels. Adv Exp Med Biol 1135: 119-138. 31098814
Rufino, A.T., S.C. Rosa, F. Judas, A. Mobasheri, M.C. Lopes, and A.F. Mendes. (2013). Expression and function of K(ATP) channels in normal and osteoarthritic human chondrocytes: Possible role in glucose sensing. J. Cell. Biochem. 114: 1879-1889. 23494827
Ruknudin, A., D.H. Schulze, S.K. Sullivan, W.J. Lederer, and P.A. Welling. (1998). Novel subunit composition of a renal epithelial KATP channel. J. Biol. Chem. 273: 14165-14171. 9603917
Sackin, H., M. Nanazashvili, L.G. Palmer, M. Krambis, and D.E. Walters. (2005). Structural locus of the pH gate in the Kir1.1 inward rectifier channel. Biophys. J. 88: 2597-2606. 15653740
Saito, T., T. Sato, T. Miki, S. Seino, and H. Nakaya. (2005). Role of ATP-sensitive K+ channels in electrophysiological alterations during myocardial ischemia: a study using Kir6.2-null mice. Am. J. Physiol. Heart Circ Physiol 288: H352-357. 15598870
Salkoff, L. and T. Jegla. (1995). Surfing the DNA databases for K+ channels nets yet more diversity. Neuron 15: 489-492. 7546728
Seino, S. (1999). ATP-sensitive potassium channels: a model of heteromultimeric potassium channel-receptor assemblies. Annu. Rev. Physiol. 61: 337-362. 10099692
Shibata, M., E. Ishizaki, T. Zhang, M. Fukumoto, A. Barajas-Espinosa, T. Li, and D.G. Puro. (2018). Purinergic Vasotoxicity: Role of the Pore/Oxidant/K Channel/Ca Pathway in P2X-Induced Cell Death in Retinal Capillaries. Vision (Basel) 2:. 30288454
Shin, H.G. and Z. Lu. (2005). Mechanism of the voltage sensitivity of IRK1 inward-rectifier K+ channel block by the polyamine spermine. J Gen Physiol 125: 413-426. 15795311
Shuck, M.E., J.H. Bock, C.W. Benjamin, T.D. Tsai, K.S. Lee, J.L. Slightom, and M.J. Bienkowski. (1994). Cloning and characterization of multiple forms of the human kidney ROM-K potassium channel. J. Biol. Chem. 269: 24261-24270. 7929082
Sun, W., T. Li, H. Ma, S. Lin, M. Xie, Y. Luo, R. Tian, and S. Tang. (2019). The effect of K+ channel opener pinacidil on the transmembrane potassi channel protein kir4.1 of retinal müller cells in vitro and diabetic rats. Panminerva Med. [Epub: Ahead of Print] 31089080
Suzuki, Y., M. Itakura, M. Kashiwagi, N. Nakamura, T. Matsuki, H. Sakuta, N. Naito, K. Takano, T. Fujita, and S. Hirose. (1999). Identification by differential display of a hypertonicity-inducible inward rectifier potassium channel highly expressed in chloride cells. J. Biol. Chem. 274: 11376-11382. 10196230
Tammaro, P. and F.M. Ashcroft. (2007). A mutation in the ATP-binding site of the Kir6.2 subunit of the KATP channel alters coupling with the SUR2A subunit. J. Physiol. 584: 743-753. 17855752
Tanemoto, M., T. Abe, S. Uchida, and K. Kawahara. (2014). Mislocalization of K+ channels causes the renal salt wasting in EAST/SeSAME syndrome. FEBS Lett. 588: 899-905. 24561201
Tao, X., J.L. Avalos, J. Chen, and R. MacKinnon. (2009). Crystal structure of the eukaryotic strong inward-rectifier K+ channel Kir2.2 at 3.1 Å resolution. Science 326: 1668-1674. 20019282
Toms, M., A.M. Dubis, W.S. Lim, A.R. Webster, M.B. Gorin, and M. Moosajee. (2019). Missense variants in the conserved transmembrane M2 protein domain of KCNJ13 associated with retinovascular changes in humans and zebrafish. Exp Eye Res 189: 107852. 31647904
Töpert, C., F. Döring, E. Wischmeyer, C. Karschin, J. Brockhaus, K. Ballanyi, C. Derst, and A. Karschin. (1998). Kir2.4: a novel K+ inward rectifier channel associated with motoneurons of cranial nerve nuclei. J. Neurosci. 18: 4096-4105. 9592090
Tselnicker, I. and N. Dascal. (2010). Further characterization of regulation of Ca(V)2.2 by stargazin. Channels (Austin) 4: 351-354. 21139418
Vera, E., I. Cornejo, J. Burgos, M.I. Niemeyer, F.V. Sepúlveda, and L.P. Cid. (2019). A novel Kir7.1 splice variant expressed in various mouse tissues shares organisational and functional properties with human leber amaurosis-causing mutations of this K channel. Biochem. Biophys. Res. Commun. [Epub: Ahead of Print] 31056263
Wang S., Makhina EN., Masia R., Hyrc KL., Formanack ML. and Nichols CG. (2013). Domain organization of the ATP-sensitive potassium channel complex examined by fluorescence resonance energy transfer. J Biol Chem. 288(6):4378-88. 23223337
Wu, X.Y. and X.Y. Yu. (2019). Overexpression of KCNJ4 correlates with cancer progression and unfavorable prognosis in lung adenocarcinoma. J Biochem Mol Toxicol 33: e22270. 30512237
Xie, L.H., S.A. John, B. Ribalet, and J.N. Weiss. (2005). Long polyamines act as cofactors in PIP2 activation of inward rectifier potassium (Kir2.1) channels. J Gen Physiol 126: 541-549. 16316973
Yan, F.F., Y.W. Lin, C. MacMullen, A. Ganguly, C.A. Stanley, and S.L. Shyng. (2007). Congenital hyperinsulinism associated ABCC8 mutations that cause defective trafficking of ATP-sensitive K+ channels: identification and rescue. Diabetes 56: 2339-2348. 17575084
Yang, Y., W. Shi, X. Chen, N. Cui, A.S. Konduru, Y. Shi, T.C. Trower, S. Zhang, and C. Jiang. (2011). Molecular basis and structural insight of vascular K(ATP) channel gating by S-glutathionylation. J. Biol. Chem. 286: 9298-9307. 21216949
Yokogawa, M., M. Osawa, K. Takeuchi, Y. Mase, and I. Shimada. (2011). NMR analyses of the Gbetagamma binding and conformational rearrangements of the cytoplasmic pore of G protein-activated inwardly rectifying potassium channel 1 (GIRK1). J. Biol. Chem. 286: 2215-2223. 21075842
Zangerl-Plessl, E.M., M. Qile, M. Bloothooft, A. Stary-Weinzinger, and M.A.G. van der Heyden. (2019). Disease Associated Mutations in K Proteins Linked to Aberrant Inward Rectifier Channel Trafficking. Biomolecules 9:. 31731488
Zeng, W.-Z., X.-J. Li, D.W. Hilgemann, and C.-L. Huang. (2003). Protein kinase C inhibits ROMK1 channel activity via a phosphatidylinositol 4,5-bisphosphate-dependent mechanism. J. Biol. Chem. 278: 16852-16856. 12615924
Zhang, C., T. Miki, T. Shibasaki, M. Yokokura, A. Saraya, and S. Seino. (2005). Identification and characterization of a novel member of the ATP-sensitive K+ channel subunit family, Kir6.3, in zebrafish. Physiol Genomics. 24: 290-297. 16317080
Zhang, W., P. Das, S. Kelangi, and M. Bei. (2020). Potassium channels as potential drug targets for limb wound repair and regeneration. Precis Clin Med 3: 22-33. 32257531
Zhou, Q., E.B. Pratt, and S.L. Shyng. (2013). Engineered Kir6.2 mutations that correct the trafficking defect of K(ATP) channels caused by specific SUR1 mutations. Channels (Austin) 7: 313-317. 23695995


and Plattner H. (2015). Molecular aspects of calcium signalling at the crossroads of unikont and bikont eukaryote evolution--the ciliated protozoan Paramecium in focus. Cell Calcium. 57(3):174-85. 25601027
Baylis, H.A. and R.P. Vázquez-Manrique. (2012). Genetic analysis of IP3 and calcium signalling pathways in C. elegans. Biochim. Biophys. Acta. 1820: 1253-1268. 22146231
Beutner, G., V.K. Sharma, D.R. Giovannucci, D.I. Yule and S.-S. Sheu (2001). Identification of a ryanodine receptor in rat heart mitochondria. J. Biol. Chem. 276: 21482-21488. 11297554
Bosanac, I., J.-R. Alattia, T.K. Mal, J. Chan, S. Talarico, F.K. Tong, K.I. Tong, F. Yoshikawa, T. Furuichi, M. Iwai, T. Michikawa, K. Mikoshiba, and M. Ikura. (2002). Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand. Nature 420: 696-700. 12442173
Chelu, M.G., and X.H. Wehrens. (2007). Sarcoplasmic reticulum calcium leak and cardiac arrhythmias. Biochem. Soc. Trans. 35: 952-956. 17956253
Dal Santo, P., M.A. Logan, A.D. Chisholm, and E.M. Jorgensen. (1999). The inositol trisphosphate receptor regulates a 50-second behavioral rhythm in C. elegans. Cell 98: 757-767. 10499793
des Georges, A., O.B. Clarke, R. Zalk, Q. Yuan, K.J. Condon, R.A. Grassucci, W.A. Hendrickson, A.R. Marks, and J. Frank. (2016). Structural Basis for Gating and Activation of RyR1. Cell 167: 145-157.e17. 27662087
Docampo R., Moreno SN. and Plattner H. (2014). Intracellular calcium channels in protozoa. Eur J Pharmacol. 739:4-18. 24291099
Du, G.G., B. Sandhu, B.K. Khanna, Z.H. Guo, and D.H. MacLennan. (2002). Topology of the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum (RyR1). Proc. Natl. Acad. Sci. USA 99: 16725-16730. 12486242
Efremov, R.G., A. Leitner, R. Aebersold, and S. Raunser. (2015). Architecture and conformational switch mechanism of the ryanodine receptor. Nature 517: 39-43. 25470059
Fukuda, M., T. Yamamoto, S. Nishimura, T. Kato, W. Murakami, A. Hino, M. Ono, H. Tateishi, T. Oda, S. Okuda, S. Kobayashi, N. Koseki, H. Kyushiki, and M. Yano. (2014). Enhanced binding of calmodulin to RyR2 corrects arrhythmogenic channel disorder in CPVT-associated myocytes. Biochem. Biophys. Res. Commun. 448: 1-7. 24755079
Gaburjakova, M., J. Gaburjakova, S. Reiken, F. Huang, S.O. Marx, N. Rosemblit and A.R. Marks (2001). FKBP12 binding modulates ryanodine receptor channel gating. J. Biol. Chem. 276: 16931-16935. 11279144
Gao, S., D.J. Sandstrom, H.E. Smith, B. High, J.W. Marsh, and H.A. Nash. (2013). Drosophila ryanodine receptors mediate general anesthesia by halothane. Anesthesiology 118: 587-601. 23254148
Gomez, A.C., T.W. Holford, and N. Yamaguchi. (2016). Malignant Hyperthermia-Associated Mutations in S2-S3 Cytoplasmic Loop of Type 1 Ryanodine Receptor Calcium Channel Impair Calcium-Dependent Inactivation. Am. J. Physiol. Cell Physiol. ajpcell.00134.2016. [Epub: Ahead of Print] 27558158
Gower, N.J., D.S. Walker, and H.A. Baylis. (2005). Inositol 1,4,5-trisphosphate signaling regulates mating behavior in Caenorhabditis elegans males. Mol. Biol. Cell 16: 3978-3986. 15958491
Hamada, T., Y. Sakube, J. Ahnn, D.H. Kim, and H. Kagawa. (2002). Molecular dissection, tissue localization and Ca2+ binding of the ryanodine receptor of Caenorhabditis elegans. J. Mol. Biol. 324: 123-135. 12421563
Hasan, G. and M. Rosbash. (1992). Drosophila homologues of two mammalian Ca2+-release channels: identification and expression patterns of the inositol 1,4,5-triphosphate and the ryanodine receptor genes. Development 116: 967-975. 1338312
Jones, P.P., X. Meng, B. Xiao, S. Cai, J. Bolstad, T. Wagenknecht, Z. Liu, and S.R. Chen. (2008). Localization of PKA phosphorylation site, Ser(2030), in the three-dimensional structure of cardiac ryanodine receptor. Biochem. J. 410: 261-270. 17967164
Kato, K., S. Kiyonaka, Y. Sawaguchi, M. Tohnishi, T. Masaki, N. Yasokawa, Y. Mizuno, E. Mori, K. Inoue, I. Hamachi, H. Takeshima, and Y. Mori. (2009). Molecular characterization of flubendiamide sensitivity in the lepidopterous ryanodine receptor Ca2+ release channel. Biochemistry 48: 10342-10352. 19807072
Ladenburger, E.M. and H. Plattner. (2011). Calcium-release channels in paramecium. Genomic expansion, differential positioning and partial transcriptional elimination. PLoS One 6: e27111. 22102876
Ladenburger, E.M., I. Korn, N. Kasielke, T. Wassmer, and H. Plattner. (2006). An Ins(1,4,5)P3 receptor in Paramecium is associated with the osmoregulatory system. J Cell Sci 119: 3705-3717. 16912081
Ladenburger, E.M., I.M. Sehring, I. Korn, and H. Plattner. (2009). Novel types of Ca2+ release channels participate in the secretory cycle of Paramecium cells. Mol. Cell Biol. 29: 3605-3622. 19380481
Laver, D.R., T. Hamada, J.D. Fessenden, and N. Ikemoto. (2007). The ryanodine receptor pore blocker neomycin also inhibits channel activity via a previously undescribed high-affinity Ca2+ binding site. J. Membr. Biol. 220: 11-20. 17879109
Lee, A.G. (1996). The ryanodine receptor. In: Biomembranes, Vol. 6, Transmembrane Receptors and Channels (A.G. Lee, ed.), JAI Press, Denver, CO., pp. 291-326.
Lin, L., Z. Hao, P. Cao, and Z. Yuchi. (2019). Homology modeling and docking study of diamondback moth ryanodine receptor reveals the mechanisms for channel activation, insecticide binding and resistance. Pest Manag Sci. [Epub: Ahead of Print] 31595631
Lur, G., M.W. Sherwood, E. Ebisui, L. Haynes, S. Feske, R. Sutton, R.D. Burgoyne, K. Mikoshiba, O.H. Petersen, and A.V. Tepikin. (2011). InsP₃receptors and Orai channels in pancreatic acinar cells: co-localization and its consequences. Biochem. J. 436: 231-239. 21568942
Meissner, G. (2017). The structural basis of ryanodine receptor ion channel function. J Gen Physiol. [Epub: Ahead of Print] 29122978
Meng, X., G. Wang, C. Viero, Q. Wang, W. Mi, X.D. Su, T. Wagenknecht, A.J. Williams, Z. Liu, and C.C. Yin. (2009). CLIC2-RyR1 interaction and structural characterization by cryo-electron microscopy. J. Mol. Biol. 387: 320-334. 19356589
Michikawa, T., H. Hamanake, H. Otsu, A. Yamamoto, A. Miyawaki, T. Furuichi, Y. Tashiro and K. Mikoshiba (1994). Transmembrane topology and sites of N-glycosylation of inositol 1,4,5-triphosphate receptor. J. Biol. Chem. 269: 9184-9189. 8132655
Mikoshiba, K. (2012). The Discovery and Structural Investigation of the IP(3) Receptor and the Associated IRBIT Protein. Adv Exp Med Biol 740: 281-304. 22453947
Mikoshiba, K., T. Furuichi, and A. Miyawaki (1996). IP3-sensitive calcium channel. J. Biochem. Biomem. 6: 273-289.
Mio, K., T. Ogura, and C. Sato. (2008). Structure of six-transmembrane cation channels revealed by single-particle analysis from electron microscopic images. J Synchrotron Radiat 15: 211-214. 18421141
Peng, W., H. Shen, J. Wu, W. Guo, X. Pan, R. Wang, S.R. Chen, and N. Yan. (2016). Structural basis for the gating mechanism of the type 2 ryanodine receptor RyR2. Science. [Epub: Ahead of Print] 27708056
Plattner, H., I.M. Sehring, I.K. Mohamed, K. Miranda, W. De Souza, R. Billington, A. Genazzani, and E.M. Ladenburger. (2012). Calcium signaling in closely related protozoan groups (Alveolata): non-parasitic ciliates (Paramecium, Tetrahymena) vs. parasitic Apicomplexa (Plasmodium, Toxoplasma). Cell Calcium 51: 351-382. 22387010
Reilly-O''Donnell, B., G.B. Robertson, A. Karumbi, C. McIntyre, W. Bal, M. Nishi, H. Takeshima, A.J. Stewart, and S.J. Pitt. (2017). Dysregulated Zn2+ homeostasis impairs cardiac type-2 ryanodine receptor and mitsugumin 23 functions, leading to sarcoplasmic reticulum Ca2+ leakage. J. Biol. Chem. [Epub: Ahead of Print] 28630041
Saier, M.H., Jr., B.H. Eng, S. Fard, J. Garg, D.A. Haggerty, W.J. Hutchinson, D.L. Jack, E.C. Lai, H.J. Liu, D.P. Nusinew, A.M. Omar, S.S. Pao, I.T. Paulsen, J.A. Quan, M. Sliwinski, T.-T. Tseng, S. Wachi and G.B. Young (1999). Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochem. Biophys. Acta 1422: 1-56. 10082980
Samsó, M. (2016). A Guide to the 3D Structure of the Ryanodine Receptor Type 1 by cryoEM. Protein. Sci. [Epub: Ahead of Print] 27671094
Samurkas, A., X. Fan, D. Ma, R. Sundarraj, L. Lin, L. Yao, R. Ma, H. Jiang, P. Cao, Q. Gao, and Z. Yuchi. (2020). Discovery of Potential Species-Specific Green Insecticides Targeting the Lepidopteran Ryanodine Receptor. J Agric Food Chem. [Epub: Ahead of Print] 32207934
Sanchez, C., C. Berthier, B. Allard, J. Perrot, C. Bouvard, H. Tsutsui, Y. Okamura, and V. Jacquemond. (2018). Tracking the sarcoplasmic reticulum membrane voltage in muscle with a FRET biosensor. J Gen Physiol 150: 1163-1177. 29899059
Schug, Z.T., P.C. da Fonseca, C.D. Bhanumathy, L. Wagner, 2nd, X. Zhang, B. Bailey, E.P. Morris, D.I. Yule, and S.K. Joseph. (2008). Molecular characterization of the inositol 1,4,5-trisphosphate receptor pore-forming segment. J. Biol. Chem. 283: 2939-2948. 18025085
Seo, M.D., S. Velamakanni, N. Ishiyama, P.B. Stathopulos, A.M. Rossi, S.A. Khan, P. Dale, C. Li, J.B. Ames, M. Ikura, and C.W. Taylor. (2012). Structural and functional conservation of key domains in InsP3 and ryanodine receptors. Nature 483: 108-112. 22286060
Shi, J.L., L. Fu, and W.D. Wang. (2015). High expression of inositol 1,4,5-trisphosphate receptor, type 2 (ITPR2) as a novel biomarker for worse prognosis in cytogenetically normal acute myeloid leukemia. Oncotarget 6: 5299-5309. 25779662
Shirvanyants, D., S. Ramachandran, Y. Mei, L. Xu, G. Meissner, and N.V. Dokholyan. (2014). Pore dynamics and conductance of RyR1 transmembrane domain. Biophys. J. 106: 2375-2384. 24896116
Subedi, K.P., T.D. Singh, J.C. Kim, and S.H. Woo. (2012). Cloning and expression of a new inositol 1,4,5-trisphosphate receptor type 1 splice variant in adult rat atrial myocytes. Cell Mol Biol Lett 17: 124-135. 22207335
Subramanian, M., S. Jayakumar, S. Richhariya, and G. Hasan. (2013). Loss of IP3 receptor function in neuropeptide secreting neurons leads to obesity in adult Drosophila. BMC Neurosci 14: 157. 24350669
Sun, L., J. Shay, M. McLoed, K. Roodhouse, S.H. Chung, C.M. Clark, J.K. Pirri, M.J. Alkema, and C.V. Gabel. (2014). regeneration in C. elegans requires subcellular calcium release by ryanodine receptor channels and can be enhanced by optogenetic stimulation. J. Neurosci. 34: 15947-15956. 25429136
Sun, Q.A., D.T. Hess, L. Nogueira, S. Yong, D.E. Bowles, J. Eu, K.R. Laurita, G. Meissner, and J.S. Stamler. (2011). Oxygen-coupled redox regulation of the skeletal muscle ryanodine receptor-Ca2+ release channel by NADPH oxidase 4. Proc. Natl. Acad. Sci. USA 108: 16098-16103. 21896730
Sun, Z. and H. Xu. (2019). Ryanodine Receptors for Drugs and Insecticides: An Overview. Mini Rev Med Chem 19: 22-33. 29600763
Tao, Y., S. Gutteridge, E.A. Benner, L. Wu, D.F. Rhoades, M.D. Sacher, M.A. Rivera, J. Desaeger, and D. Cordova. (2013). Identification of a critical region in the Drosophila ryanodine receptor that confers sensitivity to diamide insecticides. Insect Biochem Mol Biol 43: 820-828. 23806522
Thomas, N.L., C.H. George, A.J. Williams, and F.A. Lai. (2007). Ryanodine receptor mutations in arrhythmias: advances in understanding the mechanisms of channel dysfunction. Biochem. Soc. Trans. 35:946-951. 17956252
Thomas-Virnig, C.L., P.A. Sims, J.S. Simske, and J. Hardin. (2004). The inositol 1,4,5-trisphosphate receptor regulates epidermal cell migration in Caenorhabditis elegans. Curr. Biol. 14: 1882-1887. 15498499
Troczka, B.J., A.J. Williams, C. Bass, M.S. Williamson, L.M. Field, and T.G. Davies. (2015). Molecular cloning, characterisation and mRNA expression of the ryanodine receptor from the peach-potato aphid, Myzus persicae. Gene 556: 106-112. 25447916
Troczka, B.J., M.S. Williamson, L.M. Field, and T.G.E. Davies. (2017). Rapid selection for resistance to diamide insecticides in Plutella xylostella via specific amino acid polymorphisms in the ryanodine receptor. Neurotoxicology 60: 224-233. 27246647
Tunwell, R.E.A., C. Wickenden, B.M.A. Bertrand, V.I. Shevchenko, M.B. Walsh, P.D. Allen and F.A. Lai (1996). The human cardiac muscle ryanodine receptor-calcium release channel: identification, primary structure and topological analysis. Biochem. J. 318: 477-487. 8809036
Van Petegem, F. (2012). Ryanodine receptors: structure and function. J. Biol. Chem. 287: 31624-31632. 22822064
Walker, D.S., N.J. Gower, S. Ly, G.L. Bradley, and H.A. Baylis. (2002). Regulated disruption of inositol 1,4,5-trisphosphate signaling in Caenorhabditis elegans reveals new functions in feeding and embryogenesis. Mol. Biol. Cell 13: 1329-1337. 11950942
Walker, D.S., R.P. Vázquez-Manrique, N.J. Gower, E. Gregory, W.R. Schafer, and H.A. Baylis. (2009). Inositol 1,4,5-trisphosphate signalling regulates the avoidance response to nose touch in Caenorhabditis elegans. PLoS Genet 5: e1000636. 19730689
Walker, M.A., T. Kohl, S.E. Lehnart, J.L. Greenstein, W.J. Lederer, and R.L. Winslow. (2015). On the Adjacency Matrix of RyR2 Cluster Structures. PLoS Comput Biol 11: e1004521. 26545234
Wang, K.Y., X.Z. Jiang, G.R. Yuan, F. Shang, and J.J. Wang. (2015). Molecular Characterization, mRNA Expression and Alternative Splicing of Ryanodine Receptor Gene in the Brown Citrus Aphid, Toxoptera citricida (Kirkaldy). Int J Mol Sci 16: 15220-15234. 26154764
Wei, R., X. Wang, Y. Zhang, S. Mukherjee, L. Zhang, Q. Chen, X. Huang, S. Jing, C. Liu, S. Li, G. Wang, Y. Xu, S. Zhu, A.J. Williams, F. Sun, and C.C. Yin. (2016). Structural insights into Ca2+-activated long-range allosteric channel gating of RyR1. Cell Res 26: 977-994. 27573175
Wheeler, G.L. and C. Brownlee. (2008). Ca2+ signalling in plants and green algae--changing channels. Trends Plant Sci. 13: 506-514. 18703378
Wu, S., F. Wang, J. Huang, Q. Fang, Z. Shen, and G. Ye. (2013). Molecular and cellular analyses of a ryanodine receptor from hemocytes of Pieris rapae. Dev Comp Immunol 41: 1-10. 23603125
Wu, S.F., D.D. Zhao, J.M. Huang, S.Q. Zhao, L.Q. Zhou, and C.F. Gao. (2018). Molecular characterization and expression profiling of ryanodine receptor gene in the pink stem borer, Sesamia inferens (Walker). Pestic Biochem Physiol 146: 1-6. 29626986
Xia, R., T. Stangler and J.J. Abramson (2000). Skeletal muscle ryanodine receptor is a redox sensor with a well defined redox potential that is sensitive to channel modulators. J. Biol. Chem. 275: 36556-36561. 10952995
Xu, L., D.D. Mowrey, V.R. Chirasani, Y. Wang, D.A. Pasek, N.V. Dokholyan, and G. Meissner. (2017). G4941K substitution in the pore-lining S6 helix of the skeletal muscle ryanodine receptor increases RyR1 sensitivity to cytosolic and luminal Ca2. J. Biol. Chem. [Epub: Ahead of Print] 29255089
Xu, L., Y. Wang, N. Yamaguchi, D.A. Pasek, and G. Meissner. (2008). Single channel properties of heterotetrameric mutant RyR1 ion channels linked to core myopathies. J. Biol. Chem. 283: 6321-6329. 18171678
Yuan, G.R., K.Y. Wang, X. Mou, R.Y. Luo, W. Dou, and J.J. Wang. (2017). Molecular cloning, mRNA expression and alternative splicing of a ryanodine receptor gene from the citrus whitefly, Dialeurodes citri (Ashmead). Pestic Biochem Physiol 142: 59-66. 29107248
Yuan, G.R., W.Z. Shi, W.J. Yang, X.Z. Jiang, W. Dou, and J.J. Wang. (2014). Molecular characteristics, mRNA expression, and alternative splicing of a ryanodine receptor gene in the oriental fruit fly, Bactrocera dorsalis (Hendel). PLoS One 9: e95199. 24740254
Zalk, R. and A.R. Marks. (2017). Ca2+ Release Channels Join the ''Resolution Revolution''. Trends. Biochem. Sci. [Epub: Ahead of Print] 28499500
Zalk, R., O.B. Clarke, A. des Georges, R.A. Grassucci, S. Reiken, F. Mancia, W.A. Hendrickson, J. Frank, and A.R. Marks. (2015). Structure of a mammalian ryanodine receptor. Nature 517: 44-49. 25470061
Zhao, M., P. Li, X. Li, L. Zhang, R.J. Winkfein and S.R.W. Chen (1999). Molecular identification of the ryanodine receptor pore-forming segment. J. Biol. Chem. 274: 25971-25974. 10473538
Zissimopoulos, S. and F.A. Lai. (2005). Interaction of FKBP12.6 with the cardiac ryanodine receptor C-terminal domain. J. Biol. Chem. 280: 5475-5485. 15591045


Hu H, Bandell M, Grandl J, Petrus M. (2012) 0
Agosto, M.A., I.A. Anastassov, and T.G. Wensel. (2018). Differential epitope masking reveals synapse-specific complexes of TRPM1. Vis Neurosci 35: E001. 29370879
Agosto, M.A., Z. Zhang, F. He, I.A. Anastassov, S.J. Wright, J. McGehee, and T.G. Wensel. (2014). Oligomeric State of Purified Transient Receptor Potential Melastatin-1 (TRPM1), a Protein Essential for Dim Light Vision. J. Biol. Chem. 289: 27019-27033. 25112866
Al-Bataineh, M.M., T.A. Sutton, and R.P. Hughey. (2017). Novel roles for mucin 1 in the kidney. Curr Opin Nephrol Hypertens 26: 384-391. 28622163
Alonso-Carbajo, L., M. Kecskes, G. Jacobs, A. Pironet, N. Syam, K. Talavera, and R. Vennekens. (2017). Muscling in on TRP channels in vascular smooth muscle cells and cardiomyocytes. Cell Calcium 66: 48-61. 28807149
Amantini, C., M. Mosca, M. Nabissi, R. Lucciarini, S. Caprodossi, A. Arcella, F. Giangaspero, and G. Santoni. (2007). Capsaicin-induced apoptosis of glioma cells is mediated by TRPV1 vanilloid receptor and requires p38 MAPK activation. J Neurochem 102: 977-990. 17442041
Amini, M., H. Wang, A. Belkacemi, M. Jung, A. Bertl, G. Schlenstedt, V. Flockerzi, and A. Beck. (2018). Identification of Inhibitory Ca Binding Sites in the Upper Vestibule of the Yeast Vacuolar TRP Channel. iScience 11: 1-12. [Epub: Ahead of Print] 30572205
Argudo, D., S. Capponi, N.P. Bethel, and M. Grabe. (2019). A multiscale model of mechanotransduction by the ankyrin chains of the NOMPC channel. J Gen Physiol. [Epub: Ahead of Print] 30728217
Arias-Darraz, L., D. Cabezas, C.K. Colenso, M. Alegría-Arcos, F. Bravo-Moraga, I. Varas-Concha, D.E. Almonacid, R. Madrid, and S. Brauchi. (2015). A transient receptor potential ion channel in Chlamydomonas shares key features with sensory transduction-associated TRP channels in mammals. Plant Cell 27: 177-188. 25595824
Aroke, E.N., K.L. Powell-Roach, R.B. Jaime-Lara, M. Tesfaye, A. Roy, P. Jackson, and P.V. Joseph. (2020). Taste the Pain: The Role of TRP Channels in Pain and Taste Perception. Int J Mol Sci 21:. 32824721
Autzen, H.E., A.G. Myasnikov, M.G. Campbell, D. Asarnow, D. Julius, and Y. Cheng. (2018). Structure of the human TRPM4 ion channel in a lipid nanodisc. Science 359: 228-232. 29217581
Baez, D., N. Raddatz, G. Ferreira, C. Gonzalez, and R. Latorre. (2014). Gating of thermally activated channels. Curr Top Membr 74: 51-87. 25366233
Bähner, M., S. Frechter, N. Da Silva, B. Minke, R. Paulsen, and A. Huber. (2002). Light-regulated subcellular translocation of Drosophila TRPL channels induces long-term adaptation and modifies the light-induced current. Neuron. 34: 83-93. 11931743
Barritt, G. and G. Rychkov. (2005). TRPs as mechanosensitive channels. Nat. Cell Biol. 7: 105-107. 15689975
Bautista D.M., J. Siemens, J.M. Glazer, P.R. Tsuruda, A.I. Basbaum, C.L. Stucky, S.E. Jordt, D. Julius. (2007). The menthol receptor TRPM8 is the principal detector of environmental cold. Nature. 448: 204-208. 17538622
Benemei, S., R. Patacchini, M. Trevisani, and P. Geppetti. (2015). TRP channels. Curr Opin Pharmacol 22: 18-23. 25725213
Bertamino, A., N. Iraci, C. Ostacolo, P. Ambrosino, S. Musella, V. Di Sarno, T. Ciaglia, G. Pepe, M. Sala, M.V. Soldovieri, I. Mosca, S. Gonzalez-Rodriguez, A. Fernandez-Carvajal, A. Ferrer-Montiel, E. Novellino, M. Taglialatela, P. Campiglia, and I. Gomez-Monterrey. (2018). Identification of a Potent Tryptophan-Based TRPM8 Antagonist With in Vivo Analgesic Activity. J Med Chem. [Epub: Ahead of Print] 29939028
Bidaux, G., A.S. Borowiec, C. Dubois, P. Delcourt, C. Schulz, F.V. Abeele, G. Lepage, E. Desruelles, A. Bokhobza, E. Dewailly, C. Slomianny, M. Roudbaraki, L. Héliot, J.L. Bonnal, B. Mauroy, P. Mariot, L. Lemonnier, and N. Prevarskaya. (2016). Targeting of short TRPM8 isoforms induces 4TM-TRPM8-dependent apoptosis in prostate cancer cells. Oncotarget. [Epub: Ahead of Print] 27074561
Bidaux, G., D. Gordienko, G. Shapovalov, V. Farfariello, A.S. Borowiec, O. Iamshanova, L. Lemonnier, M. Gueguinou, R. Guibon, G. Fromont, M. Paillard, Y. Gouriou, C. Chouabe, E. Dewailly, D. Gkika, P. López-Alvarado, J. Carlos Menéndez, L. Héliot, C. Slomianny, and N. Prevarskaya. (2018). 4TM-TRPM8 channels are new gatekeepers of the ER-mitochondria Ca transfer. Biochim. Biophys. Acta. 1865: 981-994. 29678654
Bidaux, G., M. Sgobba, L. Lemonnier, A.S. Borowiec, L. Noyer, S. Jovanovic, A.V. Zholos, and S. Haider. (2015). Functional and Modeling Studies of the Transmembrane Region of the TRPM8 Channel. Biophys. J. 109: 1840-1851. 26536261
BINET, L. (1960). [A rural center of medical biology]. Biol Med (Paris) 49: 165-177. 13800762
Binshtok, A.M., B.P. Bean, and C.J. Woolf. (2007). Inhibition of nociceptors by TRPV1-mediated entry of impermeant sodium channel blockers. Nature. 449(7162):607-610. 17914397
Bohlen, C.J., A. Priel, S. Zhou, D. King, J. Siemens, and D. Julius. (2010). A bivalent tarantula toxin activates the capsaicin receptor, TRPV1, by targeting the outer pore domain. Cell 141: 834-845. 20510930
Brauchi, S. and P. Orio. (2011). Voltage sensing in thermo-TRP channels. Adv Exp Med Biol 704: 517-530. 21290314
Burks, S.R., R.M. Lorsung, M.E. Nagle, T.W. Tu, and J.A. Frank. (2019). Focused ultrasound activates voltage-gated calcium channels through depolarizing TRPC1 sodium currents in kidney and skeletal muscle. Theranostics 9: 5517-5531. 31534500
Cabezas-Bratesco D., Brauchi S., Gonzalez-Teuber V., Steinberg X., Valencia I. and Colenso C. (201). The Different Roles of The Channel-Kinases TRPM6 and TRPM7. Curr Med Chem. 22(25):2943-53. 26179995
Caffrey M., Li D. and Dukkipati A. (2012). Membrane protein structure determination using crystallography and lipidic mesophases: recent advances and successes. Biochemistry. 51(32):6266-88. 22783824
Cai X., Srivastava S., Surindran S., Li Z. and Skolnik EY. (2014). Regulation of the epithelial Ca(2)(+) channel TRPV5 by reversible histidine phosphorylation mediated by NDPK-B and PHPT1. Mol Biol Cell. 25(8):1244-50. 24523290
Cai, R., X. Liu, R. Zhang, L. Hofmann, W. Zheng, M.R. Amin, L. Wang, Q. Hu, J.B. Peng, M. Michalak, V. Flockerzi, D.W. Ali, X.Z. Chen, and J. Tang. (2020). Autoinhibition of TRPV6 Channel and Regulation by PIP2. iScience 23: 101444. [Epub: Ahead of Print] 32829285
Callera, G.E., Y. He, A. Yogi, A.C. Montezano, T. Paravicini, G. Yao, and R.M. Touyz. (2009). Regulation of the novel Mg2+ transporter transient receptor potential melastatin 7 (TRPM7) cation channel by bradykinin in vascular smooth muscle cells. J Hypertens 27: 155-166. 19145781
Camacho Londoño, J.E., Q. Tian, K. Hammer, L. Schröder, J. Camacho Londoño, J.C. Reil, T. He, M. Oberhofer, S. Mannebach, I. Mathar, S.E. Philipp, W. Tabellion, F. Schweda, A. Dietrich, L. Kaestner, U. Laufs, L. Birnbaumer, V. Flockerzi, M. Freichel, and P. Lipp. (2015). A background Ca2+ entry pathway mediated by TRPC1/TRPC4 is critical for development of pathological cardiac remodelling. Eur Heart J 36: 2257-2266. 26069213
Cao, E. (2020). Structural mechanisms of transient receptor potential ion channels. J Gen Physiol 152:. 31972006
Cao, E., M. Liao, Y. Cheng, and D. Julius. (2013). TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504: 113-118. 24305161
Caterina, M.J., M.A. Schumacher, M. Tominaga, T.A. Rosen, J. D. Levine, and D. Julius. (1997). The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389: 816-824. 9349813
Chandel, A., K.K. Das, and A.K. Bachhawat. (2016). Glutathione depletion activates the yeast vacuolar TRP channel, Yvc1p by reversible glutathionylation of specific cysteines. Mol. Biol. Cell. [Epub: Ahead of Print] 27708136
Chang Y., Schlenstedt G., Flockerzi V. and Beck A. (2010). Properties of the intracellular transient receptor potential (TRP) channel in yeast, Yvc1. FEBS Lett. 584(10):2028-32. 20035756
Chen, J., X.F. Zhang, M.E. Kort, J.R. Huth, C. Sun, L.J. Miesbauer, S.C. Cassar, T. Neelands, V.E. Scott, R.B. Moreland, R.M. Reilly, P.J. Hajduk, P.R. Kym, C.W. Hutchins, and C.R. Faltynek. (2008). Molecular determinants of species-specific activation or blockade of TRPA1 channels. J. Neurosci. 28: 5063-5071. 18463259
Cheng Y., Nash H.A. (2007). Drosophila TRP channels require a protein with a distinctive motif encoded by the inaF locus. Proc. Natl. Acad. Sci. U.S.A. 104: 17730-17734. 17968007
Cheng, K.T., X. Liu, H.L. Ong, and I.S. Ambudkar. (2008). Functional requirement for Orai1 in store-operated TRPC1-STIM1 channels. J. Biol. Chem. 283: 12935-12940. 18326500
Chernov-Rogan, T., E. Gianti, C. Liu, E. Villemure, A.P. Cridland, X. Hu, E. Ballini, W. Lange, H. Deisemann, T. Li, S.I. Ward, D.H. Hackos, S. Magnuson, B. Safina, M.L. Klein, M. Volgraf, V. Carnevale, and J. Chen. (2019). TRPA1 modulation by piperidine carboxamides suggests an evolutionarily conserved binding site and gating mechanism. Proc. Natl. Acad. Sci. USA 116: 26008-26019. 31796582
Chu, X., Q. Tong, J. Wozney, W. Zhang, J.Y. Cheung, K. Conrad, V. Mazack, R. Stahl, D.L. Barber, and B.A. Miller. (2005). Identification of an N-terminal TRPC2 splice variant which inhibits calcium influx. Cell Calcium 37: 173-182. 15589997
Chubanov, V., K.P. Schlingmann, J. Waring, J. Heinzinger, S. Kaske, S. Waldegger, M.M. Schnitzler, and T. Gudermann. (2007). Hypomagnesemia with secondary hypocalcemia due to a missense mutation in the putative pore-forming region of TRPM6. J. Biol. Chem. 282: 7656-7667. 17197439
Chubanov, V., S. Waldegger, M.M. y Schnitzler, H. Vitzthum, M.C. Sassen, H.W. Seyberth, M. Konrad, and T. Gudermann. (2004). Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc. Natl. Acad. Sci. USA 101: 2894-2899. 14976260
Chyb, S., P. Raghu, and R.C. Hardie. (1999). Polyunsaturated fatty acids activate the Drosophila light-sensitive channels TRP and TRPL. Nature 397: 255-259. 9930700
Clapham D.E. (2007). SnapShot: mammalian TRP channels. Cell. 129: 220. 17418797
Clapham, D.E. (1996). TRP is cracked, but is CRAC TRP? Neuron 16: 1069-1072. 8663982
Clapham, D.E. (2003). TRP channels as cellular sensors. Nature 426: 517-524. 14654832
Cruz-Torres, I., D.S. Backos, and P.S. Herson. (2020). Characterization and Optimization of the Novel Transient Receptor Potential Melastatin 2 Antagonist tatM2NX. Mol Pharmacol 97: 102-111. 31772034
Csanády, L. and B. Törocsik. (2009). Four Ca2+ ions activate TRPM2 channels by binding in deep crevices near the pore but intracellularly of the gate. J Gen Physiol 133: 189-203. 19171771
D'hoedt, D., G. Owsianik, J. Prenen, M.P. Cuajungco, C. Grimm, S. Heller, T. Voets, and B. Nilius. (2008). Stimulus-specific modulation of the cation channel TRPV4 by PACSIN 3. J. Biol. Chem. 283(10): 6272-6280. 18174177
Damak, S., M. Rong, K. Yasumatsu, Z. Kokrashvili, C.A. Pérez, N. Shigemura, R. Yoshida, B. Mosinger, Jr, J.I. Glendinning, Y. Ninomiya, and R.F. Margolskee. (2006). Trpm5 null mice respond to bitter, sweet, and umami compounds. Chem Senses 31: 253-264. 16436689
Damann, N., G. Bahrenberg, H. Stockhausen, C.J. Habermann, B. Lesch, R. Frank-Foltyn, J. Lee, J. Ann, and T. Christoph. (2020). In vitro characterization of the thermoneutral transient receptor potential vanilloid-1 (TRPV1) inhibitor GRTE16523. Eur J Pharmacol 871: 172934. 31954706
Demion, M., P. Bois, P. Launay, and R. Guinamard. (2007). TRPM4, a Ca2+-activated nonselective cation channel in mouse sino-atrial node cells. Cardiovasc Res 73: 531-538. 17188667
Diver, M.M., Y. Cheng, and D. Julius. (2019). Structural insights into TRPM8 inhibition and desensitization. Science. [Epub: Ahead of Print] 31488702
Dodier, Y., U. Banderali, H. Klein, O. Topalak, O. Dafi, M. Simoes, G. Bernatchez, R. Sauvé, and L. Parent. (2004). Outer pore topology of the ECaC-TRPV5 channel by cysteine scan mutagenesis. J. Biol. Chem. 279: 6853-6862. 14630907
Dohke, Y., Y.S. Oh, I.S. Ambudkar, and R.J. Turner. (2004). Biogenesis and topology of the transient receptor potential Ca2+ channel TRPC1. J. Biol. Chem. 279: 12242-12248. 14707123
Donate-Macian P., Bano-Polo M., Vazquez-Ibar JL., Mingarro I. and Peralvarez-Marin A. (2015). Molecular and topological membrane folding determinants of transient receptor potential vanilloid 2 channel. Biochem Biophys Res Commun. 462(3):221-6. 25956061
Du, E.J., T.J. Ahn, I. Kwon, J.H. Lee, J.H. Park, S.H. Park, T.M. Kang, H. Cho, T.J. Kim, H.W. Kim, Y. Jun, H.J. Lee, Y.S. Lee, J.Y. Kwon, and K. Kang. (2016). TrpA1 Regulates Defecation of Food-Borne Pathogens under the Control of the Duox Pathway. PLoS Genet 12: e1005773. 26726767
Duan, J., J. Li, B. Zeng, G.L. Chen, X. Peng, Y. Zhang, J. Wang, D.E. Clapham, Z. Li, and J. Zhang. (2018). Structure of the mouse TRPC4 ion channel. Nat Commun 9: 3102. 30082700
Eigenbrod, O., K.Y. Debus, J. Reznick, N.C. Bennett, O. Sánchez-Carranza, D. Omerbašić, D.W. Hart, A.J. Barker, W. Zhong, H. Lutermann, J.V. Katandukila, G. Mgode, T.J. Park, and G.R. Lewin. (2019). Rapid molecular evolution of pain insensitivity in multiple African rodents. Science 364: 852-859. 31147513
Fan, C., W. Choi, W. Sun, J. Du, and W. Lu. (2018). Structure of the human lipid-gated cation channel TRPC3. Elife 7:. 29726814
Feng, Z., W. Li, A. Ward, B.J. Piggott, E.R. Larkspur, P.W. Sternberg, and X.Z. Xu. (2006). A C. elegans model of nicotine-dependent behavior: regulation by TRP-family channels. Cell 127: 621-633. 17081982
Fine, M., X. Li, and S. Dang. (2019). Structural insights into group II TRP channels. Cell Calcium 86: 102107. [Epub: Ahead of Print] 31841954
García-Martínez, C., C. Morenilla-Palao, R. Planells-Cases, J.M. Merino, and A. Ferrer-Montiel. (2000). Identification of an aspartic residue in the P-loop of the vanilloid receptor that modulates pore properties. J. Biol. Chem. 275: 32552-32558. 10931826
García-Sanz, N., P. Valente, A. Gomis, A. Fernández-Carvajal, G. Fernández-Ballester, F. Viana, C. Belmonte, and A. Ferrer-Montiel. (2007). A role of the transient receptor potential domain of vanilloid receptor I in channel gating. J. Neurosci. 27: 11641-11650. 17959807
Gevaert, T., J. Vriens, A. Segal, W. Everaerts, T. Roskams, K. Talavera, G. Owsianik, W. Liedtke, D. Daelemans, I. Dewachter, F. van Leuven, T. Voets, D. de Ridder, and B. Nilius. (2007). Deletion of the transient receptor potential cation channel TRPV4 (Trp12) impairs murine bladder voiding. J. Clin. Invest. 117(11): 3453-3462.
Ghata, J. and B.D. Cowley, Jr. (2017). Polycystic Kidney Disease. Compr Physiol 7: 945-975. 28640449
Gopal, S., P. Søgaard, H.A. Multhaupt, C. Pataki, E. Okina, X. Xian, M.E. Pedersen, T. Stevens, O. Griesbeck, P.W. Park, R. Pocock, and J.R. Couchman. (2015). Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels. J. Cell Biol. 210: 1199-1211. 26391658
Groppi, S., F. Belotti, R.L. Brandão, E. Martegani, and R. Tisi. (2011). Glucose-induced calcium influx in budding yeast involves a novel calcium transport system and can activate calcineurin. Cell Calcium 49: 376-386. 21511333
Guo, J., J. She, W. Zeng, Q. Chen, X.C. Bai, and Y. Jiang. (2017). Structures of the calcium-activated, non-selective cation channel TRPM4. Nature 552: 205-209. 29211714
Guo, W. and L. Chen. (2019). Recent progress in structural studies on canonical TRP ion channels. Cell Calcium 83: 102075. [Epub: Ahead of Print] 31491644
Haladyna, J.N., T. Pastuer, S.S. Riedel, A.L. Perraud, and K.M. Bernt. (2016). Transient potential receptor melastatin-2 (Trpm2) does not influence murine MLL-AF9-driven AML leukemogenesis or in vitro response to chemotherapy. Exp Hematol. [Epub: Ahead of Print] 27033163
Hardie, R.C. and B. Minke. (1993). Novel Ca2+ channels underlying transduction in Drosophila photoreceptors: implications for phosphoinositide-mediated Ca2+ mobilization. Trends Neurosci 16: 371-376. 7694408
He, Y., G. Yao, C. Savoia, and R.M. Touyz. (2005). Transient receptor potential melastatin 7 ion channels regulate magnesium homeostasis in vascular smooth muscle cells: role of angiotensin II. Circ Res 96: 207-215. 15591230
Held, K., F. Gruss, V.D. Aloi, A. Janssens, C. Ulens, T. Voets, and J. Vriens. (2018). Mutations in the voltage-sensing domain affect the alternative ion permeation pathway in the TRPM3 channel. J. Physiol. [Epub: Ahead of Print] 29604058
Hellwig, N., N. Albrecht, C. Harteneck, G. Schultz, and M. Schaefer. (2005). Homo- and heteromeric assembly of TRPV channel subunits. J Cell Sci 118: 917-928. 15713749
Hilton, J.K., M. Kim, and W.D. Van Horn. (2019). Structural and Evolutionary Insights Point to Allosteric Regulation of TRP Ion Channels. Acc Chem Res. [Epub: Ahead of Print] 31149807
Hilton, J.K., T. Salehpour, N.J. Sisco, P. Rath, and W.D. Van Horn. (2018). Phosphoinositide-interacting regulator of TRP (PIRT) has opposing effects on human and mouse TRPM8 ion channels. J. Biol. Chem. [Epub: Ahead of Print] 29724821
Hoenderop, J.G., A.W. van der Kemp, A. Hartog, S.F. van de Graaf, C.H. van Os, P.H. Willems, and R.J. Bindels. (1999). Molecular identification of the apical Ca2+ channel in 1, 25-dihydroxyvitamin D3-responsive epithelia. J. Biol. Chem. 274: 8375-8378. 10085067
Hoenderop, J.G.J., T. Voets, S. Hoefs, F. Weidema, J. Prenen, B. Nilius, and R.J.M. Bindels. (2003). Homo- and heterotetrameric architecture of the epithelial Ca2+ channels TRPV5 and TRPV6. EMBO J. 22: 776-785. 12574114
Hofmann, L., H. Wang, A. Beck, U. Wissenbach, and V. Flockerzi. (2016). A conserved gating element in TRPV6 channels. Cell Calcium. [Epub: Ahead of Print] 28029385
Hofmann, L., H. Wang, W. Zheng, S.E. Philipp, P. Hidalgo, A. Cavalié, X.Z. Chen, A. Beck, and V. Flockerzi. (2017). The S4---S5 linker - gearbox of TRP channel gating. Cell Calcium. [Epub: Ahead of Print] 28416203
Huang, Y., B. Roth, W. Lü, and J. Du. (2019). Ligand recognition and gating mechanism through three ligand-binding sites of human TRPM2 channel. Elife 8:. 31513012
Huffer, K.E., A.A. Aleksandrova, A. Jara-Oseguera, L.R. Forrest, and K.J. Swartz. (2020). Global alignment and assessment of TRP channel transmembrane domain structures to explore functional mechanisms. Elife 9:. 32804077
Hughes, T.E., J.S. Del Rosario, A. Kapoor, A.T. Yazici, Y. Yudin, E.C. Fluck, 3rd, M. Filizola, T. Rohacs, and V.Y. Moiseenkova-Bell. (2019). Structure-based characterization of novel TRPV5 inhibitors. Elife 8:. 31647410
Inoue, K., D. Branigan, and Z.G. Xiong. (2010). Zinc-induced neurotoxicity mediated by transient receptor potential melastatin 7 channels. J. Biol. Chem. 285: 7430-7439. 20048154
Jin, P., D. Bulkley, Y. Guo, W. Zhang, Z. Guo, W. Huynh, S. Wu, S. Meltzer, T. Cheng, L.Y. Jan, Y.N. Jan, and Y. Cheng. (2017). Electron cryo-microscopy structure of the mechanotransduction channel NOMPC. Nature 547: 118-122. 28658211
Jirku, M., Z. Lansky, L. Bednarova, M. Sulc, L. Monincova, P. Majer, L. Vyklicky, J. Vondrasek, J. Teisinger, and K. Bousova. (2016). The characterization of a novel S100A1 binding site in the N-terminus of TRPM1. Int J Biochem. Cell Biol. [Epub: Ahead of Print] 27435061
Jo, A.O., M. Lakk, A.M. Frye, T.T. Phuong, S.N. Redmon, R. Roberts, B.A. Berkowitz, O. Yarishkin, and D. Križaj. (2016). Differential volume regulation and calcium signaling in two ciliary body cell types is subserved by TRPV4 channels. Proc. Natl. Acad. Sci. USA 113: 3885-3890. 27006502
John Haynes, W., X.L. Zhou, Z.W. Su, S.H. Loukin, Y. Saimi, and C. Kung. (2008). Indole and other aromatic compounds activate the yeast TRPY1 channel. FEBS Lett. 582: 1514-1518. 18396169
Jordt, S.-E. and D. Julius. (2002). Molecular basis for species-specific sensitivity to "hot" chili peppers. Cell 108: 421-430. 11853675
Jordt, S.E., D.M. Bautista, H.H. Chuang, D.D. McKemy, P.M. Zygmunt, E.D. Hogestatt, I.D. Meng, and D. Julius. (2004). Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427: 260-265. 14712238
Jorgensen, C. and C. Domene. (2018). Location and Character of Volatile General Anesthetics Binding Sites in the Transmembrane Domain of TRPV1. Mol Pharm 15: 3920-3930. 30067911
Kang, L., J. Gao, W.R. Schafer, Z. Xie, and X.Z. Xu. (2010). C. elegans TRP family protein TRP-4 is a pore-forming subunit of a native mechanotransduction channel. Neuron. 67: 381-391. 20696377
Katz, B., T. Oberacker, D. Richter, H. Tzadok, M. Peters, B. Minke, and A. Huber. (2013). Drosophila TRP and TRPL are assembled as homomultimeric channels in vivo. J Cell Sci 126: 3121-3133. 23687378
Kedei, N., T. Szabo, J.D. Lile, J.J. Treanor, Z. Olah, M.J. Iadarola, and P.M. Blumberg. (2001). Analysis of the native quaternary structure of vanilloid receptor 1. J. Biol. Chem. 276: 28613-28619. 11358970
Kelemen, B., E. Lisztes, A. Vladár, M. Hanyicska, J. Almássy, A. Oláh, A. Gábor Szöllősi, Z. Pénzes, J. Posta, T. Voets, T. Bíró, and B. István Tóth. (2020). Volatile anaesthetics inhibit the thermosensitive nociceptor ion channel transient receptor potential melastatin 3 (TRPM3). Biochem Pharmacol 113826. [Epub: Ahead of Print] 31987857
Kemp, B.J., D.L. Church, J. Hatzold, B. Conradt, and E.J. Lambie. (2009). Gem-1 encodes an SLC16 monocarboxylate transporter-related protein that functions in parallel to the gon-2 TRPM channel during gonad development in Caenorhabditis elegans. Genetics 181: 581-591. 19087963
Kim, J., Y.D. Chung, D. Park, S. Choi, D.W. Shin, H. Soh, H.W. Lee, W. Son, J. Yim, C.-S. Park, M.J. Kernan, and C. Kim. (2003). A TRPV family ion channel required for hearing in Drosophila. Nature 424: 81-82. 12819662
Kim, S.J., G.H. Park, D. Kim, J. Lee, H. Min, E. Wall, C.J. Lee, M.I. Simon, S.J. Lee, and S.K. Han. (2011). Analysis of cellular and behavioral responses to imiquimod reveals a unique itch pathway in transient receptor potential vanilloid 1 (TRPV1)-expressing neurons. Proc. Natl. Acad. Sci. USA 108: 3371-3376. 21300878
Kim, S.J., Y.S. Kim, J.P. Yuan, R.S. Petralia, P.F. Worley, and D.J. Linden. (2003). Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluR1. Nature 426: 285-291. 14614461
Kiselyov, K., X. Xu, G. Mozhayeva, T. Kuo, I. Pessah, G. Mignery, X. Zhu, L. Birnbaumer, and S. Muallem. (1998). Functional interaction between InsP3 receptors and store-operated Htrp3 channels. Nature 396: 478-482. 9853757
Knowles, H., J.W. Heizer, Y. Li, K. Chapman, C.A. Ogden, K. Andreasen, E. Shapland, G. Kucera, J. Mogan, J. Humann, L.L. Lenz, A.D. Morrison, and A.L. Perraud. (2011). Transient Receptor Potential Melastatin 2 (TRPM2) ion channel is required for innate immunity against Listeria monocytogenes. Proc. Natl. Acad. Sci. USA 108: 11578-11583. 21709234
Ko, K.D., G. Bhardwaj, Y. Hong, G.S. Chang, K. Kiselyov, D.B. van Rossum, and R.L. Patterson. (2009). Phylogenetic profiles reveal structural/functional determinants of TRPC3 signal-sensing antennae. Commun Integr Biol 2: 133-137. 19704910
Kon, S., A. Takaku, F. Toyama, E. Takayama-Watanabe, and A. Watanabe. (2019). Acrosome reaction-inducing substance triggers two different pathways of sperm intracellular signaling in newt fertilization. Int J Dev Biol 63: 589-595. 32149368
Krapivinsky, G., L. Krapivinsky, Y. Manasian, and D.E. Clapham. (2014). The TRPM7 Chanzyme Is Cleaved to Release a Chromatin-Modifying Kinase. Cell 157: 1061-1072. 24855944
Kremeyer, B., F. Lopera, J.J. Cox, A. Momin, F. Rugiero, S. Marsh, C.G. Woods, N.G. Jones, K.J. Paterson, F.R. Fricker, A. Villegas, N. Acosta, N.G. Pineda-Trujillo, J.D. Ramírez, J. Zea, M.W. Burley, G. Bedoya, D.L. Bennett, J.N. Wood, and A. Ruiz-Linares. (2010). A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron. 66: 671-680. 20547126
Kühn, F.J., G. Knop, and A. Lückhoff. (2007). The transmembrane segment S6 determines cation versus anion selectivity of TRPM2 and TRPM8. J. Biol. Chem. 282: 27598-27609. 17604279
Kumar, A., A.K. Mishra, V. Singh, S. Yadav, A. Saxena, S.K. Garg, and D.K. Swain. (2019). Molecular and functional insights into Transient Receptor Potential Vanilloid 1 (TRPV1) in bull spermatozoa. Theriogenology 128: 207-217. 30784807
Kurganov, E., S. Saito, C.T. Saito, and M. Tominaga. (2017). Requirement of extracellular Ca2+ binding to specific amino acids for heat-evoked activation of TRPA1. J. Physiol. [Epub: Ahead of Print] 28194754
Lambers, T.T., A.F. Weidema, B. Nilius, J.G. Hoenderop, and R.J. Bindels. (2004). Regulation of the mouse epithelial Ca2(+) channel TRPV6 by the Ca2+-sensor calmodulin. J. Biol. Chem. 279: 28855-28861. 15123711
Lan, L., H. Brereton, and G.J. Barritt. (1998). The role of calmodulin-binding sites in the regulation of the Drosophila TRPL cation channel expressed in Xenopus laevis oocytes by ca2+, inositol 1,4,5-trisphosphate and GTP-binding proteins. Biochem. J. 330(Pt3): 1149-1158. 9494079
Latorre, R., C. Zaelzer, and S. Brauchi. (2009). Structure-functional intimacies of transient receptor potential channels. Q. Rev. Biophys. 42: 201-246. 20025796
Launay, P., A. Fleig, A.-L. Perraud, A.M. Scharenberg, R. Penner, and J.-P. Kinet. (2002). TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 109: 397-407. 12015988
Laursen, W.J., E.O. Anderson, L.J. Hoffstaetter, S.N. Bagriantsev, and E.O. Gracheva. (2015). Species-specific temperature sensitivity of TRPA1. Temperature (Austin) 2: 214-226. 27227025
Laursen, W.J., S.N. Bagriantsev, and E.O. Gracheva. (2014). TRPA1 channels: chemical and temperature sensitivity. Curr Top Membr 74: 89-112. 25366234
Lee, G., J. Choi, Y.J. Nam, M.J. Song, J.K. Kim, W.J. Kim, P. Kim, J.S. Lee, S. Kim, K.T. No, J.H. Lee, J.K. Lee, and Y. Choi. (2019). Identification and characterization of saikosaponins as antagonists of transient receptor potential A1 channel. Phytother Res. [Epub: Ahead of Print] 31782210
Lee, Y., Y. Lee, J. Lee, S. Bang, S. Hyun, J. Kang, S.T. Hong, E. Bae, B.K. Kaang, and J. Kim. (2005). Pyrexia is a new thermal transient receptor potential channel endowing tolerance to high temperatures in Drosophila melanogaster. Nat. Genet. 37: 305-310. 15731759
Leffler, A., A. Lattrell, S. Kronewald, F. Niedermirtl, and C. Nau. (2011). Activation of TRPA1 by membrane permeable local anesthetics. Mol Pain 7: 62. 21861907
Leffler, A., M.J. Fischer, D. Rehner, S. Kienel, K. Kistner, S.K. Sauer, N.R. Gavva, P.W. Reeh, and C. Nau (2008). The vanilloid receptor TRPV1 is activated and sensitized by local anesthetics in rodent sensory neurons. J Cl- in Invest 118: 763-776. 18172555
Li, M., E. Liu, Q. Zhou, S. Li, X. Wang, Y. Liu, L. Wang, D. Sun, J. Ye, Y. Gao, X. Yang, J. Liu, Y. Yang, and J.Z. Wang. (2018). TRPC1 Null Exacerbates Memory Deficit and Apoptosis Induced by Amyloid-β. J Alzheimers Dis 63: 761-772. 29660945
Li, M., J. Du, J. Jiang, W. Ratzan, L.T. Su, L.W. Runnels, and L. Yue. (2007). Molecular Determinants of Mg2+ and Ca2+ Permeability and pH Sensitivity in TRPM6 and TRPM7. J. Biol. Chem. 282(35):25817-25830. 17599911
Li, W., Y. Ding, C. Smedley, Y. Wang, S. Chaudhari, L. Birnbaumer, and R. Ma. (2017). Increased glomerular filtration rate and impaired contractile function of mesangial cells in TRPC6 knockout mice. Sci Rep 7: 4145. 28646178
Liao, B.K., A.N. Deng, S.C. Chen, M.Y. Chou, and P.P. Hwang. (2007). Expression and water calcium dependence of calcium transporter isoforms in zebrafish gill mitochondrion-rich cells. BMC Genomics. 8: 354. 17915033
Liao, M., E. Cao, D. Julius, and Y. Cheng. (2013). Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504: 107-112. 24305160
Lichtenegger, M., T. Stockner, M. Poteser, H. Schleifer, D. Platzer, C. Romanin, and K. Groschner. (2013). A novel homology model of TRPC3 reveals allosteric coupling between gate and selectivity filter. Cell Calcium 54: 175-185. 23800762
Liedtke, W., Y. Choe, M.A. Martí-Renom, A.M. Bell, C.S. Denis, A. Sali, A.J. Hudspeth, J.M. Friedman and S. Heller (2000). Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103: 525-535. 11081638
Lindström, J.B., N.T. Pierce, and M.I. Latz. (2017). Role of TRP Channels in Dinoflagellate Mechanotransduction. Biol Bull 233: 151-167. 29373067
Liu X., K.T. Cheng, B.C. Bandyopadhyay, B. Pani, A. Dietrich, B.C. Paria, W.D. Swaim, D. Beech, E. Yildrim, B.B. Singh, L. Birnbaumer, I.S. Ambudkar. (2007a). Attenuation of store-operated Ca2+ current impairs salivary gland fluid secretion in TRPC1(-/-) mice. Proc Natl Acad Sci U S A. 104: 17542-17547. 17956991
Liu, L., Y. Li, R. Wang, C. Yin, Q. Dong, H. Hing, C. Kim, and M.J. Welsh. (2007). Drosophila hygrosensation requires the TRP channels water witch and nanchung. Nature 450: 294-298. 17994098
Liu, S., C. Guo, Z. Dang, and X. Liang. (2016). Comparative proteomics reveal the mechanism of Tween80 enhanced phenanthrene biodegradation by Sphingomonas sp. GY2B. Ecotoxicol Environ Saf 137: 256-264. [Epub: Ahead of Print] 27984820
Liu, X., B.B. Singh, and I.S. Ambudkar. (2003). TRPC1 is required for functional store-operated Ca2+ channels. Role of acidic amino acid residues in the S5-S6 region. J. Biol. Chem. 278: 11337-11343. 12536150
Liu, X., B.C. Bandyopadhyay, B.B. Singh, K. Groschner, and I.S. Ambudkar. (2005). Molecular analysis of a store-operated and 2-acetyl-sn-glycerol-sensitive non-selective cation channel. Heteromeric assembly of TRPC1-TRPC3. J. Biol. Chem. 280: 21600-21606. 15834157
Loukin, S., Z. Su, X. Zhou, and C. Kung. (2010). Forward genetic analysis reveals multiple gating mechanisms of TRPV4. J. Biol. Chem. 285: 19884-19890. 20424166
Luo, J. and H. Hu. (2014). Thermally activated TRPV3 channels. Curr Top Membr 74: 325-364. 25366242
Ma, H.T., Z. Peng, T. Hiragun, S. Iwaki, A.M. Gilfillan, and M.A. Beaven. (2008). Canonical transient receptor potential 5 channel in conjunction with Orai1 and STIM1 allows Sr2+ entry, optimal influx of Ca2+, and degranulation in a rat mast cell line. J. Immunol. 180: 2233-2239. 18250430
Ma, Y., R. Sugiura, A. Koike, H. Ebina, S.O. Sio, and T. Kuno. (2011). Transient receptor potential (TRP) and Cch1-Yam8 channels play key roles in the regulation of cytoplasmic Ca2+ in fission yeast. PLoS One 6: e22421. 21811607
Mack, K. and M.J.M. Fischer. (2017). Disrupting sensitization of TRPV4. Neuroscience 352: 1-8. [Epub: Ahead of Print] 28372987
Macpherson, L.J., A.E. Dubin, M.J. Evans, F. Marr, P.G. Schultz, B.F. Cravatt, and A. Patapoutian. (2007). Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445: 541-545. 17237762
Madej, M.G. and C.M. Ziegler. (2018). Dawning of a new era in TRP channel structural biology by cryo-electron microscopy. Pflugers Arch 470: 213-225. 29344776
Mammadova-Bach, E., M. Nagy, J.W.M. Heemskerk, B. Nieswandt, and A. Braun. (2019). Store-operated calcium entry in thrombosis and thrombo-inflammation. Cell Calcium 77: 39-48. 30530092
Mao, F., L. Guo, M. Jin, X.M. Qiao, G.Y. Ye, and J. Huang. (2018). Molecular cloning and characterization of TRPVs in two rice pests: Nilaparvata lugens (Stål) and Nephotettix cincticeps (Uhler). Pest Manag Sci. [Epub: Ahead of Print] 30370997
Maruyama, Y., T. Ogura, K. Mio, S. Kiyonaka, K. Kato, Y. Mori, and C. Sato. (2007). Three-dimensional Reconstruction Using Transmission Electron Microscopy Reveals a Swollen, Bell-shaped Structure of Transient Receptor Potential Melastatin Type 2 Cation Channel. J. Biol. Chem. 282: 36961-36970. 17940282
Matta, J.A. and G.P. Ahern. (2007). Voltage is a partial activator of rat thermosensitive TRP channels. J. Physiol. 585(Pt 2):469-482. 17932142
Matta, J.A., P.M. Cornett, R.L. Miyares, K. Abe, N. Sahibzada, and G.P. Ahern. (2008). General anesthetics activate a nociceptive ion channel to enhance pain and inflammation. Proc. Natl. Acad. Sci. USA 105: 8784-8789. 18574153
McCleskey E.W. and M.S. Gold. (1999). Ion channels of nociception. Annu. Rev. Physiol. 61: 835-856. 10099712
McGoldrick, L.L., A.K. Singh, K. Saotome, M.V. Yelshanskaya, E.C. Twomey, R.A. Grassucci, and A.I. Sobolevsky. (2017). Opening of the human epithelial calcium channel TRPV6. Nature. [Epub: Ahead of Print] 29258289
Mederos y Schnitzler, M., J. Wäring, T. Gudermann, and V. Chubanov. (2008). Evolutionary determinants of divergent calcium selectivity of TRPM channels. FASEB J. 22(5): 1540-1551. 18073331
Memon, T., O. Yarishkin, C.A. Reilly, D. Krizaj, B.M. Olivera, and R.W. Teichert. (2019). trans-Anethole of Fennel oil is a selective and non-electrophilic agonist of the TRPA1 ion channel. Mol Pharmacol. [Epub: Ahead of Print] 30679204
Mercado, J., A. Gordon-Shaag, W.N. Zagotta, and S.E. Gordon. (2010). Ca2+-dependent desensitization of TRPV2 channels is mediated by hydrolysis of phosphatidylinositol 4,5-bisphosphate. J. Neurosci. 30: 13338-13347. 20926660
Minke, B. and B. Cook. (2002). TRP channel proteins and signal transduction. Physiol. Rev. 82: 429-472. 11917094
Mio, K., T. Ogura, and C. Sato. (2008). Structure of six-transmembrane cation channels revealed by single-particle analysis from electron microscopic images. J Synchrotron Radiat 15: 211-214. 18421141
Mio, K., T. Ogura, S. Kiyonaka, Y. Hiroaki, Y. Tanimura, Y. Fujiyoshi, Y. Mori, and C. Sato. (2007). The TRPC3 channel has a large internal chamber surrounded by signal sensing antennas. J. Mol. Biol. 367: 373-383. 17258231
Moiseenkova-Bell, V.Y., L.A. Stanciu, I.I. Serysheva, B.J. Tobe, and T.G. Wensel. (2008). Structure of TRPV1 channel revealed by electron cryomicroscopy. Proc. Natl. Acad. Sci. USA 105: 7451-7455. 18490661
Montell, C. (2005). The TRP superfamily of cation channels. Science STKE 272: 1-24. 15728426
Montell, C. and G.M. Rubin. (1989). Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2: 1313-1323. 2516726
Montell, C., L. Birnbaumer, and V. Flockerzi. (2002). The TRP channels, a remarkably functional family. Cell 108: 595-598. 11893331
Moparthi, L., S. Kjellström, P. Kjellbom, M.R. Filipovic, P.M. Zygmunt, and U. Johanson. (2020). Electrophile-Induced Conformational Switch of the Human TRPA1 Ion Channel Detected by Mass Spectrometry. Int J Mol Sci 21:. 32933054
Motter, A.L. and G.P. Ahern. (2012). TRPA1 Is a Polyunsaturated Fatty Acid Sensor in Mammals. PLoS One 7: e38439. 22723860
Moussaieff, A., N. Rimmerman, T. Bregman, A. Straiker, C.C. Felder, S. Shoham, Y. Kashman, S.M. Huang, H. Lee, E. Shohami, K. Mackie, M.J. Caterina, J.M. Walker, E. Fride, and R. Mechoulam. (2008). Incensole acetate, an incense component, elicits psychoactivity by activating TRPV3 channels in the brain. FASEB J. 22: 3024-3034. 18492727
Mukerji, N., T.V. Damodaran, and M.P. Winn. (2007). TRPC6 and FSGS: the latest TRP channelopathy. Biochim. Biophys. Acta. 1772: 859-868. 17459670
Mulukala, S.K.N., S.S. Irukuvajjula, K. Kumar, K. Garai, P. Venkatesu, R. Vadrevu, and A.K. Pasupulati. (2020). Structural features and oligomeric nature of human podocin domain. Biochem Biophys Rep 23: 100774. 32617419
Murillo-Rodriguez, E., J.C. Pastrana-Trejo, M. Salas-Crisóstomo, and M. de-la-Cruz. (2017). The endocannabinoid system modulating levels of consciousness, emotions and likely dream contents. CNS Neurol Disord Drug Targets. [Epub: Ahead of Print] 28240187
Nadler, M.J.S., M.C. Hermosura, K. Inabe, A.-L. Perraud, Q. Zhu, A.J. Stokes, T. Kurosaki, J.-P. Kinet, R. Penner, A.M. Scharenberg, and A. Fleig. (2001). LTRPC7 is a Mg·ATP-regulated divalent cation channel required for cell viability. Nature 411: 590-594. 11385574
Nilius, B., R. Vennekens, J. Prenen, J.G. Hoenderop, G. Droogmans, and R.J. Bindels. (2001). The single pore residue Asp542 determines Ca2+ permeation and Mg2+ block of the epithelial Ca2+ channel. J. Biol. Chem. 276: 1020-1025. 11035011
Nonaka, K., X. Han, H. Kato, H. Sato, H. Yamaza, Y. Hirofuji, and K. Masuda. (2019). Novel gain-of-function mutation of associated with accelerated chondrogenic differentiation of dental pulp stem cells derived from a patient with metatropic dysplasia. Biochem Biophys Rep 19: 100648. 31463371
Numata, T. and Y. Okada. (2008). Proton Conductivity through the Human TRPM7 Channel and Its Molecular Determinants. J. Biol. Chem. 283: 15097-15103. 18390554
Ohara, K., T. Fukuda, H. Okada, S. Kitao, Y. Ishida, K. Kato, C. Takahashi, M. Katayama, K. Uchida, and M. Tominaga. (2015). Identification of Significant Amino Acids in Multiple Transmembrane Domains of Human Transient Receptor Potential Ankyrin 1 (TRPA1) for Activation by Eudesmol, an Oxygenized Sesquiterpene in Hop Essential Oil. J. Biol. Chem. 290: 3161-3171. 25525269
Okumura, R., K. Shima, T. Muramatsu, K. Nakagawa, M. Shimono, T. Suzuki, H. Magloire, and Y. Shibukawa. (2005). The odontoblast as a sensory receptor cell? The expression of TRPV1 (VR-1) channels. Arch Histol Cytol 68: 251-257. 16477145
Olah, Z., L. Karai, and M.J. Iadarola. (2001). Anandamide activates vanilloid receptor 1 (VR1) at acidic pH in dorsal root ganglia neurons and cells ectopically expressing VR1. J. Biol. Chem. 276: 31163-31170. 11333266
Pabon, J., M.K. Law, and A. August. (2017). Drebrin Regulation of Calcium Signaling in Immune Cells. Adv Exp Med Biol 1006: 281-290. 28865026
Park, J.Y., E.M. Hwang, O. Yarishkin, J.H. Seo, E. Kim, J. Yoo, G.S. Yi, D.G. Kim, N. Park, C.M. Ha, J.H. La, D. Kang, J. Han, U. Oh, and S.G. Hong. (2008). TRPM4b channel suppresses store-operated Ca2+ entry by a novel protein-protein interaction with the TRPC3 channel. Biochem. Biophys. Res. Commun. 368: 677-683. 18262493
Parrasia, S., A. Mattarei, A. Furlan, M. Zoratti, and L. Biasutto. (2019). Small-Molecule Modulators of Mitochondrial Channels as Chemotherapeutic Agents. Cell Physiol Biochem 53: 11-43. 31834993
Peier, A.M., A. Moqrich, A.C. Hergarden, A.J. Reeve, D.A. Andersson, G.M. Story, T.J. Earley, I Dragoni, P. McIntyre, S. Bevan, and A. Patapoutian. (2002). A TRP channel that senses cold stimuli and menthol. Cell 108: 705-715. 11893340
Peng, J.B., X.Z. Chen, U.V. Berger, P.M. Vassilev, H. Tsukaguchi, E.M. Brown, and M.A. Hediger. (1999). Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption. J. Biol. Chem. 274: 22739-22746. 10428857
Perraud, A.-L., A. Fleig, C.A. Dunn, L.A. Bagley, P. Launay, C. Schmitz, A.J. Stokes, Q. Zhu, M.J. Bessman, R. Penner, J.-P. Kinet, and A.M. Scharenberg. (2001). ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411: 594-599. 11385575
Pertusa, M., B. Rivera, A. González, G. Ugarte, and R. Madrid. (2018). Critical role of the pore domain in the cold response of TRPM8 channels identified by ortholog functional comparison. J. Biol. Chem. 293: 12454-12471. 29880642
Peters, F., J. Kopp, J. Fischer, and I. Tantcheva-Poór. (2020). Mutation in TRPV3 causes painful focal plantar keratoderma. J Eur Acad Dermatol Venereol. [Epub: Ahead of Print] 32314439
Phelps, C.B., R.J. Huang, P.V. Lishko, R.R. Wang, and R. Gaudet (2008). Structural analyses of the ankyrin repeat domain of TRPV6 and related TRPV ion channels. Biochemistry 47: 2476-2484. 18232717
Prawitt, D., M.K. Monteilh-Zoller, L. Brixel, C. Spangenberg, B. Zabel, A. Fleig, and R. Penner. (2003). TRPM5 is a transient Ca2+-activated cation channel responding to rapid changes in [Ca2+]i. Proc. Natl. Acad. Sci. USA 100: 15166-15171. 14634208
Prawitt, D., T. Enklaar, G. Klemm, B. Gärtner, C. Spangenberg, A. Winterpacht, M. Higgins, J. Pelletier, and B. Zabel. (2000). Identification and characterization of MTR1, a novel gene with homology to melastatin (MLSN1) and the trp gene family located in the BWS-WT2 critical region on chromosome 11p15.5 and showing allele-specific expression. Hum Mol Genet 9: 203-216. 10607831
Premkumar, L.S. (2001). Interaction between vanilloid receptors and purinergic metabotropic receptors: pain perception and beyond. Proc. Natl. Acad. Sci. USA 98: 6537-6539. 11390988
Putney, J.W., Jr. and R.R. McKay. (1999). Capacitative calcium entry channels. BioEssays 21: 38-46. 10070252
Qiu, A. and C. Hogstrand. (2004). Functional characterisation and genomic analysis of an epithelial calcium channel (ECaC) from pufferfish, Fugu rubripes. Gene 342: 113-123. 15527971
Ramsey, I.S., M. Delling, and D.E. Clapham. ((2006)). An introduction to TRP channels. Annu. Rev. Physiol. 68: 619–647. 16460286
Riehle, M., D. Tsvetkov, B.O. Gohlke, R. Preissner, C. Harteneck, M. Gollasch, and B. Nürnberg. (2018). Molecular basis for the sensitivity of TRP channels to polyunsaturated fatty acids. Naunyn Schmiedebergs Arch Pharmacol. [Epub: Ahead of Print] 29736621
Riera, C.E., M.O. Huising, P. Follett, M. Leblanc, J. Halloran, R. Van Andel, C.D. de Magalhaes Filho, C. Merkwirth, and A. Dillin. (2014). TRPV1 Pain Receptors Regulate Longevity and Metabolism by Neuropeptide Signaling. Cell 157: 1023-1036. 24855942
Rixecker, T., I. Mathar, R. Medert, S. Mannebach, A. Pfeifer, P. Lipp, V. Tsvilovskyy, and M. Freichel. (2016). TRPM4-mediated control of FcεRI-evoked Ca2+ elevation comprises enhanced plasmalemmal trafficking of TRPM4 channels in connective tissue type mast cells. Sci Rep 6: 32981. 27624684
Rock, M.J., J. Prenen, V.A. Funari, T.L. Funari, B. Merriman, S.F. Nelson, R.S. Lachman, W.R. Wilcox, S. Reyno, R. Quadrelli, A. Vaglio, G. Owsianik, A. Janssens, T. Voets, S. Ikegawa, T. Nagai, D.L. Rimoin, B. Nilius, and D.H. Cohn. (2008). Gain-of-function mutations in TRPV4 cause autosomal dominant brachyolmia. Nat. Genet. 40: 999-1003. 18587396
Roessingh, S., W. Wolfgang, and R. Stanewsky. (2015). Loss of Drosophila melanogaster TRPA1 Function Affects "Siesta" Behavior but Not Synchronization to Temperature Cycles. J Biol Rhythms 30: 492-505. 26459465
Runnels, L.W., L. Yue, and D.E. Clapham. (2001). TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291: 1043-1046. 11161216
Saotome, K., A.K. Singh, M.V. Yelshanskaya, and A.I. Sobolevsky. (2016). Crystal structure of the epithelial calcium channel TRPV6. Nature. [Epub: Ahead of Print] 27296226
Schäffers, O.J.M., J.G.J. Hoenderop, R.J.M. Bindels, and J.H.F. de Baaij. (2018). The rise and fall of novel renal magnesium transporters. Am. J. Physiol. Renal Physiol 314: F1027-F1033. 29412701
Schindl, R. and C. Romanin. (2007). Assembly domains in TRP channels. Biochem Soc Trans 35: 84-85. 17233607
Schmitz, C., F. Deason, and A.L. Perraud. (2007). Molecular components of vertebrate Mg2+-homeostasis regulation. Magnes. Res. 20: 6-18. 17536484
Schoeber, J.P., C.N. Topala, X. Wang, R.J. Diepens, T.T. Lambers, J.G. Hoenderop, and R.J. Bindels. (2006). RGS2 inhibits the epithelial Ca2+ channel TRPV6. J. Biol. Chem. 281: 29669-29674. 16895908
Shannon, A.H., C.T. Elder, G. Lu, G. Su, A. Mast, M.D. Salmon, W.G. Montgomery, M.D. Spinosa, G.R. Upchurch, Jr, and A.K. Sharma. (2020). Pharmacologic inhibition of transient receptor channel vanilloid 4 attenuates abdominal aortic aneurysm formation. FASEB J. [Epub: Ahead of Print] 32506673
Sidi, S., R.W. Friedrich, and T. Nicolson. (2003). NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science 301: 96-99. 12805553
Sierra-Valdez, F., C.M. Azumaya, L.O. Romero, T. Nakagawa, and J.F. Cordero-Morales. (2018). Structure-function analyses of the ion channel TRPC3 reveal that its cytoplasmic domain allosterically modulates channel gating. J. Biol. Chem. [Epub: Ahead of Print] 30139744
Simard C., Hof T., Keddache Z., Launay P. and Guinamard R. (2013). The TRPM4 non-selective cation channel contributes to the mammalian atrial action potential. J Mol Cell Cardiol. 59:11-9. 23416167
Singaravelu, G., I. Chatterjee, S. Rahimi, M.K. Druzhinina, L. Kang, X.Z. Xu, and A. Singson. (2012). The sperm surface localization of the TRP-3/SPE-41 Ca2+ -permeable channel depends on SPE-38 function in Caenorhabditis elegans. Dev Biol 365: 376-383. 22425620
Singh, A.K., K. Saotome, and A.I. Sobolevsky. (2017). Swapping of transmembrane domains in the epithelial calcium channel TRPV6. Sci Rep 7: 10669. 28878326
Singh, A.K., K. Saotome, L.L. McGoldrick, and A.I. Sobolevsky. (2018). Structural bases of TRP channel TRPV6 allosteric modulation by 2-APB. Nat Commun 9: 2465. 29941865
Sonkusare, S.K., A.D. Bonev, J. Ledoux, W. Liedtke, M.I. Kotlikoff, T.J. Heppner, D.C. Hill-Eubanks, and M.T. Nelson. (2012). Elementary Ca2+ signals through endothelial TRPV4 channels regulate vascular function. Science 336: 597-601. 22556255
Souza Bomfim, G.H., V. Costiniti, Y. Li, Y. Idaghdour, and R.S. Lacruz. (2020). TRPM7 activation potentiates SOCE in enamel cells but requires ORAI. Cell Calcium 87: 102187. [Epub: Ahead of Print] 32146159
Starkus, J.G., A. Fleig, and R. Penner. (2010). The calcium-permeable non-selective cation channel TRPM2 is modulated by cellular acidification. J. Physiol. 588: 1227-1240. 20194125
Startek, J.B., B. Boonen, A. López-Requena, A. Talavera, Y.A. Alpizar, D. Ghosh, N. Van Ranst, B. Nilius, T. Voets, and K. Talavera. (2019). Mouse TRPA1 function and membrane localization are modulated by direct interactions with cholesterol. Elife 8:. 31184584
Stokes, A.J., C. Wakano, K.A. Del Carmen, M. Koblan-Huberson, and H. Turner. (2005). Formation of a physiological complex between TRPV2 and RGA protein promotes cell surface expression of TRPV2. J. Cell. Biochem. 94: 669-683. 15547947
Story, G.M., A.M. Peier, A.J. Reeve, S.R. Eid, J. Mosbacher, T.R. Hricik, T.J. Earley, A.C. Hergarden, D.A. Andersson, S.W. Hwang, P. McIntyre, T. Jegla, S. Bevan, and A. Patapoutian. (2003). ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112: 819-829. 12654248
Studer, M. and P.A. McNaughton. (2010). Modulation of single-channel properties of TRPV1 by phosphorylation. J. Physiol. 588: 3743-3756. 20693293
Stumpf, T., Q. Zhang, D. Hirnet, U. Lewandrowski, A. Sickmann, U. Wissenbach, J. Dörr, C. Lohr, J.W. Deitmer, and C. Fecher-Trost. (2008). The human TRPV6 channel protein is associated with cyclophilin B in human placenta. J. Biol. Chem. 283: 18086-18098. 18445599
Suresh K., Servinsky L., Reyes J., Baksh S., Undem C., Caterina M., Pearse DB. and Shimoda LA. (2015). Hydrogen peroxide-induced calcium influx in lung microvascular endothelial cells involves TRPV4. Am J Physiol Lung Cell Mol Physiol. 309(12):L1467-77. 26453519
Suzuki, M., J. Sato, K. Kutsuwada, G. Ooki, and M. Imai. (1999). Cloning of a stretch-inhibitable nonselective cation channel. J. Biol. Chem. 274: 6330-6335. 10037722
Suzuki, Y., D. Chitayat, H. Sawada, M.A. Deardorff, H.M. McLaughlin, A. Begtrup, K. Millar, J. Harrington, K. Chong, M. Roifman, K. Grand, M. Tominaga, F. Takada, S. Shuster, M. Obara, H. Mutoh, R. Kushima, and G. Nishimura. (2018). TRPV6 Variants Interfere with Maternal-Fetal Calcium Transport through the Placenta and Cause Transient Neonatal Hyperparathyroidism. Am J Hum Genet 102: 1104-1114. 29861107
Suzuki, Y., H. Sawada, T. Tokumasu, S. Suzuki, S. Ninomiya, M. Shirai, T. Mukai, C.T. Saito, G. Nishimura, and M. Tominaga. (2020). Novel TRPV6 mutations in the spectrum of transient neonatal hyperparathyroidism. J. Physiol. Sci 70: 33. 32646367
Szabó, T., L. Ambrus, N. Zákány, G. Balla, and T. Bíró. (2015). Regulation of TRPC6 ion channels in podocytes - Implications for focal segmental glomerulosclerosis and acquired forms of proteinuric diseases. Acta Physiol Hung 102: 241-251. 26551740
Tang, Q., W. Guo, L. Zheng, J.X. Wu, M. Liu, X. Zhou, X. Zhang, and L. Chen. (2018). Structure of the receptor-activated human TRPC6 and TRPC3 ion channels. Cell Res. [Epub: Ahead of Print] 29700422
Thébault, S., G. Cao, H. Venselaar, Q. Xi, R.J. Bindels, and J.G. Hoenderop. (2008). Role of the α-kinase domain in transient receptor potential melastatin 6 channel and regulation by intracellular ATP. J. Biol. Chem. 283: 19999-20007. 18490453
Toft-Bertelsen, T.L., D. Krízaj, and N. MacAulay. (2017). When size matters: transient receptor potential vanilloid 4 channel as a volume-sensor rather than an osmo-sensor. J. Physiol. [Epub: Ahead of Print] 28295351
Ton, H.T., T.X. Phan, A.M. Abramyan, L. Shi, and G.P. Ahern. (2017). Identification of a putative binding site critical for general anesthetic activation of TRPA1. Proc. Natl. Acad. Sci. USA 114: 3762-3767. 28320952
Topala, C.N., W.T. Groenestege, S. Thébault, D. van den Berg, B. Nilius, J.G. Hoenderop, and R.J. Bindels. (2007). Molecular determinants of permeation through the cation channel TRPM6. Cell Calcium 41: 513-523. 17098283
Tóth, B. and L. Csanády. (2012). Pore collapse underlies irreversible inactivation of TRPM2 cation channel currents. Proc. Natl. Acad. Sci. USA 109: 13440-13445. 22847436
Tousova, K., K. Susankova, J. Teisinger, L. Vyklicky, and V. Vlachova. (2004). Oxidizing reagent copper-o-phenanthroline is an open channel blocker of the vanilloid receptor TRPV1. Neuropharmacology 47: 273-285. 15223306
Trofimov, Y.A., N.A. Krylov, and R.G. Efremov. (2019). Confined Dynamics of Water in Transmembrane Pore of TRPV1 Ion Channel. Int J Mol Sci 20:. 31480555
Tseng, H.H., C.T. Vong, Y.W. Kwan, S.M. Lee, and M.P. Hoi. (2016). TRPM2 regulates TXNIP-mediated NLRP3 inflammasome activation via interaction with p47 phox under high glucose in human monocytic cells. Sci Rep 6: 35016. 27731349
Tseng, W.C., D.C. Pryde, K.E. Yoger, K.M. Padilla, B.M. Antonio, S. Han, V. Shanmugasundaram, and A.C. Gerlach. (2018). TRPA1 ankyrin repeat six interacts with a small molecule inhibitor chemotype. Proc. Natl. Acad. Sci. USA 115: 12301-12306. 30429323
van de Graaf, S.F.J., J.G.J. Hoenderop, D. Gkika, D. Lamers, J. Prenen, U. Rescher, V. Gerke, O. Staub, B. Nilius, and R.J.M. Bindels. (2003). Functional expression of the epithelial Ca2+ channels (TRPV5 and TRPV6) requires association of the S100A10-annexin 2 complex. EMBO J. 22: 1478-1487. 12660155
Vanden Abeele, F., A. Zholos, G. Bidaux, Y. Shuba, S. Thebault, B. Beck, M. Flourakis, Y. Panchin, R. Skryma, and N. Prevarskaya. (2006). Ca2+-independent phospholipase A2-dependent gating of TRPM8 by lysophospholipids. J. Biol. Chem. 281: 40174-40182. 17082190
Vennekens, R., A. Menigoz, and B. Nilius. (2012). TRPs in the Brain. Rev Physiol Biochem Pharmacol 163: 27-64. 23184016
Viswanath, V., G.M. Story, A.M. Peier, M.J. Petrus, V.M. Lee, S.W. Hwang, A. Patapoutian, and T. Jegla. (2003). Ion channels: opposite thermosensor in fruitfly and mouse. Nature 423: 822-823. 12815418
Voets, T., B. Nilius, S. Hoefs, A.W.C.M. van der Kemp, G. Droogmans, R.J.M. Bindels, and J.G.J. Hoenderop. (2004). TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J. Biol. Chem. 279: 19-25. 14576148
Wang, H., Z. Xu, B.H. Lee, S. Vu, L. Hu, M. Lee, D. Bu, X. Cao, S. Hwang, Y. Yang, J. Zheng, and Z. Lin. (2018). Gain-of-function mutations in TRPM4 activation gate cause progressive symmetric erythrokeratoderma. J Invest Dermatol. [Epub: Ahead of Print] 30528822
Wang, L., R.P. Holmes, and J.B. Peng. (2017). The L530R variation associated with recurrent kidney stones impairs the structure and function of TRPV5. Biochem. Biophys. Res. Commun. 492: 362-367. 28847730
Wang, L., T.M. Fu, Y. Zhou, S. Xia, A. Greka, and H. Wu. (2018). Structures and gating mechanism of human TRPM2. Science 362:. 30467180
Wang, Y.Y., R.B. Chang, and E.R. Liman. (2010). TRPA1 is a component of the nociceptive response to CO2. J. Neurosci. 30: 12958-12963. 20881114
Weissgerber, P., U. Kriebs, V. Tsvilovskyy, J. Olausson, O. Kretz, C. Stoerger, S. Mannebach, U. Wissenbach, R. Vennekens, R. Middendorff, V. Flockerzi, and M. Freichel. (2012). Excision of Trpv6 gene leads to severe defects in epididymal Ca2+ absorption and male fertility much like single D541A pore mutation. J. Biol. Chem. 287: 17930-17941. 22427671
Wheeler, G.L. and C. Brownlee. (2008). Ca2+ signalling in plants and green algae--changing channels. Trends Plant Sci. 13: 506-514. 18703378
Wilkinson, J.A., J.L. Scragg, J.P. Boyle, B. Nilius, and C. Peers. (2008). H2O 2-stimulated Ca2+ influx via TRPM2 is not the sole determinant of subsequent cell death. Pflugers Arch 455: 1141-1151. 18043941
Winn, M.P., P.J. Conlon, K.L. Lynn, M.K. Farrington, T. Creazzo, A.F. Hawkins, N. Daskalakis, S.Y. Kwan, S. Ebersviller, J.L. Burchette, M.A. Pericak-Vance, D.N. Howell, J.M. Vance, and P.B. Rosenberg. (2005). A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308: 1801-1804. 15879175
Woll, K.A., K.A. Skinner, E. Gianti, N.V. Bhanu, B.A. Garcia, V. Carnevale, R.G. Eckenhoff, and R. Gaudet. (2017). Sites Contributing to TRPA1 Activation by the Anesthetic Propofol Identified by Photoaffinity Labeling. Biophys. J. [Epub: Ahead of Print] 28935134
Wong, F., E.L. Schaefer, B.C. Roop, J.N. LaMendola, D. Johnson-Seaton, and D. Shao. (1989). Proper function of the Drosophila trp gene product during pupal development is important for normal visual transduction in the adult. Neuron 3: 81-94. 2482778
Woo SK., Kwon MS., Ivanov A., Geng Z., Gerzanich V. and Simard JM. (2013). Complex N-glycosylation stabilizes surface expression of transient receptor potential melastatin 4b protein. J Biol Chem. 288(51):36409-17. 24214984
Xia, R., Z.Z. Mei, H.J. Mao, W. Yang, L. Dong, H. Bradley, D.J. Beech, and L.H. Jiang. (2008). Identification of pore residues engaged in determining divalent cationic permeation in transient receptor potential melastatin subtype channel 2. J. Biol. Chem. 283: 27426-27432. 18687688
Xiao, B., A.E. Dubin, B. Bursulaya, V. Viswanath, T.J. Jegla, and A. Patapoutian. (2008). Identification of transmembrane domain 5 as a critical molecular determinant of menthol sensitivity in mammalian TRPA1 channels. J. Neurosci. 28: 9640-9651. 18815250
Xiao, R. and X.Z. Xu. (2009). Function and regulation of TRP family channels in C. elegans. Pflugers Arch 458: 851-860. 19421772
Xiao, R., B. Zhang, Y. Dong, J. Gong, T. Xu, J. Liu, and X.Z. Xu. (2013). A genetic program promotes C. elegans longevity at cold temperatures via a thermosensitive TRP channel. Cell 152: 806-817. 23415228
Xie, B. and X.Y. Li. (2018). Inflammatory mediators causing cutaneous chronic itch in some diseases via transient receptor potential channel subfamily V member 1 and subfamily A member 1. J Dermatol. [Epub: Ahead of Print] 30588658
Xu, H., I.S. Ramsey, S.A. Kotecha, M.M. Moran, J.A. Chong, D. Lawson, P. Ge, J. Lilly, I. Silos-Santiago, Y. Xie, P.S. DiStefano, R. Curtis, and D.E. Clapham. (2002). TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418: 181-186. 12077604
Xu, L., Y. Han, X. Chen, A. Aierken, H. Wen, W. Zheng, H. Wang, X. Lu, Z. Zhao, C. Ma, P. Liang, W. Yang, S. Yang, and F. Yang. (2020). Molecular mechanisms underlying menthol binding and activation of TRPM8 ion channel. Nat Commun 11: 3790. 32728032
Xu, X.Z., and P.W. Sternberg. (2003). A C. elegans sperm TRP protein required for sperm-egg interactions during fertilization. Cell 114: 285-297. 12914694
Xu, X.Z., F. Chien, A. Butler, L. Salkoff, and C. Montell. (2000). TRPgamma, a drosophila TRP-related subunit, forms a regulated cation channel with TRPL. Neuron. 26: 647-657. 10896160
Yang, F. and J. Zheng. (2017). Understand spiciness: mechanism of TRPV1 channel activation by capsaicin. Protein Cell. [Epub: Ahead of Print] 28044278
Yang, F., Y. Cui, K. Wang, and J. Zheng. (2010). Thermosensitive TRP channel pore turret is part of the temperature activation pathway. Proc. Natl. Acad. Sci. USA 107: 7083-7088. 20351268
Yao, J., B. Liu, and F. Qin. (2011). Modular thermal sensors in temperature-gated transient receptor potential (TRP) channels. Proc. Natl. Acad. Sci. USA 108: 11109-11114. 21690353
Ye, L., S. Kleiner, J. Wu, R. Sah, R.K. Gupta, A.S. Banks, P. Cohen, M.J. Khandekar, P. Boström, R.J. Mepani, D. Laznik, T.M. Kamenecka, X. Song, W. Liedtke, V.K. Mootha, P. Puigserver, P.R. Griffin, D.E. Clapham, and B.M. Spiegelman. (2012). TRPV4 is a regulator of adipose oxidative metabolism, inflammation, and energy homeostasis. Cell 151: 96-110. 23021218
Yelshanskaya, M.V., K.D. Nadezhdin, M.G. Kurnikova, and A.I. Sobolevsky. (2020). Structure and function of the calcium-selective TRP channel TRPV6. J. Physiol. [Epub: Ahead of Print] 32073143
Yin, Y., M. Wu, L. Zubcevic, W.F. Borschel, G.C. Lander, and S.Y. Lee. (2018). Structure of the cold- and menthol-sensing ion channel TRPM8. Science 359: 237-241. 29217583
Zakharian, E., C. Cao, and T. Rohacs. (2010). Gating of transient receptor potential melastatin 8 (TRPM8) channels activated by cold and chemical agonists in planar lipid bilayers. J. Neurosci. 30: 12526-12534. 20844147
Zayats V., Samad A., Minofar B., Roelofs KE., Stockner T. and Ettrich R. (2013). Regulation of the transient receptor potential channel TRPA1 by its N-terminal ankyrin repeat domain. J Mol Model. 19(11):4689-700. 22752543
Zhang, F., A. Jara-Oseguera, T.H. Chang, C. Bae, S.M. Hanson, and K.J. Swartz. (2017). Heat activation is intrinsic to the pore domain of TRPV1. Proc. Natl. Acad. Sci. USA. [Epub: Ahead of Print] 29279388
Zhang, Y. and Y. Wang. (2017). [TRPV1: an important molecule involved in the peripheral sensitization during chronic pain and central pain modulation]. Sheng Li Xue Bao 69: 677-684. 29063115
Zhang, Z., H. Okawa, Y. Wang, and E.R. Liman. (2005). Phosphatidylinositol 4,5-bisphosphate rescues TRPM4 channels from desensitization. J. Biol. Chem. 280: 39185-39192. 16186107
Zhou, X., Z. Su, A. Anishkin, W.J. Haynes, E.M. Friske, S.H. Loukin, C. Kung, and Y. Saimi. (2007). Yeast screens show aromatic residues at the end of the sixth helix anchor transient receptor potential channel gate. Proc. Natl. Acad. Sci. USA. 104: 15555-15559. 17878311
Zhou, X.L., S.H. Loukin, R. Coria, C. Kung, and Y. Saimi. (2005). Heterologously expressed fungal transient receptor potential channels retain mechanosensitivity in vitro and osmotic response in vivo. Eur Biophys. J. 34: 413-422. 15711808
Zhou, Y., P. Castonguay, E.H. Sidhom, A.R. Clark, M. Dvela-Levitt, S. Kim, J. Sieber, N. Wieder, J.Y. Jung, S. Andreeva, J. Reichardt, F. Dubois, S.C. Hoffmann, J.M. Basgen, M.S. Montesinos, A. Weins, A.C. Johnson, E.S. Lander, M.R. Garrett, C.R. Hopkins, and A. Greka. (2017). A small-molecule inhibitor of TRPC5 ion channels suppresses progressive kidney disease in animal models. Science 358: 1332-1336. 29217578
Zimmermann, K., J.K. Lennerz, A. Hein, A.S. Link, J.S. Kaczmarek, M. Delling, S. Uysal, J.D. Pfeifer, A. Riccio, and D.E. Clapham. (2011). Transient receptor potential cation channel, subfamily C, member 5 (TRPC5) is a cold-transducer in the peripheral nervous system. Proc. Natl. Acad. Sci. USA 108: 18114-18119. 22025699
Zouharova, M., P. Herman, K. Hofbauerová, J. Vondrasek, and K. Bousova. (2019). TRPM6 N-Terminal CaM- and S100A1-Binding Domains. Int J Mol Sci 20:. 31505788
Zubcevic, L. and S.Y. Lee. (2019). The role of π-helices in TRP channel gating. Curr. Opin. Struct. Biol. [Epub: Ahead of Print] 31378426
Zubcevic, L., M.A. Herzik, Jr, B.C. Chung, Z. Liu, G.C. Lander, and S.Y. Lee. (2016). Cryo-electron microscopy structure of the TRPV2 ion channel. Nat Struct Mol Biol 23: 180-186. 26779611
Zubcevic, L., W.F. Borschel, A.L. Hsu, M.J. Borgnia, and S.Y. Lee. (2019). Regulatory switch at the cytoplasmic interface controls TRPV channel gating. Elife 8:. 31070581


Altamirano, F., G.G. Schiattarella, K.M. French, S.Y. Kim, F. Engelberger, S. Kyrychenko, E. Villalobos, D. Tong, J.W. Schneider, C.A. Ramirez-Sarmiento, S. Lavandero, T.G. Gillette, and J.A. Hill. (2019). Polycystin-1 Assembles with Kv Channels to Govern Cardiomyocyte Repolarization and Contractility. Circulation. [Epub: Ahead of Print] 31220931
Anyatonwu, G.I. and B.E. Ehrlich. (2005). Organic cation permeation through the channel formed by polycystin-2. J. Biol. Chem. 280: 29488-29493. 15961385
Arif Pavel, M., C. Lv, C. Ng, L. Yang, P. Kashyap, C. Lam, V. Valentino, H.Y. Fung, T. Campbell, S.G. Møller, D. Zenisek, N.G. Holtzman, and Y. Yu. (2016). Function and regulation of TRPP2 ion channel revealed by a gain-of-function mutant. Proc. Natl. Acad. Sci. USA 113: E2363-2372. 27071085
Bai, C.X., S. Kim, W.P. Li, A.J. Streets, A.C. Ong, and L. Tsiokas. (2008). Activation of TRPP2 through mDia1-dependent voltage gating. EMBO. J. 27: 1345-1356. 18388856
Bycroft, M., A. Bateman, J. Clarke, S.J. Hamill, R. Sandford, R.L. Thomas, and C. Chothia. (1999). The structure of a PKD domain from polycystin-1. Implications for polycystic kidney disease. EMBO J. 18: 297-305. 9889186
Chen, X.-Z., P.M. Vassilev, N. Basora, J.-B. Peng, H. Nomura, Y. Segal, E.M. Brown, S.T. Reeders, M.A. Hediger, and J. Zhou. (1999). Polycystin-L is a calcium-regulated cation channel permeable to calcium ions. Nature 401: 383-386. 10517637
Cuajungco MP., Basilio LC., Silva J., Hart T., Tringali J., Chen CC., Biel M. and Grimm C. (2014). Cellular zinc levels are modulated by TRPML1-TMEM163 interaction. Traffic. 15(11):1247-65. 25130899
Cuajungco, M.P. and K. Kiselyov. (2017). The mucolipin-1 (TRPML1) ion channel, transmembrane-163 (TMEM163) protein, and lysosomal zinc handling. Front Biosci (Landmark Ed) 22: 1330-1343. 28199205
Cuajungco, M.P. and M.A. Samie. (2008). The varitint-waddler mouse phenotypes and the TRPML3 ion channel mutation: cause and consequence. Pflugers Arch 457: 463-473. 18504603
Cuajungco, M.P., J. Silva, A. Habibi, and J.A. Valadez. (2015). The mucolipin-2 (TRPML2) ion channel: a tissue-specific protein crucial to normal cell function. Pflugers Arch. [Epub: Ahead of Print] 26336837
Dalagiorgou, G., E.K. Basdra, and A.G. Papavassiliou. (2010). Polycystin-1: function as a mechanosensor. Int J Biochem. Cell Biol. 42: 1610-1613. 20601082
Deltas, C.C. (2001). Mutations of the human polycystic kidney disease 2 (PKD2) gene. Hum. Mutat. 18: 13-24. 11438989
Dixon, E.E. and O.M. Woodward. (2018). Three-dimensional in vitro models answer the right questions in ADPKD cystogenesis. Am. J. Physiol. Renal Physiol 315: F332-F335. 29693448
Dong, X.P., X. Cheng, E. Mills, M. Delling, F. Wang, T. Kurz, and H. Xu. (2008). The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature 455: 992-996. 18794901
Freeman, S.A., S. Uderhardt, A. Saric, R.F. Collins, C.M. Buckley, S. Mylvaganam, P. Boroumand, J. Plumb, R.N. Germain, D. Ren, and S. Grinstein. (2020). Lipid-gated monovalent ion fluxes regulate endocytic traffic and support immune surveillance. Science 367: 301-305. 31806695
García-Añoveros, J. and T. Wiwatpanit. (2014). TRPML2 and Mucolipin Evolution. Handb Exp Pharmacol 222: 647-658. 24756724
Ghata, J. and B.D. Cowley, Jr. (2017). Polycystic Kidney Disease. Compr Physiol 7: 945-975. 28640449
González-Perrett, S., K. Kim, C. Ibarra, A.E. Damiano, E. Zotta, M. Batelli, P.C. Harris, I.L. Reisin, M.A. Arnaout, and H.F. Cantiello. (2001). Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+-permeable nonselective cation channel. Proc. Natl. Acad. Sci. USA 98: 1182-1187. 11252306
Gonzalez-Perrett, S., M. Batelli, K. Kim, M. Essafi, G. Timpanaro, N. Moltabetti, I.L. Reisin, M.A. Arnaout, and H.F. Cantiello. (2002). Voltage dependence and pH regulation of human polycystin-2-mediated cation channel activity. J. Biol. Chem. 277: 24959-24966. 11991947
Gunaratne, H.J., G.W. Moy, M. Kinukawa, S. Miyata, S.A. Mah, and V.D. Vacquier. (2007). The 10 sea urchin receptor for egg jelly proteins (SpREJ) are members of the polycystic kidney disease-1 (PKD1) family. BMC Genomics 8: 235. 17629917
Hama, T. and F. Park. (2016). Heterotrimeric G protein signaling in polycystic kidney disease. Physiol Genomics 48: 429-445. 27199453
Hayashi, T., K. Hosono, A. Kubo, K. Kurata, S. Katagiri, K. Mizobuchi, M. Kurai, N. Mamiya, M. Kondo, T. Tachibana, H. Saitsu, T. Ogata, T. Nakano, and Y. Hotta. (2020). Long-term observation of a Japanese mucolipidosis IV patient with a novel homozygous p.F313del variant of MCOLN1. Am J Med Genet A. [Epub: Ahead of Print] 32220057
Higashihara, E., S. Horie, M. Kinoshita, P.C. Harris, T. Okegawa, M. Tanbo, H. Hara, T. Yamaguchi, K. Shigemori, H. Kawano, I. Miyazaki, S. Kaname, and K. Nutahara. (2018). A potentially crucial role of the PKD1 C-terminal tail in renal prognosis. Clin Exp Nephrol 22: 395-404. 28983800
Hoffmeister, H., A.R. Gallagher, A. Rascle, and R. Witzgall. (2010). The human polycystin-2 protein represents an integral membrane protein with six membrane-spanning domains and intracellular N- and C-termini. Biochem. J. 433: 285-294. 21044049
Hogan, M.C., J.L. Bakeberg, V.G. Gainullin, M.V. Irazabal, A.J. Harmon, J.C. Lieske, M.C. Charlesworth, K.L. Johnson, B.J. Madden, R.M. Zenka, D.J. McCormick, J.L. Sundsbak, C.M. Heyer, V.E. Torres, P.C. Harris, and C.J. Ward. (2015). Identification of Biomarkers for PKD1 Using Urinary Exosomes. J Am Soc Nephrol 26: 1661-1670. 25475747
Hu, M., Y. Liu, J. Wu, and X. Liu. (2015). Influx-Operated Ca2+ Entry via PKD2-L1 and PKD1-L3 Channels Facilitates Sensory Responses to Polymodal Transient Stimuli. Cell Rep 13: 798-811. 26489466
Huang, K., D.R. Diener, A. Mitchell, G.J. Pazour, G.B. Witman, and J.L. Rosenbaum. (2007). Function and dynamics of PKD2 in Chlamydomonas reinhardtii flagella. J. Cell Biol. 179: 501-514. 17984324
Hussein, S., W. Zheng, C. Dyte, Q. Wang, J. Yang, F. Zhang, J. Tang, Y. Cao, and X.Z. Chen. (2015). Acid-induced off-response of PKD2L1 channel in Xenopus oocytes and its regulation by Ca(2.). Sci Rep 5: 15752. 26502994
Ishimaru, Y., H. Inada, M. Kubota, H. Zhuang, M. Tominaga, and H. Matsunami. (2006). Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc. Natl. Acad. Sci. USA 103: 12569-12574. 16891422
Ishimaru, Y., Y. Katano, K. Yamamoto, M. Akiba, T. Misaka, R.W. Roberts, T. Asakura, H. Matsunami, and K. Abe. (2010). Interaction between PKD1L3 and PKD2L1 through their transmembrane domains is required for localization of PKD2L1 at taste pores in taste cells of circumvallate and foliate papillae. FASEB J. 24: 4058-4067. 20538909
Kim H.J., Q. Li, S. Tjon-Kon-Sang, I. So, K. Kiselyov, S. Muallem. (2007). Gain-of-function mutation in TRPML3 causes the mouse Varitint-Waddler phenotype. J Biol Chem. 282: 36138-36142. 17962195
Kim HJ., Yamaguchi S., Li Q., So I. and Muallem S. (2010). Properties of the TRPML3 channel pore and its stable expansion by the Varitint-Waddler-causing mutation. J Biol Chem. 285(22):16513-20. 20378547
Kim, I., Y. Fu, K. Hui, G. Moeckel, W. Mai, C. Li, D. Liang, P. Zhao, J. Ma, X.Z. Chen, A.L. George, R.J. Coffey, Z.P. Feng, and G. Wu (2008). Fibrocystin/polyductin modulates renal tubular formation by regulating polycystin-2 expression and function. J Am Soc Nephrol 19: 455-68. 18235088
Kiselyov, K., J. Chen, Y. Rbaibi, D. Oberdick, S. Tjon-Kon-Sang, N. Shcheynikov, S. Muallem, and A. Soyombo. (2005). TRP-ML1 is a lysosomal monovalent cation channel that undergoes proteolytic cleavage. J. Biol. Chem. 280: 43218-43223. 16257972
Lal, S., N. Scarinci, P.L. Perez, M.D.R. Cantero, and H.F. Cantiello. (2018). Lipid bilayer-atomic force microscopy combined platform records simultaneous electrical and topological changes of the TRP channel polycystin-2 (TRPP2). PLoS One 13: e0202029. 30133487
Lemos, F.O. and B.E. Ehrlich. (2017). Polycystin and calcium signaling in cell death and survival. Cell Calcium. [Epub: Ahead of Print] 28601384
Lev, S., D.A. Zeevi, A. Frumkin, V. Offen-Glasner, G. Bach, and B. Minke. (2010). Constitutive activity of the human TRPML2 channel induces cell degeneration. J. Biol. Chem. 285: 2771-2782. 19940139
Li, Q., X.Q. Dai, P.Y. Shen, Y. Wu, W. Long, C.X. Chen, Z. Hussain, S. Wang, and X.Z. Chen. (2007). Direct binding of α-actinin enhances TRPP3 channel activity. J Neurochem 103(6): 2391-2400. 17944866
Li, Y., N.G. Santoso, S. Yu, O.M. Woodward, F. Qian, and W.B. Guggino. (2009). Polycystin-1 interacts with inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2+ signaling with implications for polycystic kidney disease. J. Biol. Chem. 284: 36431-36441. 19854836
Liu, Y., Q. Li, M. Tan, Y.-Y. Zhang, E. Karpinski, J. Zhou, and X.-Z. Chen. (2002). Modulation of the human polycystin-L channel by voltage and divalent cations. FEBS Lett. 525: 71-76. 12163164
Luzio, J.P., N.A. Bright, and P.R. Pryor. (2007). The role of calcium and other ions in sorting and delivery in the late endocytic pathway. Biochem. Soc. Trans. 35: 1088-1091. 17956286
Molland, K.L., A. Narayanan, J.W. Burgner, and D.A. Yernool. (2010). Identification of the structural motif responsible for trimeric assembly of the C-terminal regulatory domains of polycystin channels PKD2L1 and PKD2. Biochem. J. 429: 171-183. 20408813
Ng, L.C.T., T.N. Vien, V. Yarov-Yarovoy, and P.G. DeCaen. (2019). Opening TRPP2 () requires the transfer of gating charges. Proc. Natl. Acad. Sci. USA 116: 15540-15549. 31315976
Nims, N.M., D. Vassmer, and R.L. Maser. (2011). Effect of PKD1 gene missense mutations on polycystin-1 membrane topogenesis. Biochemistry 50: 349-355. 21142036
Noben-Trauth, K. (2011). The TRPML3 channel: from gene to function. Adv Exp Med Biol 704: 229-237. 21290299
Numata, T., K. Tsumoto, K. Yamada, T. Kurokawa, S. Hirose, H. Nomura, M. Kawano, Y. Kurachi, R. Inoue, and Y. Mori. (2017). Integrative Approach with Electrophysiological and Theoretical Methods Reveals a New Role of S4 Positively Charged Residues in PKD2L1 Channel Voltage-Sensing. Sci Rep 7: 9760. 28852171
Oatley, P., A.P. Stewart, R. Sandford, and J.M. Edwardson. (2012). Atomic force microscopy imaging reveals the domain structure of polycystin-1. Biochemistry 51: 2879-2888. 22409330
Salehi-Najafabadi, Z., B. Li, V. Valentino, C. Ng, H. Martin, Y. Yu, Z. Wang, P. Kashyap, and Y. Yu. (2017). Extracellular Loops are Essential For the Assembly and Function of Polycystin Receptor-Ion Channel Complexes. J. Biol. Chem. [Epub: Ahead of Print] 28154010
Schmiege, P., M. Fine, and X. Li. (2018). The regulatory mechanism of mammalian TRPMLs revealed by cryo-EM. FEBS J. [Epub: Ahead of Print] 29577631
Shen, P.S., X. Yang, P.G. DeCaen, X. Liu, D. Bulkley, D.E. Clapham, and E. Cao. (2016). The Structure of the Polycystic Kidney Disease Channel PKD2 in Lipid Nanodiscs. Cell 167: 763-773.e11. 27768895
Somlo, S. and B. Ehrlich. (2001). Human disease: calcium signaling in polycystic kidney disease. Curr. Biol. 11: R356-R360. 11369247
Su, Q., F. Hu, X. Ge, J. Lei, S. Yu, T. Wang, Q. Zhou, C. Mei, and Y. Shi. (2018). Structure of the human PKD1-PKD2 complex. Science 361:. 30093605
Su, Q., F. Hu, Y. Liu, X. Ge, C. Mei, S. Yu, A. Shen, Q. Zhou, C. Yan, J. Lei, Y. Zhang, X. Liu, and T. Wang. (2018). Cryo-EM structure of the polycystic kidney disease-like channel PKD2L1. Nat Commun 9: 1192. 29567962
Tang, Y., J. Yang, W. Zheng, J. Tang, X.Z. Chen, J. Yang, and Z. Wang. (2019). Polycystin-1 Inhibits Cell Proliferation through Phosphatase PP2A/B56. Biomed Res Int 2019: 2582401. 31641668
Tang, Y., Z. Wang, J. Yang, W. Zheng, D. Chen, G. Wu, R. Sandford, J. Tang, and X.Z. Chen. (2017). Polycystin-1 inhibits eIF2α phosphorylation and cell apoptosis through a PKR-eIF2α pathway. Sci Rep 7: 11493. 28904368
Treusch, S., S. Knuth, S.A. Slaugenhaupt, E. Goldin, B.D. Grant, and H. Fares. (2004). Caenorhabditis elegans functional orthologue of human protein h-mucolipin-1 is required for lysosome biogenesis. Proc. Natl. Acad. Sci. USA 101: 4483-4488. 15070744
Viet, K.K., A. Wagner, K. Schwickert, N. Hellwig, M. Brennich, N. Bader, T. Schirmeister, N. Morgner, H. Schindelin, and U.A. Hellmich. (2019). Structure of the Human TRPML2 Ion Channel Extracytosolic/Lumenal Domain. Structure. [Epub: Ahead of Print] 31178222
Wang, Q., R.A. Corey, G. Hedger, P. Aryal, M. Grieben, C. Nasrallah, A. Baronina, A.C.W. Pike, J. Shi, E.P. Carpenter, and M.S.P. Sansom. (2019). Lipid Interactions of a Ciliary Membrane TRP Channel: Simulation and Structural Studies of Polycystin-2. Structure. [Epub: Ahead of Print] 31806353
Wang, Z., C. Ng, X. Liu, Y. Wang, B. Li, P. Kashyap, H.A. Chaudhry, A. Castro, E.M. Kalontar, L. Ilyayev, R. Walker, R.T. Alexander, F. Qian, X.Z. Chen, and Y. Yu. (2019). The ion channel function of polycystin-1 in the polycystin-1/polycystin-2 complex. EMBO Rep e48336. [Epub: Ahead of Print] 31441214
Wilson, P.D. (2001). Polycystin: new aspects of structure, function, and regulation. J. Am. Soc. Nephrol. 12: 834-845. 11274246
Wu, G. (2001). Current advances in molecular genetics of autosomal-dominant polycystic kidney disease. Curr. Opin. Nephrol. Hypertens. 10: 23-31. 11195048
Xu, G.M., S. González-Perrett, M. Essafi, G.A. Timpanaro, N. Montalbetti, M.A. Arnaout, and H.F. Cantiello. (2003). Polycystin-1 activates and stabilizes the polycystin-2 channel. J. Biol. Chem. 278: 1457-1462. 12407099
Yu, Y., M.H. Ulbrich, M.H. Li, Z. Buraei, X.Z. Chen, A.C. Ong, L. Tong, E.Y. Isacoff, and J. Yang. (2009). Structural and molecular basis of the assembly of the TRPP2/PKD1 complex. Proc. Natl. Acad. Sci. USA 106: 11558-11563. 19556541
Yuasa, T., A. Takakura, B.M. Denker, B. Venugopal, and J. Zhou. (2004). Polycystin-1L2 is a novel G-protein-binding protein. Genomics 84: 126-138. 15203210
Zhu, J., Y. Yu, M.H. Ulbrich, M.H. Li, E.Y. Isacoff, B. Honig, and J. Yang. (2011). Structural model of the TRPP2/PKD1 C-terminal coiled-coil complex produced by a combined computational and experimental approach. Proc. Natl. Acad. Sci. USA 108: 10133-10138. 21642537


Abi-Antoun, T., S. Shi, L.A. Tolino, T.R. Kleyman, and M.D. Carattino. (2011). Second transmembrane domain modulates epithelial sodium channel gating in response to shear stress. Am. J. Physiol. Renal Physiol 300: F1089-1095. 21307123
Adams, C.M., M.G. Anderson, D.G. Motto, M.P. Price, W.A. Johnson, and M.J. Welsh. (1998). Ripped pocket and pickpocket, novel Drosophila DEG/ENaC subunits expressed in early development and in mechanosensory neurons. J. Cell Biol. 140: 143-152. 9425162
Aggarwal, S., A. Lazrak, I. Ahmad, Z. Yu, A. Bryant, J.A. Mobley, D.A. Ford, and S. Matalon. (2020). Reactive species generated by heme impair alveolar epithelial sodium channel function in acute respiratory distress syndrome. Redox Biol 36: 101592. [Epub: Ahead of Print] 32506040
Alvarez de la Rosa, D., C.M. Canessa, G.K. Fyfe, and P. Zhang. (2000). Structure and regulation of amiloride-sensitive sodium channels. Annu. Rev. Physiol. 62: 573-594. 10845103
Arteaga, M.F., T. Coric, C. Straub, and C.M. Canessa. (2008). A brain-specific SGK1 splice isoform regulates expression of ASIC1 in neurons. Proc. Natl. Acad. Sci. U.S.A. 105: 4459-4464. 18334630
Baron, A., L. Schaefer, E. Lingueglia, G. Champigny, and M. Lazdunski. (2001). Zn2+ and H+ are coactivators of acid-sensing ion channels. J. Biol. Chem. 276: 35361-35367. 11457851
Ben-Shahar, Y. (2011). Sensory functions for degenerin/epithelial sodium channels (DEG/ENaC). Adv Genet 76: 1-26. 22099690
Bianchi L. (2007). Mechanotransduction: touch and feel at the molecular level as modeled in Caenorhabditis elegans. Mol Neurobiol. 36: 254-271. 17955200
Buck, T.M. and J.L. Brodsky. (2018). Epithelial sodium channel biogenesis and quality control in the early secretory pathway. Curr Opin Nephrol Hypertens 27: 364-372. 29916852
Canessa, C.M., L. Schild, G. Buell, B. Thorens, I. Gautschi, J.-D. Horisberger, and B.C. Rossier. (1994). Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367: 463-467. 8107805
Carattino, M.D. (2011). Structural mechanisms underlying the function of epithelial sodium channel/acid-sensing ion channel. Curr Opin Nephrol Hypertens 20: 555-560. 21709553
Carattino, M.D. and M.C. Della Vecchia. (2012). Contribution of residues in second transmembrane domain of ASIC1a protein to ion selectivity. J. Biol. Chem. 287: 12927-12934. 22371494
Carnally, S.M., H.S. Dev, A.P. Stewart, N.P. Barrera, M.X. Van Bemmelen, L. Schild, R.M. Henderson, and J.M. Edwardson. (2008). Direct visualization of the trimeric structure of the ASIC1a channel, using AFM imaging. Biochem. Biophys. Res. Commun. 372: 752-755. 18514062
Chai, S., M. Li, D. Branigan, Z.G. Xiong, and R.P. Simon. (2010). Activation of acid-sensing ion channel 1a (ASIC1a) by surface trafficking. J. Biol. Chem. 285: 13002-13011. 20185828
Chelur, D.S., Ernstrom, G.G., M.B. Goodman, C.A. Yao, L. Chen, R. O'Hagan, and M. Chalfie. (2002). The mechanosensory protein MEC-6 is a subunit of the C. elegans touch-cell degenerin channel. Nature 420: 669-673. 12478294
Chen, C.C. and C.W. Wong. (2013). Neurosensory mechanotransduction through acid-sensing ion channels. J Cell Mol Med 17: 337-349. 23490035
Chen, X., G. Polleichtner, I. Kadurin, and S. Gründer. (2007). Zebrafish Acid-sensing Ion Channel (ASIC) 4, Characterization of Homo- and Heteromeric Channels, and Identification of Regions Important for Activation by H+. J. Biol. Chem. 282(42): 30406-30413. 17686779
Coscoy, S., J.R. de Weille, E. Lingueglia, and M. Lazdunski. (1999). The pre-transmembrane 1 domain of acid-sensing ion channels participates in the ion pore. J. Biol. Chem. 274: 10129-10132. 10187795
Darboux, I., E. Lingueglia, G. Champigny, S. Coscoy, and P. Barbry. (1998). dGNaC1, a gonad-specific amiloride-sensitive Na+ channel. J. Biol. Chem. 273: 9424-9429. 9545267
Della Vecchia, M.C., A.C. Rued, and M.D. Carattino. (2013). Gating Transitions in the Palm Domain of ASIC1a. J. Biol. Chem. 288: 5487-5495. 23300086
Deval, E., J. Noël, N. Lay, A. Alloui, S. Diochot, V. Friend, M. Jodar, M. Lazdunski, and E. Lingueglia. (2008). ASIC3, a sensor of acidic and primary inflammatory pain. EMBO. J. 27: 3047-3055. 18923424
Durrnagel S., Kuhn A., Tsiairis CD., Williamson M., Kalbacher H., Grimmelikhuijzen CJ., Holstein TW. and Grunder S. (2010). Three homologous subunits form a high affinity peptide-gated ion channel in Hydra. J Biol Chem. 285(16):11958-65. 20159980
Edelheit, O., R. Ben-Shahar, N. Dascal, A. Hanukoglu, and I. Hanukoglu. (2014). Conserved charged residues at the surface and interface of epithelial sodium channel subunits--roles in cell surface expression and the sodium self-inhibition response. FEBS J. 281: 2097-2111. 24571549
Enuka, Y., I. Hanukoglu, O. Edelheit, H. Vaknine, and A. Hanukoglu. (2012). Epithelial sodium channels (ENaC) are uniformly distributed on motile cilia in the oviduct and the respiratory airways. Histochem Cell Biol 137: 339-353. 22207244
Faria, D., N. Lentze, J. Almaça, S. Luz, L. Alessio, Y. Tian, J.P. Martins, P. Cruz, R. Schreiber, M. Rezwan, C.M. Farinha, D. Auerbach, M.D. Amaral, and K. Kunzelmann. (2012). Regulation of ENaC biogenesis by the stress response protein SERP1. Pflugers Arch 463: 819-827. 22526458
Firsov, D., I. Gautschi, A.-M. Merillat, B.C. Rossier, and L. Schild. (1998). The heterotetrameric architecture of the epithelial sodium channel (ENaC). EMBO J. 17: 344-352. 9430626
Fujimoto, A., Y. Kodani, and Y. Furukawa. (2017). Modulation of the FMRFamide-gated Na+ channel by external Ca(2). Pflugers Arch. [Epub: Ahead of Print] 28674755
García-Añoveros, J., J.A. García, J.D. Liu, and D.P. Corey. (1998). The nematode degenerin UNC-105 forms ion channels that are activated by degeneration- or hypercontraction-causing mutations. Neuron 20: 1231-1241. 9655510
Garty, H. and L.G. Palmer. (1997). Epithelial sodium channels – function, structure, and regulation. Physiol. Rev. 77: 359-396. 9114818
Giraldez, T., P. Rojas, J. Jou, C. Flores, and D. Alvarez de la Rosa. (2012). The epithelial sodium channel δ-subunit: new notes for an old song. Am. J. Physiol. Renal Physiol 303: F328-338. 22573384
Golubovic, A., A. Kuhn, M. Williamson, H. Kalbacher, T.W. Holstein, C.J. Grimmelikhuijzen, and S. Gründer. (2007). A peptide-gated ion channel from the freshwater polyp Hydra. J. Biol. Chem. 282: 35098-35103. 17911098
Gonzales, E.B., T. Kawate, and E. Gouaux. (2009). Pore architecture and ion sites in acid-sensing ion channels and P2X receptors. Nature 460: 599-604. 19641589
Hanukoglu, I. (2016). ASIC and ENaC type sodium channels: Conformational states and the structures of the ion selectivity filters. FEBS J. [Epub: Ahead of Print] 27580245
Hanukoglu, I. and A. Hanukoglu. (2016). Epithelial sodium channel (ENaC) family: Phylogeny, structure-function, tissue distribution, and associated inherited diseases. Gene 579: 95-132. 26772908
Henry, P.C., V. Kanelis, M.C. O'Brien, B. Kim, I. Gautschi, J. Forman-Kay, L. Schild, and D. Rotin. (2003). Affinity and specificity of interactions between Nedd4 isoforms and the epithelial Na+ channel. J. Biol. Chem. 278: 20019-20028. 12654927
Horisberger, J.-D. (1998). Amiloride-sensitive Na channels. Curr. Opin. Struc. Biol. 10: 443-449. 9719863
Ilyaskin, A.V., F. Sure, V. Nesterov, S. Haerteis, and C. Korbmacher. (2019). Bile acids inhibit human purinergic receptor P2X4 in a heterologous expression system. J Gen Physiol. [Epub: Ahead of Print] 30988062
Jasti, J., H. Furukawa, E.B. Gonzales, and E. Gouaux. (2007). Structure of acid-sensing ion channel 1 at 1.9 Å resolution and low pH. Nature 449: 316-323. 17882215
Kasimova, M.A., T. Lynagh, Z.P. Sheikh, D. Granata, C.B. Borg, V. Carnevale, and S.A. Pless. (2019). Evolutionarily Conserved Interactions within the Pore Domain of Acid-Sensing Ion Channels. Biophys. J. [Epub: Ahead of Print] 31630811
Klipp, R.C., M.M. Cullinan, and J.R. Bankston. (2020). Insights into the molecular mechanisms underlying the inhibition of acid-sensing ion channel 3 gating by stomatin. J Gen Physiol 152:. 32012213
Kodani Y. and Furukawa Y. (2014). Electrostatic charge at position 552 affects the activation and permeation of FMRFamide-gated Na+ channels. J Physiol Sci. 64(2):141-50. 24415456
Kodani, Y. and Y. Furukawa. (2010). Position 552 in a FMRFamide-gated Na+ channel affects the gating properties and the potency of FMRFamide. Zoolog Sci 27: 440-448. 20443692
Konstas, A.A., L.M. Shearwin-Whyatt, A.B. Fotia, B. Degger, D. Riccardi, D.I. Cook, C. Korbmacher, and S. Kumar. (2002). Regulation of the epithelial sodium channel by N4WBP5A, a novel Nedd4/Nedd4-2-interacting protein. J. Biol. Chem. 277: 29406-29416. 12050153
Krauson, A.J. and M.D. Carattino. (2016). Thumb domain mediates acid-sensing ion channel desensitization. J. Biol. Chem. [Epub: Ahead of Print] 27015804
Kweon, H.J., D.I. Kim, Y. Bae, J.Y. Park, and B.C. Suh. (2016). Acid-Sensing Ion Channel 2a (ASIC2a) Promotes Surface Trafficking of ASIC2b via Heteromeric Assembly. Sci Rep 6: 30684. 27477936
Le, T. and M.H. Saier, Jr. (1996). Phylogenetic characterization of the epithelial Na+ channel (ENaC) family. Mol. Membr. Biol. 13: 149-157. 8905643
Lee, I.H., A. Dinudom, A. Sanchez-Perez, S. Kumar, and D.I. Cook. (2007). Akt Mediates the Effect of Insulin on Epithelial Sodium Channels by Inhibiting Nedd4-2. J. Biol. Chem. 282(41):29866-29873. 17715136
Lee, J.S., H.J. Kweon, H. Lee, and B.C. Suh. (2019). Rapid resensitization of ASIC2a is conferred by three amino acid residues in the N terminus. J Gen Physiol. [Epub: Ahead of Print] 31010811
Li, T., Y. Yang, and C.M. Canessa. (2011). Outlines of the pore in open and closed conformations describe the gating mechanism of ASIC1. Nat Commun 2: 399. 21772270
Mano, I. and M. Driscoll. (1999). DEG/ENaC channels: a touchy superfamily that watches its salts. BioEssays 21: 568-578. 10472184
Matalon, S. and H. O’Brodovich. (1999). Sodium channels in alveolar epithelial cells: molecular characterization, biophysical properties, and physiological significance. Annu. Rev. Physiol. 61: 627-661. 10099704
Matthewman, C., C.K. Johnson, D.M. Miller Iii, and L. Bianchi. (2018). Functional features of the "finger" domain of DEG/ENaC channels MEC-4 and UNC-8. Am. J. Physiol. Cell Physiol. [Epub: Ahead of Print] 29694233
McCleskey, E.W. and M.S. Gold. (1999). Ion channels of nociception. Annu. Rev. Physiol. 61: 835-856. 10099712
Mueller, G.M., A.B. Maarouf, C.L. Kinlough, N. Sheng, O.B. Kashlan, S. Okumura, S. Luthy, T.R. Kleyman, and R.P. Hughey. (2010). Cys palmitoylation of the beta subunit modulates gating of the epithelial sodium channel. J. Biol. Chem. 285: 30453-30462. 20663869
Noreng, S., A. Bharadwaj, R. Posert, C. Yoshioka, and I. Baconguis. (2018). Structure of the human epithelial sodium channel by cryo-electron microscopy. Elife 7:. 30251954
Pao, A.C. (2012). SGK regulation of renal sodium transport. Curr Opin Nephrol Hypertens 21: 534-540. 22691875
Price, M.P., G.R. Lewin, S.L. McIlwrath, C. Cheng, J. Xie, P.A. Heppenstall, C.L. Stucky, A.G. Mannsfeldt, T.J. Brennan, H.A. Drummond, J. Qiao, C.J. Benson, D.E. Tarr, R.F. Hrstka, B. Yang, R.A. Williamson, and M.J. Welsh. (2000). The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 407: 1007-1010. 11069180
Royal, D.C., L. Bianchi, M.A. Royal, M. Lizzio, Jr, G. Mukherjee, Y.O. Nunez, and M. Driscoll. (2005). Temperature-sensitive mutant of the Caenorhabditis elegans neurotoxic MEC-4(d) DEG/ENaC channel identifies a site required for trafficking or surface maintenance. J. Biol. Chem. 280: 41976-41986. 16239217
Salinas, M., L.D. Rash, A. Baron, G. Lambeau, P. Escoubas, and M. Lazdunski. (2006). The receptor site of the spider toxin PcTx1 on the proton-gated cation channel ASIC1a. J. Physiol. 570: 339-354. 16284080
Sassi, A., Y. Wang, A. Chassot, O. Komarynets, I. Roth, V. Olivier, G. Crambert, E. Dizin, E. Boscardin, E. Hummler, and E. Feraille. (2020). Interaction between Epithelial Sodium Channel -Subunit and Claudin-8 Modulates Paracellular Sodium Permeability in Renal Collecting Duct. J Am Soc Nephrol. [Epub: Ahead of Print] 32245797
Saugstad, J.A., J.A. Roberts, J. Dong, S. Zeitouni, and R.J. Evans. (2004). Analysis of the membrane topology of the acid-sensing ion channel 2a. J. Biol. Chem. 279: 55514-55519. 15504740
Saxena, S.K., M. Singh, S. Kaur, and C. George. (2006). Distinct domain-dependent effect of syntaxin1A on amiloride-sensitive sodium channel (ENaC) currents in HT-29 colonic epithelial cells. Int J Biol Sci 3: 47-56. 17200691
Schaefer, L., H. Sakai, M. Mattei, M. Lazdunski, and E. Lingueglia. (2000). Molecular cloning, functional expression and chromosomal localization of an amiloride-sensitive Na+ channel from human small intestine. FEBS Lett. 471: 205-210. 10767424
Schmidt, A., D. Löhrer, R.J. Alsop, P. Lenzig, A. Oslender-Bujotzek, M. Wirtz, M.C. Rheinstädter, S. Gründer, and D. Wiemuth. (2016). A cytosolic amphiphilic alpha helix controls the activity of the bile acid-sensitive ion channel BASIC. J. Biol. Chem. [Epub: Ahead of Print] 27679529
Schuhmacher LN., Srivats S. and Smith ES. (2015). Structural domains underlying the activation of acid-sensing ion channel 2a. Mol Pharmacol. 87(4):561-71. 25583083
Scott, D.W., M.P. Walker, J. Sesma, B. Wu, T.J. Stuhlmiller, J.R. Sabater, W.M. Abraham, T.M. Crowder, D.J. Christensen, and R. Tarran. (2017). SPX-101 Is a Novel Epithelial Sodium Channel-targeted Therapeutic for Cystic Fibrosis That Restores Mucus Transport. Am J Respir Crit Care Med 196: 734-744. 28481660
Sedensky, M.M., J.M. Siefker, J.Y. Koh, D.M. Miller, 3rd, and P.G. Morgan. (2004). A stomatin and a degenerin interact in lipid rafts of the nervous system of Caenorhabditis elegans. Am. J. Physiol. Cell Physiol. 287: C468-474. 15102610
Sheng, S., J. Li, K.A. McNulty, D. Avery, and T.R. Kleyman. (2000). Characterization of the selectivity filter of the epithelial sodium channel. J. Biol. Chem. 275: 8572-8581. 10722696
Sheng, S., J. Li, K.A. McNulty, T. Kieber-Emmons, and T.R. Kleyman. (2001a). Epithelial sodium channel pore region: structure and role in gating. J. Biol. Chem. 276: 1326-1334. 11022046
Sheng, S., K.A. McNulty, J.M. Harvey, and T.R. Kleyman. (2001b). Second transmembrane domains of ENaC subunits contribute to ion permeation and selectivity. J. Biol. Chem. 276: 44091-44098. 11564745
Shi S. and Kleyman TR. (2013). Gamma subunit second transmembrane domain contributes to epithelial sodium channel gating and amiloride block. Am J Physiol Renal Physiol. 305(11):F1585-92. 24107424
Shi, S., C.J. Luke, M.T. Miedel, G.A. Silverman, and T.R. Kleyman. (2016). Activation of the Caenorhabditis elegans degenerin channel by shear stress requires the MEC-10 subunit. J. Biol. Chem. [Epub: Ahead of Print] 27189943
Shi, S., D.D. Ghosh, S. Okumura, M.D. Carattino, O.B. Kashlan, S. Sheng, and T.R. Kleyman. (2011). Base of the thumb domain modulates epithelial sodium channel gating. J. Biol. Chem. 286: 14753-14761. 21367859
Shi, S., S.M. Mutchler, B.M. Blobner, O.B. Kashlan, and T.R. Kleyman. (2018). Pore-lining residues of MEC-4 and MEC-10 channel subunits tune the degenerin channel''s response to shear stress. J. Biol. Chem. [Epub: Ahead of Print] 29743244
Snyder, P.M., D.R. Olson, F.J. McDonald, and D.B. Bucher. (2001). Multiple WW domains, but not the C2 domain, are required for inhibition of the epithelial Na+ channel by human Nedd4. J. Biol. Chem. 276: 28321-28326. 11359767
Song, N., Z. Lu, J. Zhang, Y. Shi, Y. Ning, J. Chen, S. Jin, B. Shen, Y. Fang, J. Zou, J. Teng, X.P. Chu, L. Shen, and X. Ding. (2019). Acid-sensing ion channel 1a is involved in ischaemia/reperfusion induced kidney injury by increasing renal epithelia cell apoptosis. J Cell Mol Med. [Epub: Ahead of Print] 30793492
Springauf, A., P. Bresenitz, and S. Gründer. (2011). The interaction between two extracellular linker regions controls sustained opening of acid-sensing ion channel 1. J. Biol. Chem. 286: 24374-24384. 21576243
Su, X., Q. Li, K. Shrestha, E. Cormet-Boyaka, L. Chen, P.R. Smith, E.J. Sorscher, D.J. Benos, S. Matalon, and H.L. Ji. (2006). Interregulation of proton-gated Na+ channel 3 and cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 281: 36960-36968. 17012229
Sun, D., S. Liu, S. Li, M. Zhang, F. Yang, M. Wen, P. Shi, T. Wang, M. Pan, S. Chang, X. Zhang, L. Zhang, C. Tian, and L. Liu. (2020). Structural insights into human acid-sensing ion channel 1a inhibition by snake toxin mambalgin1. Elife 9:. 32915133
Takeda, A.N., I. Gautschi, M.X. van Bemmelen, and L. Schild. (2007). Cadmium trapping in an epithelial sodium channel pore mutant. J. Biol. Chem. 282: 31928-31936. 17804416
Tolino, L.A., S. Okumura, O.B. Kashlan, and M.D. Carattino. (2011). Insights into the mechanism of pore opening of acid-sensing ion channel 1a. J. Biol. Chem. 286: 16297-16307. 21388961
Ugawa, S., Y. Ishida, T. Ueda, K. Inoue, M. Nagao, and S. Shimada. (2007). Nafamostat mesilate reversibly blocks acid-sensing ion channel currents. Biochem. Biophys. Res. Commun. 363: 203-208. 17826743
Ugawa, S., Y. Ishida, T. Ueda, Y. Yu, and S. Shimada. (2008). Hypotonic stimuli enhance proton-gated currents of acid-sensing ion channel-1b. Biochem. Biophys. Res. Commun. 367: 530-534. 18158916
van Bemmelen, M.X., D. Huser, I. Gautschi, and L. Schild. (2015). The Human Acid-Sensing Ion Channel ASIC1a: Evidence for a Homotetrameric Assembly State at the Cell Surface. PLoS One 10: e0135191. 26252376
Waldmann, R., G. Champigny, F. Bassilana, C. Heurteaux, and M. Lazdunski. (1997). A proton-gated cation channel involved in acid-sensing. Nature 386: 173-177. 9062189
Wang, W., B. Duan, H. Xu, L. Xu, and T.-L. Xu. (2006). Calcium-permeable acid-sensing ion channel is a molecular target of the neurotoxic metal ion lead. J. Biol. Chem. 281: 2497-2505. 16319075
Wang, Y., A. Apicella, Jr, S.K. Lee, M. Ezcurra, R.D. Slone, M. Goldmit, W.R. Schafer, S. Shaham, M. Driscoll, and L. Bianchi. (2008). A glial DEG/ENaC channel functions with neuronal channel DEG-1 to mediate specific sensory functions in C. elegans. EMBO. J. 27: 2388-2399. 18701922
Welsh, M.J., M.P. Price, and J. Xie. (2002). Biochemical basis of touch perception: mechanosensory function of degenerin/epithelial Na+ channels. J. Biol. Chem. 277: 2369-2372. 11706013
Wiemuth, D. and S. Gründer. (2010). A single amino acid tunes Ca2+ inhibition of brain liver intestine Na+ channel (BLINaC). J. Biol. Chem. 285: 30404-30410. 20656685
Yang, L. and L.G. Palmer. (2018). Determinants of selective ion permeation in the epithelial Na channel. J Gen Physiol. [Epub: Ahead of Print] 30135076
Zhao, R., X. Liang, M. Zhao, S.L. Liu, Y. Huang, S. Idell, X. Li, and H.L. Ji. (2014). Correlation of apical fluid-regulating channel proteins with lung function in human COPD lungs. PLoS One 9: e109725. 25329998
Zhong, L., R.Y. Hwang, and W.D. Tracey. (2010). Pickpocket is a DEG/ENaC protein required for mechanical nociception in Drosophila larvae. Curr. Biol. 20: 429-434. 20171104


and Li GH. (2015). Geometric rules of channel gating inferred from computational models of the P2X receptor transmembrane domain. J Mol Graph Model. 61:107-114. 26209765
Alexander, S.P.H. and J.A. Peters. (1997). Receptor and ion channel nomenclature supplement. Trends Pharmacol. Sci. 18: 65-68.
Allsopp, R.C. and R.J. Evans. (2011). The Intracellular Amino Terminus Plays a Dominant Role in Desensitization of ATP-gated P2X Receptor Ion Channels. J. Biol. Chem. 286: 44691-44701. 22027824
Allsopp, R.C., S. El Ajouz, R. Schmid, and R.J. Evans. (2011). Cysteine scanning mutagenesis (residues Glu52-Gly96) of the human P2X1 receptor for ATP: mapping agonist binding and channel gating. J. Biol. Chem. 286: 29207-29217. 21690089
Allsopp, R.C., U. Lalo, and R.J. Evans. (2010). Lipid raft association and cholesterol sensitivity of P2X1-4 receptors for ATP: chimeras and point mutants identify intracellular amino-terminal residues involved in lipid regulation of P2X1 receptors. J. Biol. Chem. 285: 32770-32777. 20699225
Aschrafi, A., S. Sadtler, C. Niculescu, J. Rettinger, and G. Schmalzing. (2004). Trimeric architecture of homomeric P2X2 and heteromeric P2X1+2 receptor subtypes. J. Mol. Biol. 342: 333-343. 15313628
Baines, A., K. Parkinson, J.A. Sim, L. Bragg, C.R. Thompson, and R.A. North. (2013). Functional properties of five Dictyostelium discoideum P2X receptors. J. Biol. Chem. 288: 20992-21000. 23740252
Bernier, L.P., D. Blais, E. Boué-Grabot, and P. Séguéla. (2012). A Dual Polybasic Motif Determines Phosphoinositide Binding and Regulation in the P2X Channel Family. PLoS One 7: e40595. 22792379
Browne, L.E., L. Cao, H.E. Broomhead, L. Bragg, W.J. Wilkinson, and R.A. North. (2011). P2X receptor channels show threefold symmetry in ionic charge selectivity and unitary conductance. Nat Neurosci 14: 17-18. 21170052
Browne, L.E., V. Compan, L. Bragg, and R.A. North. (2013). P2X7 receptor channels allow direct permeation of nanometer-sized dyes. J. Neurosci. 33: 3557-3566. 23426683
Burnstock, G. and C. Kennedy. (2011). P2X receptors in health and disease. Adv Pharmacol 61: 333-372. 21586364
Caseley, E.A., S.P. Muench, and L.H. Jiang. (2016). Conformational changes during human P2X7 receptor activation examined by structural modelling and cysteine-based cross-linking studies. Purinergic Signal. [Epub: Ahead of Print] 28025718
Coddou C., Yan Z. and Stojilkovic SS. (2015). Role of domain calcium in purinergic P2X2 receptor channel desensitization. Am J Physiol Cell Physiol. 308(9):C729-36. 25673774
Coddou, C., Z. Yan, T. Obsil, J.P. Huidobro-Toro, and S.S. Stojilkovic. (2011). Activation and regulation of purinergic P2X receptor channels. Pharmacol Rev 63: 641-683. 21737531
Dal Ben, D., M. Buccioni, C. Lambertucci, G. Marucci, A. Thomas, and R. Volpini. (2015). Purinergic P2X receptors: structural models and analysis of ligand-target interaction. Eur J Med Chem 89: 561-580. 25462266
Davies, D.L., L. Asatryan, S.T. Kuo, J.J. Woodward, B.F. King, R.L. Alkana, C. Xiao, J.H. Ye, H. Sun, L. Zhang, X.Q. Hu, V. Hayrapetyan, D.M. Lovinger, and T.K. Machu. (2006). Effects of ethanol on adenosine 5''-triphosphate-gated purinergic and 5-hydroxytryptamine receptors. Alcohol Clin Exp Res 30: 349-358. 16441284
de Souza CA., Teixeira PC., Faria RX., Krylova O., Pohl P. and Alves LA. (2012). A consensus segment in the M2 domain of the hP2X(7) receptor shows ion channel activity in planar lipid bilayers and in biological membranes. Biochim Biophys Acta. 1818(1):64-71. 21958668
de Torre-Minguela, C., M. Barberà-Cremades, A.I. Gómez, F. Martín-Sánchez, and P. Pelegrín. (2016). Macrophage activation and polarization modify P2X7 receptor secretome influencing the inflammatory process. Sci Rep 6: 22586. 26935289
Di Virgilio, F., A.L. Giuliani, V. Vultaggio-Poma, S. Falzoni, and A.C. Sarti. (2018). Non-nucleotide Agonists Triggering P2X7 Receptor Activation and Pore Formation. Front Pharmacol 9: 39. 29449813
Du J., Dong H. and Zhou HX. (2012). Size matters in activation/inhibition of ligand-gated ion channels. Trends Pharmacol Sci. 33(9):482-93. 22789930
Du, J., H. Dong, and H.X. Zhou. (2012). Gating mechanism of a P2X4 receptor developed from normal mode analysis and molecular dynamics simulations. Proc. Natl. Acad. Sci. USA 109: 4140-4145. 22378652
Fabbretti E. and Nistri A. (2012). Regulation of P2X3 receptor structure and function. CNS Neurol Disord Drug Targets. 11(6):687-98. 22963434
Feng, Y.H., X. Li, L. Wang, L. Zhou, and G.I. Gorodeski. (2006). A truncated P2X7 receptor variant (P2X7-j) endogenously expressed in cervical cancer cells antagonizes the full-length P2X7 receptor through hetero-oligomerization. J. Biol. Chem. 281: 17228-17237. 16624800
Fountain, S.J., K. Parkinson, M.T. Young, L. Cao, C.R. Thompson, and R.A. North. (2007). An intracellular P2X receptor required for osmoregulation in Dictyostelium discoideum. Nature. 448: 200-203. 17625565
Fountain, S.J., L. Cao, M.T. Young, and R.A. North. (2008). Permeation Properties of a P2X Receptor in the Green Algae Ostreococcus tauri. J. Biol. Chem. 283: 15122-15126. 18381285
Franklin, K.M., L. Asatryan, M.W. Jakowec, J.R. Trudell, R.L. Bell, and D.L. Davies. (2014). P2X4 receptors (P2X4Rs) represent a novel target for the development of drugs to prevent and/or treat alcohol use disorders. Front Neurosci 8: 176. 25009459
Gao C., Yu Q., Xu H., Zhang L., Liu J., Jie Y., Ma W., Samways DS. and Li Z. (2015). Roles of the lateral fenestration residues of the P2X(4) receptor that contribute to the channel function and the deactivation effect of ivermectin. Purinergic Signal. 11(2):229-38. 25847072
Gao, X.F., J.F. Feng, W. Wang, Z.H. Xiang, X.J. Liu, C. Zhu, Z.X. Tang, X.Z. Dong, and C. He. (2015). Pirt reduces bladder overactivity by inhibiting purinergic receptor P2X3. Nat Commun 6: 7650. 26151598
George, B., K.J. Swartz, and M. Li. (2019). Hearing loss mutations alter the functional properties of human P2X2 receptor channels through distinct mechanisms. Proc. Natl. Acad. Sci. USA 116: 22862-22871. 31636190
Habermacher, C., A. Martz, N. Calimet, D. Lemoine, L. Peverini, A. Specht, M. Cecchini, and T. Grutter. (2016). Photo-switchable tweezers illuminate pore-opening motions of an ATP-gated P2X ion channel. Elife 5:. 26808983
Hattori M. and Gouaux E. (2012). Molecular mechanism of ATP binding and ion channel activation in P2X receptors. Nature. 485(7397):207-12. 22535247
He, Y.Q., J. Chen, X.J. Lu, and Y.H. Shi. (2013). Characterization of P2X7R and its function in the macrophages of ayu, Plecoglossus altivelis. PLoS One 8: e57505. 23437395
Illes, P. (2020). P2X7 Receptors Amplify CNS Damage in Neurodegenerative Diseases. Int J Mol Sci 21:. 32825423
Ilyaskin, A.V., F. Sure, V. Nesterov, S. Haerteis, and C. Korbmacher. (2019). Bile acids inhibit human purinergic receptor P2X4 in a heterologous expression system. J Gen Physiol. [Epub: Ahead of Print] 30988062
Janks, L., R.S. Sprague, and T.M. Egan. (2019). ATP-Gated P2X7 Receptors Require Chloride Channels To Promote Inflammation in Human Macrophages. J Immunol 202: 883-898. 30598517
Jelínkova, I., V. Vávra, M. Jindrichova, T. Obsil, H.W. Zemkova, H. Zemkova, and S.S. Stojilkovic. (2008). Identification of P2X(4) receptor transmembrane residues contributing to channel gating and interaction with ivermectin. Pflugers Arch 456: 939-950. 18427835
Jiang, L.H., F. Rassendren, A. Surprenant, and R.A. North. (2000). Identification of amino acid residues contributing to the ATP-binding site of a purinergic P2X receptor. J. Biol. Chem. 275: 34190-34196. 10940304
Jindrichova M., Bhattacharya A., Rupert M., Skopek P., Obsil T. and Zemkova H. (2015). Functional characterization of mutants in the transmembrane domains of the rat P2X7 receptor that regulate pore conductivity and agonist sensitivity. J Neurochem. 133(6):815-27. 25712548
Jindrichova, M., K. Khafizov, A. Skorinkin, D. Fayuk, G. Bart, H. Zemkova, and R. Giniatullin. (2011). Highly conserved tyrosine 37 stabilizes desensitized states and restricts calcium permeability of ATP-gated P2X3 receptor. J Neurochem 119: 676-685. 21883226
Karasawa, A., K. Michalski, P. Mikhelzon, and T. Kawate. (2017). The P2X7 receptor forms a dye-permeable pore independent of its intracellular domain but dependent on membrane lipid composition. Elife 6:. 28920575
Kawate, T. (2017). P2X Receptor Activation. Adv Exp Med Biol. [Epub: Ahead of Print] 28639248
Kawate, T., J.C. Michel, W.T. Birdsong, and E. Gouaux. (2009). Crystal structure of the ATP-gated P2X(4) ion channel in the closed state. Nature 460: 592-598. 19641588
Kawate, T., J.L. Robertson, M. Li, S.D. Silberberg, and K.J. Swartz. (2011). Ion access pathway to the transmembrane pore in P2X receptor channels. J Gen Physiol 137: 579-590. 21624948
Keceli B. and Kubo Y. (2014). Voltage- and ATP-dependent structural rearrangements of the P2X2 receptor associated with the gating of the pore. J Physiol. 592(Pt 21):4657-76. 25172943
Khalafalla, M.G., L.T. Woods, J.M. Camden, A.A. Khan, K.H. Limesand, M.J. Petris, L. Erb, and G.A. Weisman. (2017). P2X7 receptor antagonism prevents IL-1β release from salivary epithelial cells and reduces inflammation in a mouse model of autoimmune exocrinopathy. J. Biol. Chem. [Epub: Ahead of Print] 28798231
Kracun S., Chaptal V., Abramson J. and Khakh BS. (2010). Gated access to the pore of a P2X receptor: structural implications for closed-open transitions. J Biol Chem. 285(13):10110-21. 20093367
Lara, R., E. Adinolfi, C.A. Harwood, M. Philpott, J.A. Barden, F. Di Virgilio, and S. McNulty. (2020). P2X7 in Cancer: From Molecular Mechanisms to Therapeutics. Front Pharmacol 11: 793. 32581786
Latapiat, V., F.E. Rodríguez, F. Godoy, F.A. Montenegro, N.P. Barrera, and J.P. Huidobro-Toro. (2017). P2X4 Receptorand Electrophysiological Approaches Reveal Insights of Ivermectin and Zinc Allosteric Modulation. Front Pharmacol 8: 918. 29326590
Leeson, H.C., M.A. Kasherman, T. Chan-Ling, M.D. Lovelace, J.C. Brownlie, K.M. Toppinen, B.J. Gu, and M.W. Weible, 2nd. (2018). P2X7 Receptors Regulate Phagocytosis and Proliferation in Adult Hippocampal and SVZ Neural Progenitor Cells: Implications for Inflammation in Neurogenesis. Stem Cells. [Epub: Ahead of Print] 30068016
Leeson, H.C., T. Chan-Ling, M.D. Lovelace, J.C. Brownlie, B.J. Gu, and M.W. Weible. (2019). P2X7 receptor signaling during adult hippocampal neurogenesis. Neural Regen Res 14: 1684-1694. 31169175
Li, G.H. (2018). Exploring conformational states and helical packings in the P2X receptor transmembrane domain by molecular dynamics simulation. J Biol Phys. [Epub: Ahead of Print] 29611030
Li, M., T. Kawate, S.D. Silberberg, and K.J. Swartz. (2010). Pore-opening mechanism in trimeric P2X receptor channels. Nat Commun 1: 44. 20975702
Li, Q., X. Luo, and S. Muallem. (2005). Regulation of the P2X7 receptor permeability to large molecules by extracellular Cl- and Na+. J. Biol. Chem. 280: 26922-26927. 15923180
Liang, X., H. Xu, C. Li, S. Yin, T. Xu, J. Liu, and Z. Li. (2013). Functional Identification of Close Proximity Amino Acid Side Chains within the Transmembrane-Spanning Helixes of the P2X2 Receptor. PLoS One 8: e70629. 23936459
Liu, H.Y., A.M. Pappa, A. Pavia, C. Pitsalidis, Q. Thiburce, A. Salleo, R.M. Owens, and S. Daniel. (2020). Self-assembly of mammalian cell membranes on bioelectronic devices with functional transmembrane proteins. Langmuir. [Epub: Ahead of Print] 32388991
Lu, H., D. Burns, P. Garnier, G. Wei, K. Zhu, and W. Ying. (2007). P2X7 receptors mediate NADH transport across the plasma membranes of astrocytes. Biochem. Biophys. Res. Commun. 362: 946-950. 17803959
Ludlow, M.J., L. Durai, and S.J. Ennion. (2009). Functional characterization of intracellular Dictyostelium discoideum P2X receptors. J. Biol. Chem. 284: 35227-35239. 19833731
Mager, P.P., A. Weber, and P. Illes. (2004). Bridging the gap between structural bioinformatics and receptor research: the membrane-embedded, ligand-gated, P2X glycoprotein receptor. Curr Top Med Chem 4: 1657-1705. 15579102
Mansoor, S.E., W. Lü, W. Oosterheert, M. Shekhar, E. Tajkhorshid, and E. Gouaux. (2016). X-ray structures define human P2X3 receptor gating cycle and antagonist action. Nature. [Epub: Ahead of Print] 27626375
Marques-da-Silva, C., M.M. Chaves, J.C. Rodrigues, S. Corte-Real, R. Coutinho-Silva, and P.M. Persechini. (2011). Differential modulation of ATP-induced P2X7-associated permeabilities to cations and anions of macrophages by infection with Leishmania amazonensis. PLoS One 6: e25356. 21966508
Matyśniak, D., N. Nowak, and P. Pomorski. (2020). P2X7 receptor activity landscape in rat and human glioma cell lines. Acta Biochim Pol 67: 7-14. 32187491
McCleskey E.W. and M.S. Gold. (1999). Ion channels of nociception. Annu. Rev. Physiol. 61: 835-856. 10099712
Minato, Y., S. Suzuki, T. Hara, Y. Kofuku, G. Kasuya, Y. Fujiwara, S. Igarashi, E. Suzuki, O. Nureki, M. Hattori, T. Ueda, and I. Shimada. (2016). Conductance of P2X4 purinergic receptor is determined by conformational equilibrium in the transmembrane region. Proc. Natl. Acad. Sci. USA 113: 4741-4746. 27071117
North, R.A. (2002). Molecular physiology of P2X receptors. Physiol. Rev. 82: 1013-1067. 12270951
North, R.A. (1996). Families of ion channels with two hydrophobic segments. Curr. Opin. Cell Biol. 8: 474-483. 8791456
Pasqualetto, G., A. Brancale, and M.T. Young. (2018). The Molecular Determinants of Small-Molecule Ligand Binding at P2X Receptors. Front Pharmacol 9: 58. 29456508
Pierdominici-Sottile, G., L. Moffatt, and J. Palma. (2016). The Dynamic Behavior of the P2X4 Ion Channel in the Closed Conformation. Biophys. J. 111: 2642-2650. 28002740
Pippel, A., M. Stolz, R. Woltersdorf, A. Kless, G. Schmalzing, and F. Markwardt. (2017). Localization of the gate and selectivity filter of the full-length P2X7 receptor. Proc. Natl. Acad. Sci. USA 114: E2156-E2165. 28235784
Popova, M., L. Rodriguez, J.R. Trudell, S. Nguyen, M. Bloomfield, D.L. Davies, and L. Asatryan. (2020). Residues in Transmembrane Segments of the P2X4 Receptor Contribute to Channel Function and Ethanol Sensitivity. Int J Mol Sci 21:. 32252459
Pupovac, A. and R. Sluyter. (2016). Roles of extracellular nucleotides and P2 receptors in ectodomain shedding. Cell Mol Life Sci. [Epub: Ahead of Print] 27180276
Reyes-Espinosa, F., M.G. Nieto-Pescador, V. Bocanegra-García, E. Lozano-Guzmán, and G. Rivera. (2020). In Silico Analysis of FDA Drugs as P2X4 Modulators for the Treatment of Alcohol Use Disorder. Mol Inform. [Epub: Ahead of Print] 32511896
Rodionova, I.A., F. Heidari Tajabadi, Z. Zhang, D.A. Rodionov, and M.H. Saier, Jr. (2019). A Riboflavin Transporter in Bdellovibrio exovorous JSS. J. Mol. Microbiol. Biotechnol. 1-8. [Epub: Ahead of Print] 31509826
Roger, S., P. Pelegrin, and A. Surprenant. (2008). Facilitation of P2X7 receptor currents and membrane blebbing via constitutive and dynamic calmodulin binding. J. Neurosci. 28: 6393-6401. 18562610
Rokic, M.B., S.S. Stojilkovic, V. Vavra, P. Kuzyk, V. Tvrdonova, and H. Zemkova. (2013). Multiple Roles of the Extracellular Vestibule Amino Acid Residues in the Function of the Rat P2X4 Receptor. PLoS One 8: e59411. 23555667
Rokic, M.B., V. Tvrdoňová, V. Vávra, M. Jindřichová, T. Obšil, S.S. Stojilkovic, and H. Zemková. (2010). Roles of conserved ectodomain cysteines of the rat P2X4 purinoreceptor in agonist binding and channel gating. Physiol Res 59: 927-935. 20406028
Ryoden, Y., T. Fujii, K. Segawa, and S. Nagata. (2020). Functional Expression of the P2X7 ATP Receptor Requires Eros. J Immunol 204: 559-568. 31862710
Sadovnick, A.D., B.J. Gu, A.L. Traboulsee, C.Q. Bernales, M. Encarnacion, I.M. Yee, M.G. Criscuoli, X. Huang, A. Ou, C.J. Milligan, S. Petrou, J.S. Wiley, and C. Vilariño-Güell. (2017). Purinergic receptors P2RX4 and P2RX7 in familial multiple sclerosis. Hum Mutat. [Epub: Ahead of Print] 28326637
Samways DS., Khakh BS. and Egan TM. (2012). Allosteric Modulation of Ca2+ flux in Ligand-gated Cation Channel (P2X4) by Actions on Lateral Portals. J Biol Chem. 287(10):7594-602. 22219189
Samways, D.S., B.S. Khakh, S. Dutertre, and T.M. Egan. (2011). Preferential use of unobstructed lateral portals as the access route to the pore of human ATP-gated ion channels (P2X receptors). Proc. Natl. Acad. Sci. USA 108: 13800-13805. 21808018
Schwarz, N., L. Drouot, A. Nicke, R. Fliegert, O. Boyer, A.H. Guse, F. Haag, S. Adriouch, and F. Koch-Nolte. (2012). Alternative splicing of the N-terminal cytosolic and transmembrane domains of P2X7 controls gating of the ion channel by ADP-ribosylation. PLoS One 7: e41269. 22848454
Shibata, M., E. Ishizaki, T. Zhang, M. Fukumoto, A. Barajas-Espinosa, T. Li, and D.G. Puro. (2018). Purinergic Vasotoxicity: Role of the Pore/Oxidant/K Channel/Ca Pathway in P2X-Induced Cell Death in Retinal Capillaries. Vision (Basel) 2:. 30288454
Silberberg, S.D., T.H. Chang, and K.J. Swartz. (2005). Secondary structure and gating rearrangements of transmembrane segments in rat P2X4 receptor channels. J Gen Physiol 125: 347-359. 15795310
Sivcev, S., B. Slavikova, M. Ivetic, M. Knezu, E. Kudova, and H. Zemkova. (2020). Lithocholic acid inhibits P2X2 and potentiates P2X4 receptor channel gating. J Steroid Biochem Mol Biol 105725. [Epub: Ahead of Print] 32652201
Skarratt, K.K., B.J. Gu, M.D. Lovelace, C.J. Milligan, L. Stokes, R. Glover, S. Petrou, J.S. Wiley, and S.J. Fuller. (2020). A P2RX7 single nucleotide polymorphism haplotype promotes exon 7 and 8 skipping and disrupts receptor function. FASEB J. [Epub: Ahead of Print] 32003498
Smart, M.L., B. Gu, R.G. Panchal, J. Wiley, B. Cromer, D.A. Williams, and S. Petrou. (2003). P2X7 receptor cell surface expression and cytolytic pore formation are regulated by a distal C-terminal region. J. Biol. Chem. 278: 8853-8860. 12496266
Soto, F., M. Garcia-Guzman, and W. Stühmer. (1997). Cloned ligand-gated channels activated by extracellular ATP (P2X receptors). J. Membr. Biol. 160: 91-100. 9354701
Stojilkovic, S.S., Z. Yan, T. Obsil, and H. Zemkova. (2010). Structural insights into the function of P2X4: an ATP-gated cation channel of neuroendocrine cells. Cell Mol Neurobiol 30: 1251-1258. 21107680
Sun, L.F., Y. Liu, J. Wang, L.D. Huang, Y. Yang, X.Y. Cheng, Y.Z. Fan, M.X. Zhu, H. Liang, Y. Tian, H.S. Wang, C.R. Guo, and Y. Yu. (2019). Altered allostery of the left flipper domain underlies the weak ATP response of rat P2X5 receptors. J. Biol. Chem. 294: 19589-19603. 31727741
Townsend-Nicholson, A., B.F. King, S.S. Wildman, and G. Burnstock. (1999). Molecular cloning, functional characterization and possible cooperativity between the murine P2X4 and P2X4a receptors. Brain Res Mol Brain Res 64: 246-254. 9931497
Vial, C., J.A. Roberts, and R.J. Evans. (2004). Molecular properties of ATP-gated P2X receptor ion channels. Trends Pharmacol Sci 25: 487-493. 15559251
Wen, H. and R.J. Evans. (2011). Contribution of the intracellular C terminal domain to regulation of human P2X1 receptors for ATP by phorbol ester and Gq coupled mGlu(1α) receptors. Eur J Pharmacol 654: 155-159. 21172341
Zech, A., B. Wiesler, C.K. Ayata, T. Schlaich, T. Dürk, M. Hoßfeld, N. Ehrat, S. Cicko, and M. Idzko. (2016). P2rx4 deficiency in mice alleviates allergen-induced airway inflammation. Oncotarget 7: 80288-80297. 27863396
Zemkova H., Khadra A., Rokic MB., Tvrdonova V., Sherman A. and Stojilkovic SS. (2015). Allosteric regulation of the P2X4 receptor channel pore dilation. Pflugers Arch. 467(4):713-26. 24917516
Zhang, C.M., X. Huang, H.L. Lu, X.M. Meng, N.N. Song, L. Chen, Y.C. Kim, J. Chen, and W.X. Xu. (2019). Diabetes-induced damage of gastric nitric oxide neurons mediated by P2X7R in diabetic mice. Eur J Pharmacol 851: 151-160. [Epub: Ahead of Print] 30796903


Bienert, G.P., M.D. Schüssler, and T.P. Jahn. (2008). Metalloids: essential, beneficial or toxic? Major intrinsic proteins sort it out. Trends Biochem. Sci. 33: 20-26. 18068370
Ahmadpour, D., E. Maciaszczyk-Dziubinska, R. Babazadeh, S. Dahal, M. Migocka, M. Andersson, R. Wysocki, M.J. Tamás, and S. Hohmann. (2016). The MAP kinase Slt2 modulates arsenite transport through the aquaglyceroporin Fps1. FEBS Lett. [Epub: Ahead of Print] 27607883
Ahmed, S. and Y. Kim. (2019). An aquaporin mediates cell shape change required for cellular immunity in the beet armyworm, Spodoptera exigua. Sci Rep 9: 4988. 30899076
Amezcua-Romero JC., Pantoja O. and Vera-Estrella R. (2010). Ser123 is essential for the water channel activity of McPIP2;1 from Mesembryanthemum crystallinum. J Biol Chem. 285(22):16739-47. 20332086
Araya-Secchi, R., J.A. Garate, D.S. Holmes, and T. Perez-Acle. (2011). Molecular dynamics study of the archaeal aquaporin AqpM. BMC Genomics 12Suppl4: S8. 22369250
Arsenijevic, T., J. Perret, J.L. Van Laethem, and C. Delporte. (2019). Aquaporins Involvement in Pancreas Physiology and in Pancreatic Diseases. Int J Mol Sci 20:. 31614661
Assentoft, M., S. Kaptan, H.P. Schneider, J.W. Deitmer, B.L. de Groot, and N. MacAulay. (2016). Aquaporin 4 as a NH3 Channel. J. Biol. Chem. [Epub: Ahead of Print] 27435677
Au, C.G., T.L. Butler, J.R. Egan, S.T. Cooper, H.P. Lo, A.G. Compton, K.N. North, and D.S. Winlaw. (2008). Changes in skeletal muscle expression of AQP1 and AQP4 in dystrophinopathy and dysferlinopathy patients. Acta Neuropathol 116: 235-246. 18392839
Ayadi, M., D. Cavez, N. Miled, F. Chaumont, and K. Masmoudi. (2011). Identification and characterization of two plasma membrane aquaporins in durum wheat (Triticum turgidum L. subsp. durum) and their role in abiotic stress tolerance. Plant Physiol. Biochem 49: 1029-1039. 21723739
Balasaheb Karle, S., K. Kumar, S. Srivastava, and P. Suprasanna. (2020). Cloning, in silico characterization and expression analysis of TIP subfamily from rice (Oryza sativa L.). Gene 761: 145043. 32777530
Beese-Sims, S.E., J. Lee, and D.E. Levin. (2011). Yeast Fps1 glycerol facilitator functions as a homotetramer. Yeast 28: 815-819. 22030956
Beitz, E., S. Pavlovic-Djuranovic, M. Yasui, P. Agre, and J.E. Schultz. (2004). Molecular dissection of water and glycerol permeability of the aquaglyceroporin from Plasmodium falciparum by mutational analysis. Proc. Natl. Acad. Sci. USA 101: 1153-1158. 14734807
Bellati, J., K. Alleva, G. Soto, V. Vitali, C. Jozefkowicz, and G. Amodeo. (2010). Intracellular pH sensing is altered by plasma membrane PIP aquaporin co-expression. Plant Mol. Biol. 74: 105-118. 20593222
Ben Amira, M., R. Mom, D. Lopez, H. Chaar, A. Khouaja, V. Pujade-Renaud, B. Fumanal, A. Gousset-Dupont, G. Bronner, P. Label, J.L. Julien, M.A. Triki, D. Auguin, and J.S. Venisse. (2018). MIP diversity from Trichoderma: Structural considerations and transcriptional modulation during mycoparasitic association with Fusarium solani olive trees. PLoS One 13: e0193760. 29543834
Berland, S., T.L. Toft-Bertelsen, I. Aukrust, J. Byska, M. Vaudel, L.A. Bindoff, N. MacAulay, and G. Houge. (2018). A de novo Ser111Thr variant in aquaporin-4 in a patient with intellectual disability, transient signs of brain ischemia, transient cardiac hypertrophy, and progressive gait disturbance. Cold Spring Harb Mol Case Stud 4:. 29437797
Berny, M.C., D. Gilis, M. Rooman, and F. Chaumont. (2016). Single mutations in the transmembrane domains of maize plasma membrane aquaporins affect the activity of the monomers within a heterotetramer. Mol Plant. [Epub: Ahead of Print] 27109604
Berthaud A., Manzi J., Perez J. and Mangenot S. (2012). Modeling detergent organization around aquaporin-0 using small-angle X-ray scattering. J Am Chem Soc. 134(24):10080-8. 22621369
Berthaud, A., F. Quemeneur, M. Deforet, P. Bassereau, F. Brochard-Wyart, and S. Mangenot. (2015). Spreading of porous vesicles subjected to osmotic shocks: the role of aquaporins. Soft Matter. [Epub: Ahead of Print] 26662491
Bertl, A., and R. Kaldenhoff. (2007). Function of a separate NH3-pore in Aquaporin TIP2;2 from wheat. FEBS Lett. 581: 5413-5417. 17967420
Bienert, G.P., A.L. Moller, K.A. Kristiansen, A. Schulz, I.M. Moller, J.K. Schjoerring, and T.P. Jahn. (2007). Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem. 282: 1183-1192. 17105724
Bienert, G.P., B. Desguin, F. Chaumont, and P. Hols. (2013). Channel-mediated lactic acid transport: a novel function for aquaglyceroporins in bacteria. Biochem. J. 454: 559-570. 23799297
Bienert, M.D., T.A. Diehn, N. Richet, F. Chaumont, and G.P. Bienert. (2018). Heterotetramerization of Plant PIP1 and PIP2 Aquaporins Is an Evolutionary Ancient Feature to Guide PIP1 Plasma Membrane Localization and Function. Front Plant Sci 9: 382. 29632543
Bonilla-Correal, S., F. Noto, E. Garcia-Bonavila, J.E. Rodríguez-Gil, M. Yeste, and J. Miro. (2017). First evidence for the presence of aquaporins in stallion sperm. Reprod Domest Anim 52Suppl4: 61-64. 29052325
Bui, L.C., C. Tomkiewicz, S. Pierre, A. Chevallier, R. Barouki, and X. Coumoul. (2016). Regulation of Aquaporin 3 Expression by the AhR Pathway Is Critical to Cell Migration. Toxicol Sci 149: 158-166. 26454884
Buzhynskyy, N., J.F. Girmens, W. Faigle, S. Scheuring. (2007). Human cataract lens membrane at subnanometer resolution. J. Mol. Biol. 374: 162-169. 17920625
Byrt, C.S., M. Zhao, M. Kourghi, J. Bose, S.W. Henderson, J. Qiu, M. Gilliham, C. Schultz, M. Schwarz, S.A. Ramesh, A. Yool, and S. Tyerman. (2017). Non-selective cation channel activity of aquaporin AtPIP2;1 regulated by Ca and pH. Plant Cell Environ 40: 802-815. 27620834
Calamita, G., B. Kempf, M. Bonhivers, W.R. Bishai, E. Bremer, and P. Agre. (1998). Regulation of the Escherichia coli water channel gene aqpZ. Proc. Natl. Acad. Sci. USA 95: 3627-3631. 9520416
Calamita, G., J. Perret, and C. Delporte. (2018). Aquaglyceroporins: Drug Targets for Metabolic Diseases? Front Physiol 9: 851. 30042691
Calamita. G. (2000). The Escherichia coli aquaporin-Z water channel. Mol. Microbiol. 37: 254-262. 10931322
Carbrey, J.M., D.A. Gorelick-Feldman, D. Kozono, J. Praetorius, S. Nielsen, and P. Agre. (2003). Aquaglyceroporin AQP9: solute permeation and metabolic control of expression in liver. Proc. Natl. Acad. Sci. USA 100: 2945-2950. 12594337
Carbrey, J.M., M. Bonhivers, J.D. Boeke, and P. Agre. (2001). Aquaporins in Saccharomyces: characterization of a second functional water channel protein. Proc. Natl. Acad. Sci. USA 98: 1000-1005. 11158584
Carrageta, D.F., R.L. Bernardino, G. Soveral, G. Calamita, M.G. Alves, and P.F. Oliveira. (2019). Aquaporins and male (in)fertility: Expression and role throughout the male reproductive tract. Arch Biochem Biophys 108222. [Epub: Ahead of Print] 31816311
Chau, D., K. Ng, T.S. Chan, Y.Y. Cheng, B. Fong, S. Tam, Y.L. Kwong, and E. Tse. (2015). Azacytidine sensitizes acute myeloid leukemia cells to arsenic trioxide by up-regulating the arsenic transporter aquaglyceroporin 9. J Hematol Oncol 8: 46. 25953102
Chauvigne F., Zapater C., Stavang JA., Taranger GL., Cerda J. and Finn RN. (2015). The pH sensitivity of Aqp0 channels in tetraploid and diploid teleosts. FASEB J. 29(5):2172-84. 25667219
Chevalier, A.S. and F. Chaumont. (2015). The LxxxA motif in the third transmembrane helix of the maize aquaporin ZmPIP2;5 acts as an ER export signal. Plant Signal Behav 10: e990845. 25897469
Chiba, Y., N. Mitani, N. Yamaji, and J.F. Ma. (2009). HvLsi1 is a silicon influx transporter in barley. Plant J. 57: 810-818. 18980663
Choi, W.G., and D.M. Roberts. (2007). Arabidopsis NIP2;1, a major intrinsic protein transporter of lactic acid induced by anoxic stress. J. Biol. Chem. 282: 24209-24218. 17584741
Chrispeels, M.J. and C. Maurel. (1994). Aquaporins: the molecular basis of facilitated water movement through living plant cells? Plant Physiol. 105: 9-13. 7518091
Cui, Y. and D.A. Bastien. (2011). Water transport in human aquaporin-4: Molecular dynamics (MD) simulations. Biochem. Biophys. Res. Commun. 412: 654-659. 21856282
D''Agostino, C., O.A. Elkashty, C. Chivasso, J. Perret, S.D. Tran, and C. Delporte. (2020). Insight into Salivary Gland Aquaporins. Cells 9:. 32630469
Dai, Y.H., B.R. Liu, H.J. Chiang, and H.J. Lee. (2011). Gene transport and expression by arginine-rich cell-penetrating peptides in Paramecium. Gene 489: 89-97. 21925248
Danielli, M., J. Marrone, A.M. Capiglioni, and R.A. Marinelli. (2019). Mitochondrial aquaporin-8 is involved in SREBP-controlled hepatocyte cholesterol biosynthesis. Free Radic Biol Med 131: 370-375. 30579780
Daniels, M.J., F. Chaumont, T.E. Mirkov, and M.J. Chrispeels. (1996). Characterization of a new vacuolar membrane aquaporin sensitive to mercury at a unique site. Plant Cell 8: 587-599. 8624437
Danielsson, A., F. Pontén, L. Fagerberg, B.M. Hallström, J.M. Schwenk, M. Uhlén, O. Korsgren, and C. Lindskog. (2014). The human pancreas proteome defined by transcriptomics and antibody-based profiling. PLoS One 9: e115421. 25546435
de Paula Santos Martins, C., A.M. Pedrosa, D. Du, L.P. Gonçalves, Q. Yu, F.G. Gmitter, Jr, and M.G. Costa. (2015). Genome-Wide Characterization and Expression Analysis of Major Intrinsic Proteins during Abiotic and Biotic Stresses in Sweet Orange (Citrus sinensis L. Osb.). PLoS One 10: e0138786. 26397813
De Rosa, A., A. Watson-Lazowski, J.R. Evans, and M. Groszmann. (2020). Genome-wide identification and characterisation of Aquaporins in Nicotiana tabacum and their relationships with other Solanaceae species. BMC Plant Biol 20: 266. 32517797
Dean, R.M., R.L. Rivers, M.L. Zeide, and D.M. Roberts. (1999). Purification and functional reconstitution of soybean nodulin 26. An aquaporin with water and glycerol transport properties. Biochemistry 38: 347-353. 9890916
Decker, K., M. Page, and A. Aksimentiev. (2017). Nanoscale Ion Pump Derived from a Biological Water Channel. J Phys Chem B 121: 7899-7906. 28745057
Deen, P.M.T. and C.H. van Os. (1998). Epithelial aquaporins. Curr. Opin. Cell Biol. 10: 435-442. 9719862
Delgado-Bermúdez, A., M. Llavanera, S. Recuero, Y. Mateo-Otero, S. Bonet, I. Barranco, B. Fernandez-Fuertes, and M. Yeste. (2019). Effect of AQP Inhibition on Boar Sperm Cryotolerance Depends on the Intrinsic Freezability of the Ejaculate. Int J Mol Sci 20:. 31835821
Di Giusto, G., P. Flamenco, V. Rivarola, J. Fernández, L. Melamud, P. Ford, and C. Capurro. (2012). Aquaporin 2-increased renal cell proliferation is associated with cell volume regulation. J. Cell. Biochem. 113: 3721-3729. 22786728
Diehn, T.A., M.D. Bienert, B. Pommerrenig, Z. Liu, C. Spitzer, N. Bernhardt, J. Fuge, A. Bieber, N. Richet, F. Chaumont, and G.P. Bienert. (2019). Boron demanding tissues of Brassica napus express specific sets of functional Nodulin26-like Intrinsic Proteins and BOR1 transporters. Plant J. [Epub: Ahead of Print] 31148338
Dingwell, D., L.S. Brown, and V. Ladizhansky. (2019). Structure of the Functionally Important Extracellular Loop C of Human Aquaporin 1 Obtained by Solid-State NMR Under Nearly Physiological Conditions. J Phys Chem B. [Epub: Ahead of Print] 31411472
Docampo, R., V. Jimenez, S. King-Keller, Z.H. Li, and S.N. Moreno. (2011). The role of acidocalcisomes in the stress response of Trypanosoma cruzi. Adv Parasitol 75: 307-324. 21820562
Dong, S.H., S.S. Kim, S.H. Kim, and S.G. Yeo. (2019). Expression of aquaporins in inner ear disease. Laryngoscope. [Epub: Ahead of Print] 31593306
Dynowski, M., G. Schaaf, D. Loque, O. Moran, and U. Ludewig. (2008). Plant plasma membrane water channels conduct the signalling molecule H2O2. Biochem. J. 414: 53-61. 18462192
Engel, A., Y. Fujiyoshi, and P. Agre. (2000). The importance of aquaporin water channel protein structures. EMBO J. 19: 800-806. 10698922
Engel, A., Y. Fujiyoshi, T. Gonen, and T. Walz. (2008). Junction-forming aquaporins. Curr. Opin. Struct. Biol. 18: 229-235. 18194855
Eslami, G., M. Ghavami, A.R. Moradi, H. Nadri, and S. Ahmadian. (2020). Molecular Characterization of Aquaglyceroporine: A Novel Mutation in from (MRHO/IR/75/ER). Iran J Parasitol 14: 465-471. 31673266
Fenton, R.A., H.B. Moeller, J.D. Hoffert, M.J. Yu, S. Nielsen, and M.A. Knepper. (2008). Acute regulation of aquaporin-2 phosphorylation at Ser-264 by vasopressin. Proc. Natl. Acad. Sci. U. S. A. 105: 3134-3139. 18287043
Figarella, K., M. Rawer, N.L. Uzcategui, B.K. Kubata, K. Lauber, F. Madeo, S. Wesselborg, and M. Duszenko. (2005). Prostaglandin D2 induces programmed cell death in Trypanosoma brucei bloodstream form. Cell Death Differ. 12: 335-346. 15678148
Figarella, K., N.L. Uzcategui, Y. Zhou, A. LeFurgey, M. Ouellette, H. Bhattacharjee, and R. Mukhopadhyay. (2007). Biochemical characterization of Leishmania major aquaglyceroporin LmAQP1: possible role in volume regulation and osmotaxis. Mol. Microbiol. 65: 1006-1017. 17640270
Figueiredo, B.C., N.R. De Assis, S.B. De Morais, V.P. Martins, N.D. Ricci, R.M. Bicalho, C.d.a.S. Pinheiro, and S.C. Oliveira. (2014). Immunological characterization of a chimeric form of Schistosoma mansoni aquaporin in the murine model. Parasitology 141: 1277-1288. 24786243
Finn, R.N., F. Chauvigné, J.A. Stavang, X. Belles, and J. Cerdà. (2015). Insect glycerol transporters evolved by functional co-option and gene replacement. Nat Commun 6: 7814. 26183829
Fontijn, R.D., O.L. Volger, T.C. van der Pouw-Kraan, A. Doddaballapur, T. Leyen, J.M. Baggen, R.A. Boon, and A.J. Horrevoets. (2015). Expression of Nitric Oxide-Transporting Aquaporin-1 Is Controlled by KLF2 and Marks Non-Activated Endothelium In Vivo. PLoS One 10: e0145777. 26717516
Frick, A., U.K. Eriksson, F. de Mattia, F. Oberg, K. Hedfalk, R. Neutze, W.J. de Grip, P.M. Deen, and S. Törnroth-Horsefield. (2014). X-ray structure of human aquaporin 2 and its implications for nephrogenic diabetes insipidus and trafficking. Proc. Natl. Acad. Sci. USA 111: 6305-6310. 24733887
Froger, A., J.-P. Rolland, P. Bron, V. Lagrée, F. Le Cahérec, S. Deschamps, J.-F. Hubert, I. Pellerin, D. Thomas, and C. Delamarche. (2001). Functional characterization of a microbial aquaglyceroporin. Microbiology 147: 1129-1135. 11320116
Fu, D., A. Libson, L.J.W. Miercke, C. Weitzman, P. Nollert, J. Krucinski, and R.M. Stroud. (2000). Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290: 481-486. 11039922
Gao, J., X. Wang, Y. Chang, J. Zhang, Q. Song, H. Yu, and X. Li. (2006). Acetazolamide inhibits osmotic water permeability by interaction with aquaporin-1. Anal Biochem 350: 165-170. 16480680
Geadkaew, A., J. von Bülow, E. Beitz, S. Tesana, S. Vichasri Grams, and R. Grams. (2015). Bi-functionality of Opisthorchis viverrini aquaporins. Biochimie 108: 149-159. 25461277
Geijer C., Ahmadpour D., Palmgren M., Filipsson C., Klein DM., Tamas MJ., Hohmann S. and Lindkvist-Petersson K. (2012). Yeast aquaglyceroporins use the transmembrane core to restrict glycerol transport. J Biol Chem. 287(28):23562-70. 22593571
Geng, X., J. McDermott, J. Lundgren, L. Liu, K.J. Tsai, J. Shen, and Z. Liu. (2017). Role of AQP9 in transport of monomethyselenic acid and selenite. Biometals 30: 747-755. 28798983
Gerbeau, P., J. Güçlü, P. Ripoche, and C. Maurel. (1999). Aquaporin Nt-TIPa can account for the high permeability of tobacco cell vacuolar membrane to small neutral solutes. Plant J. 18: 577-587. 10417709
Ghosh, K., C.D. Cappiello, S.M. McBride, J.L. Occi, A. Cali, P.M. Takvorian, T.V. McDonald, and L.M. Weiss. (2006). Functional characterization of a putative aquaporin from Encephalitozoon cuniculi, a microsporidia pathogenic to humans. Int J Parasitol 36: 57-62. 16197948
Gonen, T. and T. Walz. (2006). The structure of aquaporins. Q. Rev. Biophys. 39: 361-396. 17156589
Gonen, T., P. Sliz, J. Kistler, Y. Cheng, and T. Walz. (2004b). Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature 429: 193-197. 15141214
Gonen, T., Y. Cheng, J. Kistler, and T. Walz. (2004a). Aquaporin-0 membrane junctions form upon proteolytic cleavage. J. Mol. Biol. 342: 1337-1345. 15351655
Gonen, T., Y. Cheng, P. Sliz, Y. Hiroaki, Y. Fujiyoshi, S.C. Harrison, and T. Walz. (2005). Lipid-protein interactions in double-layered two-dimensional AQP0 crystals. Nature 438: 633-638. Erratum in: Nature (2006) 441: 248. 16319884
Gourbal, B., N. Sonuc, H. Bhattacharjee, D. Legare, S. Sundar, M. Ouellette, B.P. Rosen, and R. Mukhopadhyay. (2004). Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin. J. Biol. Chem. 279: 31010-31017. 15138256
Guo, H., M. Wei, Y. Liu, Y. Zhu, W. Xu, L. Meng, N. Wang, C. Shao, S. Lu, F. Gao, Z. Cui, Z. Wei, F. Zhao, and S. Chen. (2017). Molecular cloning and expression analysis of the aqp1aa gene in half-smooth tongue sole (Cynoglossus semilaevis). PLoS One 12: e0175033. 28380032
Hara-Chikuma, M., and A.S. Verkman. (2008). Prevention of skin tumorigenesis and impairment of epidermal cell proliferation by targeted aquaporin-3 gene disruption. Mol. Cell. Biol. 28: 326-332. 17967887
He, J. and B. Yang. (2019). Aquaporins in Renal Diseases. Int J Mol Sci 20:. 30654539
Heller, K.B., E.C. Lin, and T.H. Wilson. (1980). Substrate specificity and transport properties of the glycerol facilitator of Escherichia coli. J. Bacteriol. 144: 274-278. 6998951
Hemley SJ., Bilston LE., Cheng S., Chan JN. and Stoodley MA. (2013). Aquaporin-4 expression in post-traumatic syringomyelia. J Neurotrauma. 30(16):1457-67. 23441695
Hermo, L., D. Krzeczunowicz, and R. Ruz. (2019). Cell specificity of aquaporins 0, 3, and 10 expressed in the testis, efferent ducts, and epididymis of adult rats. J Androl 25: 494-505. 15223838
Herraiz, A., F. Chauvigné, J. Cerdà, X. Bellés, and M.D. Piulachs. (2011). Identification and functional characterization of an ovarian aquaporin from the cockroach Blattella germanica L. (Dictyoptera, Blattellidae). J Exp Biol 214: 3630-3638. 21993792
Hesler, R.A., J.J. Huang, M.D. Starr, V.M. Treboschi, A.G. Bernanke, A.B. Nixon, S.J. McCall, R.R. White, and G.C. Blobe. (2016). TGF-β-Induced Stromal CYR61 Promotes Resistance to Gemcitabine in Pancreatic Ductal Adenocarcinoma Through Down-Regulation of the Nucleoside Transporters hENT1 and hCNT3. Carcinogenesis. [Epub: Ahead of Print] 27604902
Heymann, J.B. and A. Engel. (2000). Structural clues in the sequences of the aquaporins. J. Mol. Biol. 295: 1039-1053. 10656809
Hill AE. and Shachar-Hill Y. (2015). Are Aquaporins the Missing Transmembrane Osmosensors? J Membr Biol. 248(4):753-65. 25791748
Hirota, A., Y. Takiya, J. Sakamoto, N. Shiojiri, M. Suzuki, S. Tanaka, and R. Okada. (2015). Molecular Cloning of cDNA Encoding an Aquaglyceroporin, AQP-h9, in the Japanese Tree Frog, Hyla japonica: Possible Roles of AQP-h9 in Freeze Tolerance. Zoolog Sci 32: 296-306. 26402924
Horsefield, R., K. Nordén, M. Fellert, A. Backmark, S. Törnroth-Horsefield, A.C. Terwisscha van Scheltinga, J. Kvassman, P. Kjellbom, U. Johanson, and R. Neutze. (2008). High-resolution x-ray structure of human aquaporin 5. Proc. Natl. Acad. Sci. USA 105: 13327-13332. 18768791
Hub, J.S. and B.L. de Groot. (2008). Mechanism of selectivity in aquaporins and aquaglyceroporins. Proc. Natl. Acad. Sci. USA 105: 1198-1203. 18202181
Hwang, J.H., S.R. Ellingson, and D.M. Roberts. (2010). Ammonia permeability of the soybean nodulin 26 channel. FEBS Lett. 584: 4339-4343. 20875821
Iena, F.M. and J. Lebeck. (2018). Implications of Aquaglyceroporin 7 in Energy Metabolism. Int J Mol Sci 19:. 29300344
Ikarashi, N., C. Nagoya, R. Kon, S. Kitaoka, S. Kajiwara, M. Saito, A. Kawabata, W. Ochiai, and K. Sugiyama. (2019). Changes in the Expression of Aquaporin-3 in the Gastrointestinal Tract Affect Drug Absorption. Int J Mol Sci 20:. 30925715
Ikeda, M., E. Beitz, D. Kozono, W.B. Guggino, P. Agre, and M. Yasui. (2002). Characterization of aquaporin-6 as a nitrate channel in mammalian cells. Requirement of pore-lining residue threonine. J. Biol. Chem. 277: 39873-39879. 12177001
Ikezoe, K., T. Oga, T. Honda, M. Hara-Chikuma, X. Ma, T. Tsuruyama, K. Uno, J. Fuchikami, K. Tanizawa, T. Handa, Y. Taguchi, A.S. Verkman, S. Narumiya, M. Mishima, and K. Chin. (2016). Aquaporin-3 potentiates allergic airway inflammation in ovalbumin-induced murine asthma. Sci Rep 6: 25781. 27165276
Isayenkov, S.V. and F.J. Maathuis. (2008). The Arabidopsis thaliana aquaglyceroporin AtNIP7;1 is a pathway for arsenite uptake. FEBS Lett. 582: 1625-1628. 18435919
Ishibashi, K. (2006). Aquaporin subfamily with unusual NPA boxes. Biochim. Biophys. Acta. 1758: 989-993. 16579962
Ishibashi, K., Y. Morishita, and Y. Tanaka. (2017). The Evolutionary Aspects of Aquaporin Family. Adv Exp Med Biol 969: 35-50. 28258564
Ishibashi, K., Y. Tanaka, and Y. Morishita. (2020). Perspectives on the evolution of aquaporin superfamily. Vitam Horm 112: 1-27. 32061337
Ishida Y., Nagae T. and Azuma M. (2012). A water-specific aquaporin is expressed in the olfactory organs of the blowfly, Phormia regina. J Chem Ecol. 38(8):1057-61. 22767214
Ishikawa, F., S. Suga, T. Uemura, M.H. Sato, and M. Maeshima. (2005). Novel type aquaporin SIPs are mainly localized to the ER membrane and show cell-specific expression in Arabidopsis thaliana. FEBS Lett. 579: 5814-5820. 16223486
Jain, A., R.K. Verma, and R. Sankararamakrishnan. (2018). Presence of Intra-helical Salt-Bridge in Loop E Half-Helix Can Influence the Transport Properties of AQP1 and GlpF Channels: Molecular Dynamics Simulations of In Silico Mutants. J. Membr. Biol. [Epub: Ahead of Print] 30470864
Jelen S., Gena P., Lebeck J., Rojek A., Praetorius J., Frokiaer J., Fenton RA., Nielsen S., Calamita G. and Rutzler M. (2012). Aquaporin-9 and urea transporter-A gene deletions affect urea transmembrane passage in murine hepatocytes. Am J Physiol Gastrointest Liver Physiol. 303(11):G1279-87. 23042941
Jiang, J., B.V. Daniels, and D. Fu. (2006). Crystal structure of AqpZ tetramer reveals two distinct Arg-189 conformations associated with water permeation through the narrowest constriction of the water-conducting channel. J. Biol. Chem. 281: 454-460. 16239219
Jung, H.J., J.Y. Park, H.S. Jeon, and T.H. Kwon. (2011). Aquaporin-5: a marker protein for proliferation and migration of human breast cancer cells. PLoS One 6: e28492. 22145049
Jung, S.Y., D.C. Park, S.S. Kim, and S.G. Yeo. (2020). Expression, Distribution and Role of Aquaporins in Various Rhinologic Conditions. Int J Mol Sci 21:. 32824013
Jung, S.Y., S.S. Kim, Y.I. Kim, S.H. Kim, and S.G. Yeo. (2017). A Review: Expression of Aquaporins in Otitis Media. Int J Mol Sci 18:. 29039751
Jungersted JM., Bomholt J., Bajraktari N., Hansen JS., Klaerke DA., Pedersen PA., Hedfalk K., Nielsen KH., Agner T. and Helix-Nielsen C. (2013). In vivo studies of aquaporins 3 and 10 in human stratum corneum. Arch Dermatol Res. 305(8):699-704. 23677388
Kalluri, S.R., V. Rothhammer, O. Staszewski, R. Srivastava, F. Petermann, M. Prinz, B. Hemmer, and T. Korn. (2011). Functional characterization of aquaporin-4 specific T cells: towards a model for neuromyelitis optica. PLoS One 6: e16083. 21264240
Kaptan S., Assentoft M., Schneider HP., Fenton RA., Deitmer JW., MacAulay N. and de Groot BL. (2015). H95 Is a pH-Dependent Gate in Aquaporin 4. Structure. 23(12):2309-18. 26585511
Kikawada, T., A. Saito, Y. Kanamori, M. Fujita, K. Snigórska, M. Watanabe, and T. Okuda. (2008). Dehydration-inducible changes in expression of two aquaporins in the sleeping chironomid, Polypedilum vanderplanki. Biochim. Biophys. Acta. 1778: 514-520. 18082130
Kirscht, A., S. Survery, P. Kjellbom, and U. Johanson. (2016). Increased Permeability of the Aquaporin SoPIP2;1 by Mercury and Mutations in Loop A. Front Plant Sci 7: 1249. 27625657
Kirscht, A., S.S. Kaptan, G.P. Bienert, F. Chaumont, P. Nissen, B.L. de Groot, P. Kjellbom, P. Gourdon, and U. Johanson. (2016). Crystal Structure of an Ammonia-Permeable Aquaporin. PLoS Biol 14: e1002411. 27028365
Kitchen, P., M.M. Salman, S.U. Pickel, J. Jennings, S. Törnroth-Horsefield, M.T. Conner, R.M. Bill, and A.C. Conner. (2019). Water channel pore size determines exclusion properties but not solute selectivity. Sci Rep 9: 20369. 31889130
Klein, N., J. Neumann, J.D. O''Neil, and D. Schneider. (2015). Folding and stability of the aquaglyceroporin GlpF: Implications for human aqua(glycero)porin diseases. Biochim. Biophys. Acta. 1848: 622-633. 25462169
Klein, N., M. Trefz, and D. Schneider. (2019). Covalently Linking Oligomerization-Impaired GlpF Protomers Does Not Completely Re-establish Wild-Type Channel Activity. Int J Mol Sci 20:. 30791644
Kosinska Eriksson, U., G. Fischer, R. Friemann, G. Enkavi, E. Tajkhorshid, and R. Neutze. (2013). Subangstrom resolution X-ray structure details aquaporin-water interactions. Science 340: 1346-1349. 23766328
Koun, S., J.D. Kim, M. Rhee, M.J. Kim, and T.L. Huh. (2016). Spatiotemporal expression pattern of the zebrafish aquaporin 8 family during early developmental stages. Gene Expr Patterns 21: 1-6. 27264560
Kourghi, M., J.V. Pei, M.L. De Ieso, S. Nourmohammadi, P.H. Chow, and A.J. Yool. (2018). Fundamental structural and functional properties of Aquaporin ion channels found across the kingdoms of life. Clin Exp Pharmacol Physiol 45: 401-409. 29193257
Kourghi, M., M.L. De Ieso, S. Nourmohammadi, J.V. Pei, and A.J. Yool. (2018). Identification of Loop D Domain Amino Acids in the Human Aquaporin-1 Channel Involved in Activation of the Ionic Conductance and Inhibition by AqB011. Front Chem 6: 142. 29755973
Kozono, D., X. Ding, I. Iwasaki, X. Meng, Y. Kamagata, P. Agre, and Y. Kitagawa. (2003). Functional expression and characterization of an archaeal aquaporin. AqpM from Methanothermobacter marburgensis. J. Biol. Chem. 278: 10649-10656. 12519768
Kubota, M., T. Hasegawa, T. Nakakura, H. Tanii, M. Suzuki, and S. Tanaka. (2006). Molecular and cellular characterization of a new aquaporin, AQP-x5, specifically expressed in the small granular glands of Xenopus skin. J Exp Biol 209: 3199-3208. 16888067
Lebeck, J. (2014). Metabolic impact of the glycerol channels AQP7 and AQP9 in adipose tissue and liver. J Mol Endocrinol 52: R165-178. 24463099
Lebeck, J., M.U. Cheema, M.T. Skowronski, S. Nielsen, and J. Praetorius. (2015). Hepatic AQP9 expression in male rats is reduced in response to PPARα agonist treatment. Am. J. Physiol. Gastrointest Liver Physiol 308: G198-205. 25477377
Lee, J.K., D. Kozono, J. Remis, Y. Kitagawa, P. Agre, and R.M. Stroud. (2005). Structural basis for conductance by the archaeal aquaporin AqpM at 1.68 Å. Proc. Natl. Acad. Sci. USA 102: 18932-18937. 16361443
Leung, J., A. Pang, W.H. Yuen, Y.L. Kwong, and E.W. Tse. (2007). Relationship of expression of aquaglyceroporin 9 with arsenic uptake and sensitivity in leukemia cells. Blood 109: 740-746. 16968895
Li, H., S. Lee, and B.K. Jap. (1997). Molecular design of aquaporin-1 water channel as revealed by electrocrystallography. Nature Struc. Biol. 4: 263-265. 9095192
Li, J. and A.S. Verkman. (2001). Impaired hearing in mice lacking aquaporin-4 water channels. J. Biol. Chem. 276: 31233-31237. 11406631
Li, R.Y., Y. Ago, W.J. Liu, N. Mitani, J. Feldmann, S.P. McGrath, J.F. Ma, and F.J. Zhao. (2009). The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol. 150: 2071-2080. 19542298
Li, S., C. Li, and W. Wang. (2020). Molecular aspects of aquaporins. Vitam Horm 113: 129-181. 32138947
Li, T., W.G. Choi, I.S. Wallace, J. Baudry, and D.M. Roberts. (2011). Arabidopsis thaliana NIP7;1: an anther-specific boric acid transporter of the aquaporin superfamily regulated by an unusual tyrosine in helix 2 of the transport pore. Biochemistry 50: 6633-6641. 21710975
Li, W., X.J. Qiang, X.R. Han, L.L. Jiang, S.H. Zhang, J. Han, R. He, and X.G. Cheng. (2018). Ectopic Expression of a Thellungiella salsuginea Aquaporin Gene, TsPIP1;1, Increased the Salt Tolerance of Rice. Int J Mol Sci 19:. 30061546
Li, Z., B. Li, L. Zhang, L. Chen, G. Sun, Q. Zhang, J. Wang, X. Zhi, L. Wang, Z. Xu, and H. Xu. (2016). The proliferation impairment induced by AQP3 deficiency is the result of glycerol uptake and metabolism inhibition in gastric cancer cells. Tumour Biol 37: 9169-9179. 26768614
Li, Z.H., V.E. Alvarez, J.G. De Gaudenzi, C. Sant''Anna, A.C. Frasch, J.J. Cazzulo, and R. Docampo. (2011). Hyperosmotic stress induces aquaporin-dependent cell shrinkage, polyphosphate synthesis, amino acid accumulation, and global gene expression changes in Trypanosoma cruzi. J. Biol. Chem. 286: 43959-43971. 22039054
Lind, U., M. Järvå, M. Alm Rosenblad, P. Pingitore, E. Karlsson, A.L. Wrange, E. Kamdal, K. Sundell, C. André, P.R. Jonsson, J. Havenhand, L.A. Eriksson, K. Hedfalk, and A. Blomberg. (2017). Analysis of aquaporins from the euryhaline barnacle Balanus improvisus reveals differential expression in response to changes in salinity. PLoS One 12: e0181192. 28715506
Liu, K., D. Kozono, Y. Kato, P. Agre, A. Hazama, and M. Yasui. (2005). Conversion of aquaporin 6 from an anion channel to a water-selective channel by a single amino acid substitution. Proc. Natl. Acad. Sci. USA 102: 2192-2197. 15671159
Liu, K., H. Tsujimoto, S.J. Cha, P. Agre, and J.L. Rasgon. (2011). Aquaporin water channel AgAQP1 in the malaria vector mosquito Anopheles gambiae during blood feeding and humidity adaptation. Proc. Natl. Acad. Sci. USA 108: 6062-6066. 21444767
Long, C.Y., G.Q. Huang, Q. Du, L.Q. Zhou, and J.H. Zhou. (2019). The dynamic expression of aquaporins 1 and 4 in rats with hydrocephalus induced by subarachnoid haemorrhage. Folia Neuropathol 57: 182-195. 31556577
Loqué, D., U. Ludewig, L. Yuan, and N. von Wirén. (2005). Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole. Plant Physiology 137: 671-680. 15665250
Lu, D.C., H. Zhang, Z. Zador, and A.S. Verkman. (2008). Impaired olfaction in mice lacking aquaporin-4 water channels. FASEB J. 22: 3216-3223. 18511552
Lu, M.X., D.D. Pan, J. Xu, Y. Liu, G.R. Wang, and Y.Z. Du. (2018). Identification and Functional Analysis of the First Aquaporin from Striped Stem Borer,. Front Physiol 9: 57. 29467668
Ma, J.F., K. Tamai, N. Yamaji, N. Mitani, S. Konishi, M. Katsuhara, M. Ishiguro, Y. Murata, and M. Yano. (2007b). A silicon transporter in rice. Nature 440: 688-691. 16572174
Ma, J.F., N. Yamaji, K. Tamai, and N. Mitani. (2007a). Genotypic difference in silicon uptake and expression of silicon transporter genes in rice. Plant Physiol. 145: 919-924. 17905867
Magouliotis, D.E., V.S. Tasiopoulou, A.A. Svokos, and K.A. Svokos. (2020). Aquaporins in health and disease. Adv Clin Chem 98: 149-171. 32564785
Mahdieh, M., A. Mostajeran, T. Horie, and M. Katsuhara. (2008). Drought stress alters water relations and expression of PIP-type aquaporin genes in Nicotiana tabacum plants. Plant Cell Physiol. 49: 801-813. 18385163
Mallo, R.C. and Ashby, M.T. (2006). AqpZ-mediated water permeability in Escherichia coli measured by stopped-flow spectroscopy. J. Bacteriol. 188:820-822. 16385074
Marchbank, T. and R.J. Playford. (2018). Trefoil factor family peptides enhance cell migration by increasing cellular osmotic permeability and aquaporin 3 levels. FASEB J. 32: 1017-1024. 29046361
Mariajoseph-Antony, L.F., A. Kannan, A. Panneerselvam, C. Loganathan, E.M. Shankar, K. Anbarasu, and C. Prahalathan. (2020). Role of Aquaporins in Inflammation-a Scientific Curation. Inflammation. [Epub: Ahead of Print] 32435911
Maroli, N., A. Jayakrishnan, R. Ramalingam Manoharan, P. Kolandaivel, and K. Krishna. (2019). Combined Inhibitory Effects of Citrinin, Ochratoxin-A, and T-2 Toxin on Aquaporin-2. J Phys Chem B. [Epub: Ahead of Print] 31204482
Marracino, P., M. Bernardi, M. Liberti, F. Del Signore, E. Trapani, J.A. Gárate, C.J. Burnham, F. Apollonio, and N.J. English. (2018). Transprotein-Electropore Characterization: A Molecular Dynamics Investigation on Human AQP4. ACS Omega 3: 15361-15369. 30556005
Martos-Sitcha, J.A., M.A. Campinho, J.M. Mancera, G. Martínez-Rodríguez, and J. Fuentes. (2015). Vasotocin and isotocin regulate aquaporin 1 function in the sea bream. J Exp Biol 218: 684-693. 25573823
Mathew, L.G., E.M. Campbell, A.J. Yool, and J.A. Fabrick. (2011). Identification and characterization of functional aquaporin water channel protein from alimentary tract of whitefly, Bemisia tabaci. Insect Biochem Mol Biol 41: 178-190. 21146609
Matsui, H., B. Hopkinson, K. Nakajima, and Y. Matsuda. (2018). Plasma-membrane-type aquaporins from marine diatoms function as CO2/NH3 channels and provide photoprotection. Plant Physiol. [Epub: Ahead of Print] 30076224
McDermott JR., Jiang X., Beene LC., Rosen BP. and Liu Z. (2010). Pentavalent methylated arsenicals are substrates of human AQP9. Biometals. 23(1):119-27. 19802720
Méndez-Giménez, L., S. Ezquerro, I.V. da Silva, G. Soveral, G. Frühbeck, and A. Rodríguez. (2018). Pancreatic Aquaporin-7: A Novel Target for Anti-diabetic Drugs? Front Chem 6: 99. 29675407
Meng, Y.-L., Z. Liu, and B.P. Rosen. (2004). As(III) and Sb(III) uptake by GlpF and efflux by ArsB in Escherichia coli. J. Biol. Chem. 279: 18334-18341. 14970228
Michalek, K. (2016). Aquaglyceroporins in the kidney: present state of knowledge and prospects. J. Physiol. Pharmacol 67: 185-193. 27226178
Misyura, L., E. Grieco Guardian, A.C. Durant, and A. Donini. (2020). A comparison of aquaporin expression in mosquito larvae (Aedes aegypti) that develop in hypo-osmotic freshwater and iso-osmotic brackish water. PLoS One 15: e0234892. 32817668
Mitani N., N. Yamaji, J.F. Ma. (2008). Characterization of substrate specificity of a rice silicon transporter, Lsi1. Pflugers Arch : . 18214526
Mitani-Ueno, N., N. Yamaji, F.J. Zhao, and J.F. Ma. (2011). The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. J Exp Bot 62: 4391-4398. 21586431
Moe, S.E., J.G. Sorbo, R. Sogaard, T. Zeuthen, O. Petter Ottersen, and T. Holen. (2008). New isoforms of rat Aquaporin-4. Genomics 91: 367-377. 18255256
Molodenskiy, D.S., H.D.T. Mertens, and D.I. Svergun. (2020). An automated data processing and analysis pipeline for transmembrane proteins in detergent solutions. Sci Rep 10: 8081. 32415234
Mom, R., B. Muries, P. Benoit, J. Robert-Paganin, S. Réty, J.S. Venisse, A. Padua, P. Label, and D. Auguin. (2020). Voltage-gating of aquaporins, a putative conserved safety mechanism during ionic stresses. FEBS Lett. [Epub: Ahead of Print] 32997337
Montalvetti, A., P. Rohloff, and R. Docampo. (2004). A functional aquaporin co-localizes with the vacuolar proton pyrophosphatase to acidocalcisomes and the contractile vacuole complex of Trypanosoma cruzi. J. Biol. Chem. 279: 38673-38682. 15252016
Montiel, V., R. Bella, L.Y.M. Michel, H. Esfahani, D. De Mulder, E.L. Robinson, J.P. Deglasse, M. Tiburcy, P.H. Chow, J.C. Jonas, P. Gilon, B. Steinhorn, T. Michel, C. Beauloye, L. Bertrand, C. Farah, F. Dei Zotti, H. Debaix, C. Bouzin, D. Brusa, S. Horman, J.L. Vanoverschelde, O. Bergmann, D. Gilis, M. Rooman, A. Ghigo, S. Geninatti-Crich, A. Yool, W.H. Zimmermann, H.L. Roderick, O. Devuyst, and J.L. Balligand. (2020). Inhibition of aquaporin-1 prevents myocardial remodeling by blocking the transmembrane transport of hydrogen peroxide. Sci Transl Med 12:. 33028705
Mukhopadhyay R., Bhattacharjee H. and Rosen BP. (2014). Aquaglyceroporins: generalized metalloid channels. Biochim Biophys Acta. 1840(5):1583-91. 24291688
Murata, K., K. Mitsuoka, T. Hirai, T. Walz, P. Agre, J.B. Heymann, A. Engel, and Y. Fujiyoshi. (2000). Structural determinants of water permeation through aquaporin-1. Science 407: 599-605.
Najafabadi, H.S., N. Torabi, and M. Chamankhah. (2008). Designing multiple degenerate primers via consecutive pairwise alignments. BMC Bioinformatics 9: 55. 18221562
Nakazawa, Y., M. Oka, A. Mitsuishi, M. Bando, and M. Takehana. (2011). Quantitative analysis of ascorbic acid permeability of aquaporin 0 in the lens. Biochem. Biophys. Res. Commun. 415: 125-130. 22020074
Navarro-Ródenas, A., J.M. Ruíz-Lozano, R. Kaldenhoff, and A. Morte. (2012). The aquaporin TcAQP1 of the desert truffle Terfezia claveryi is a membrane pore for water and CO(2) transport. Mol. Plant Microbe Interact. 25: 259-266. 22088195
Nemeth-Cahalan, K.L., K. Kalman, A. Froger, and J. E. Hall. (2007). Zinc Modulation of Water Permeability Reveals that Aquaporin 0 Functions as a Cooperative Tetramer. J. Gen. Physiol. 130(5):457-464. 17938229
Niemietz, C.M. and S.D. Tyerman. (2000). Channel-mediated permeation of ammonia gas through the peribacteroid membrane of soybean nodules. FEBS Lett. 465: 110-114. 10631315
Nishihara, E., E. Yokota, A. Tazaki, H. Orii, M. Katsuhara, K. Kataoka, H. Igarashi, Y. Moriyama, T. Shimmen, and S. Sonobe. (2008). Presence of aquaporin and V-ATPase on the contractile vacuole of Amoeba proteus. Biol Cell 100: 179-188. 18004980
Nozaki, K., D. Ishii, and K. Ishibashi. (2008). Intracellular aquaporins: clues for intracellular water transport? Pflugers Arch 456(4): 701-707. 18034355
Olesen, E.T. and R.A. Fenton. (2017). Aquaporin-2 membrane targeting: still a conundrum. Am. J. Physiol. Renal Physiol ajprenal.00010.2017. [Epub: Ahead of Print] 28179252
Oliveira, R., F. Lages, M. Silva-Graça, and C. Lucas. (2003). Fps1p channel is the mediator of the major part of glycerol passive diffusion in Saccharomyces cerevisiae: artefacts and re-definitions. Biochim. Biophys. Acta. 1613: 57-71. 12832087
Palmgren, M., M. Hernebring, S. Eriksson, K. Elbing, C. Geijer, S. Lasič, P. Dahl, J.S. Hansen, D. Topgaard, and K. Lindkvist-Petersson. (2017). Quantification of the Intracellular Life Time of Water Molecules to Measure Transport Rates of Human Aquaglyceroporins. J. Membr. Biol. [Epub: Ahead of Print] 28914342
Pareek G., Krishnamoorthy V. and D'Silva P. (2013). Molecular insights revealing interaction of Tim23 and channel subunits of presequence translocase. Mol Cell Biol. 33(23):4641-59. 24061477
Park, J.H. and M.H. Saier, Jr. (1996). Phylogenetic characterization of the MIP family of transmembrane channel proteins. J. Membr. Biol. 153: 171-180. 8849412
Petersen, L.M. and E. Beitz. (2020). The Ionophores CCCP and Gramicidin but Not Nigericin Inhibit Aquaglyceroporins at Neutral pH. Cells 9:. 33096791
Philip, B.N., A.J. Kiss, and R.E. Lee, Jr. (2011). The protective role of aquaporins in the freeze-tolerant insect Eurosta solidaginis: functional characterization and tissue abundance of EsAQP1. J Exp Biol 214: 848-857. 21307072
Pietrement, C., N. Da Silva, C. Silberstein, M. James, M. Marsolais, A. Van Hoek, D. Brown, N. Pastor-Soler, N. Ameen, R. Laprade, V. Ramesh, and S. Breton. (2008). Role of NHERF1, Cystic Fibrosis transmembrane conductance regulator, and cAMP in the regulation of aquaporin 9. J. Biol. Chem. 283: 2986-2996. 18055461
Pillitteri, L.J., N.L. Bogenschutz, and K.U. Torii. (2008). The bHLH protein, MUTE, controls differentiation of stomata and the hydathode pore in arabidopsis. Plant Cell Physiol. 49: 934-943. 18450784
Ping, Z., F. Zhou, X. Lin, and H. Su. (2018). Coupled Mutations-Enabled Glycerol Transportation in an Aquaporin Z Mutant. ACS Omega 3: 4113-4122. 31458647
Pust, A., D. Kylies, C. Hube-Magg, M. Kluth, S. Minner, C. Koop, T. Grob, M. Graefen, G. Salomon, M.C. Tsourlakis, J. Izbicki, C. Wittmer, H. Huland, R. Simon, W. Wilczak, G. Sauter, S. Steurer, T. Krech, T. Schlomm, and N. Melling. (2015). Aquaporin 5 expression is frequent in prostate cancer and shows a dichotomous correlation with tumor phenotype and PSA recurrence. Hum Pathol. [Epub: Ahead of Print] 26614400
Ráduly, G., Z. Pap, L. Dénes, A. Szántó, T.C. Sipos, and Z. Pávai. (2019). The immunoexpression of aquaporin 1, PAX2, PAX8, connexin 36, connexin 43 in human fetal kidney. Rom J Morphol Embryol 60: 437-444. 31658316
Ramírez-Lorca, R., A.M. Muñoz-Cabello, J.J. Toledo-Aral, A.A. Ilundáin, and M. Echevarría. (2006). Aquaporins in chicken: localization of ck-AQP5 along the small and large intestine. Comp Biochem Physiol A Mol Integr Physiol 143: 269-277. 16418008
Reizer, J., A. Reizer, and M.H. Saier, Jr. (1993). The MIP family of integral membrane channel proteins: sequence comparisons, evolutionary relationships, reconstructed pathway of evolution and proposed functional differentiation of the two repeated halves of the proteins. Crit. Rev. Biochem. Mol. Biol. 28: 235-257. 8325040
Rivera, M.A. and T.D. Fahey. (2019). Association Between aquaporin-1 and Endurance Performance: A Systematic Review. Sports Med Open 5: 40. 31486928
Rohloff, P., A. Montalvetti, and R. Docampo. (2004). Acidocalcisomes and the contractile vacuole complex are involved in osmoregulation in Trypanosoma cruzi. J. Biol. Chem. 279: 52270-52281. 15466463
Sabir, F., S. Gomes, M.C. Loureiro-Dias, G. Soveral, and C. Prista. (2020). Molecular and Functional Characterization of Grapevine NIPs through Heterologous Expression in Null. Int J Mol Sci 21:. 31963923
Saparov, S.M., D. Kozono, U. Rothe, P. Agre, and P. Pohl. (2001). Water and ion permeation of aquaporin-1 in planar lipid bilayers. Major differences in structural determinants and stoichiometry. J. Biol. Chem. 276: 31515-31520. 11410596
Saparov, S.M., K. Liu, P. Agre, and P. Pohl. (2007). Fast and selective ammonia transport by aquaporin-8. J. Biol. Chem. 282: 5296-5301. 17189259
Savage, D.F., P.F. Egea, Y. Robles-Colmenares, J.D. O''Connell, 3rd, and R.M. Stroud. (2003). Architecture and selectivity in aquaporins: 2.5 a X-ray structure of aquaporin Z. PLoS Biol 1: E72. 14691544
Schmidt, R.S., J.P. Macêdo, M.E. Steinmann, A.G. Salgado, P. Bütikofer, E. Sigel, D. Rentsch, and P. Mäser. (2018). Transporters of Trypanosoma brucei-phylogeny, physiology, pharmacology. FEBS J. 285: 1012-1023. 29063677
Shibata, Y., I. Katayama, T. Nakakura, Y. Ogushi, R. Okada, S. Tanaka, and M. Suzuki. (2015). Molecular and cellular characterization of urinary bladder-type aquaporin in Xenopus laevis. Gen Comp Endocrinol 222: 11-19. 25220852
Shukla, V.K. and M.J. Chrispeels. (1998). Aquaporins: their role and regulation in cellular water movement. NATO-ASI Series (subseries H). Cellular integration of signaling pathways in plant development, pp.11-22. Springer-Verlag.
Sidoux-Walter, F., N. Pettersson, and S. Hohmann. (2004). The Saccharomyces cerevisiae aquaporin Aqy1 is involved in sporulation. Proc. Natl. Acad. Sci. USA 101: 17422-17427. 15583134
Singh, R.K., R. Deshmukh, M. Muthamilarasan, R. Rani, and M. Prasad. (2020). Versatile roles of aquaporin in physiological processes and stress tolerance in plants. Plant Physiol. Biochem 149: 178-189. [Epub: Ahead of Print] 32078896
Soria LR., Fanelli E., Altamura N., Svelto M., Marinelli RA. and Calamita G. (2010). Aquaporin-8-facilitated mitochondrial ammonia transport. Biochem Biophys Res Commun. 393(2):217-21. 20132793
Soto, G., K. Alleva, M.A. Mazzella, G. Amodeo, and J.P. Muschietti. (2008). AtTIP1;3 and AtTIP5;1, the only highly expressed Arabidopsis pollen-specific aquaporins, transport water and urea. FEBS Lett. 582: 4077-4082. 19022253
Soto, G., R. Fox, N. Ayub, K. Alleva, F. Guaimas, E.J. Erijman, A. Mazzella, G. Amodeo, and J. Muschietti. (2010). TIP5;1 is an aquaporin specifically targeted to pollen mitochondria and is probably involved in nitrogen remobilization in Arabidopsis thaliana. Plant J. 64: 1038-1047. 21143683
Stavang, J.A., F. Chauvigné, H. Kongshaug, J. Cerdà, F. Nilsen, and R.N. Finn. (2015). Phylogenomic and functional analyses of salmon lice aquaporins uncover the molecular diversity of the superfamily in Arthropoda. BMC Genomics 16: 618. 26282991
Stogsdill, B., J. Frisbie, C.M. Krane, and D.L. Goldstein. (2017). Expression of the aquaglyceroporin HC-9 in a freeze-tolerant amphibian that accumulates glycerol seasonally. Physiol Rep 5:. 28784850
Stokum, J.A., M.S. Kwon, S.K. Woo, O. Tsymbalyuk, R. Vennekens, V. Gerzanich, and J.M. Simard. (2017). SUR1-TRPM4 and AQP4 form a heteromultimeric complex that amplifies ion/water osmotic coupling and drives astrocyte swelling. Glia. [Epub: Ahead of Print] 28906027
Sugiura, K., N. Aste, M. Fujii, K. Shimada, and N. Saito. (2008). Effect of hyperosmotic stimulation on aquaporins gene expression in chick kidney. Comp Biochem Physiol A Mol Integr Physiol 151: 173-179. 18621138
Suzuki, H., K. Nishikawa, Y. Hiroaki, and Y. Fujiyoshi. (2008). Formation of aquaporin-4 arrays is inhibited by palmitoylation of N-terminal cysteine residues. Biochim. Biophys. Acta. 1778(4): 1181-1189. 18179769
Törnroth-Horsefield, S., Y. Wang, K. Hedfalk, U. Johanson, M. Karlsson, E. Tajkhorshid, R. Neutze, and P. Kjellbom. (2006). Structural mechanism of plant aquaporin gating. Nature 439: 688-694. 16340961
Takahashi, G., S. Hasegawa, Y. Fukutomi, C. Harada, M. Furugori, Y. Seki, Y. Kikkawa, and K. Wada. (2017). A novel missense mutation of Mip causes semi-dominant cataracts in the Nat mouse. Exp Anim 66: 271-282. 28442635
Takano, J., M. Wada, U. Ludewig, G. Schaaf, N. von Wirén, and T. Fujiwara. (2006). The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. The Plant Cell 18: 1498-1509. 16679457
Tang, H., C. Shao, and J. He. (2017). Down-regulated expression of aquaporin-4 in the cerebellum after status epilepticus. Cogn Neurodyn 11: 183-188. 28348649
Tani, K., T. Mitsuma, Y. Hiroaki, A. Kamegawa, K. Nishikawa, Y. Tanimura, and Y. Fujiyoshi. (2009). Mechanism of aquaporin-4's fast and highly selective water conduction and proton exclusion. J. Mol. Biol. 389: 694-706. 19406128
Tong, H., X. Wang, Y. Dong, Q. Hu, Z. Zhao, Y. Zhu, L. Dong, F. Bai, and X. Dong. (2019). A s aquaporin acts as peroxiporin for efflux of cellular hydrogen peroxide and alleviation of oxidative stress. J. Biol. Chem. 294: 4583-4595. 30705089
Tsujimoto, H., J.M. Sakamoto, and J.L. Rasgon. (2017). Functional characterization of Aquaporin-like genes in the human bed bug Cimex lectularius. Sci Rep 7: 3214. 28607409
Uehlein, N., B. Otto, D.T. Hanson, M. Fischer, N. McDowell, and R. Kaldenhoff. (2008). Function of Nicotiana tabacum Aquaporins as Chloroplast Gas Pores Challenges the Concept of Membrane CO2 Permeability. Plant Cell 20: 648-657. 18349152
Uehlein, N., C. Lovisolo, F. Siefritz, and R. Kaldenhoff. (2003). The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature (in press). 14520414
Uzcategui, N.L., A. Szallies, S. Pavlovic-Djuranovic, M. Palmada, K. Figarella, C. Boehmer, F. Lang, E. Beitz, and M. Duszenko. (2004). Cloning, heterologous expression, and characterization of three aquaglyceroporins from Trypanosoma brucei. J. Biol. Chem. 279: 42669-42676. 15294911
Vajpai, M., M. Mukherjee, and R. Sankararamakrishnan. (2018). Cooperativity in Plant Plasma Membrane Intrinsic Proteins (PIPs): Mechanism of Increased Water Transport in Maize PIP1 Channels in Hetero-tetramers. Sci Rep 8: 12055. 30104609
Varadaraj, K. and S.S. Kumari. (2020). Lens aquaporins function as peroxiporins to facilitate membrane transport of hydrogen peroxide. Biochem. Biophys. Res. Commun. 524: 1025-1029. 32063362
Varadaraj, K., S.S. Kumari, R. Patil, M.B. Wax, and R.T. Mathias. (2008). Functional characterization of a human aquaporin 0 mutation that leads to a congenital dominant lens cataract. Exp Eye Res 87: 9-21. 18501347
Verdoucq, L., A. Grondin, and C. Maurel. (2008). Structure-function analysis of plant aquaporin AtPIP2;1 gating by divalent cations and protons. Biochem. J. 415: 409-416. 18637793
Verkerk, A.O., E.M. Lodder, and R. Wilders. (2019). Aquaporin Channels in the Heart-Physiology and Pathophysiology. Int J Mol Sci 20:. 31027200
Verma, R.K., A.B. Gupta, and R. Sankararamakrishnan. (2015). Major intrinsic protein superfamily: channels with unique structural features and diverse selectivity filters. Methods Enzymol 557: 485-520. 25950979
Viadiu, H., T. Gonen, and T. Walz. (2007). Projection map of aquaporin-9 at 7 Å resolution. J. Mol. Biol. 367: 80-88. 17239399
Vireak, C., A.N. Seo, M.H. Han, T.I. Park, Y.J. Kim, and J.Y. Jeong. (2019). Aquaporin 5 expression correlates with tumor multiplicity and vascular invasion in hepatocellular carcinoma. Int J Clin Exp Pathol 12: 516-527. 31933856
Virkki MT., Agrawal N., Edsbacker E., Cristobal S., Elofsson A. and Kauko A. (2014). Folding of Aquaporin 1: multiple evidence that helix 3 can shift out of the membrane core. Protein Sci. 23(7):981-92. 24777974
Von Bülow, J. and E. Beitz. (2015). Number and regulation of protozoan aquaporins reflect environmental complexity. Biol Bull 229: 38-46. 26338868
von Bülow, J., A. Golldack, T. Albers, and E. Beitz. (2015). The amoeboidal Dictyostelium aquaporin AqpB is gated via Tyr216 and aqpB gene deletion affects random cell motility. Biol Cell 107: 78-88. 25546705
Vorob''ev, V.N., T.A. Sibgatullin, K.A. Sterkhova, E.A. Alexandrov, Y.V. Gogolev, O.A. Timofeeva, V.Y. Gorshkov, and V.V. Chevela. (2019). Ytterbium increases transmembrane water transport in Zea mays roots via aquaporin modulation. Biometals 32: 901-908. 31587124
Wang, F. and B. Ye. (2016). Bioinformatics analysis and construction of phylogenetic tree of aquaporins from Echinococcus granulosus. Parasitol Res 115: 3499-3511. 27164831
Wang, H., L. Zhang, Y. Tao, Z. Wang, D. Shen, and H. Dong. (2019). Transmembrane Helices 2 and 3 Determine the Localization of Plasma Membrane Intrinsic Proteins in Eukaryotic Cells. Front Plant Sci 10: 1671. 31998350
Wang, L., Q. Li, Q. Lei, C. Feng, Y. Gao, X. Zheng, Y. Zhao, Z. Wang, and J. Kong. (2015). MzPIP2;1: An Aquaporin Involved in Radial Water Movement in Both Water Uptake and Transportation, Altered the Drought and Salt Tolerance of Transgenic Arabidopsis. PLoS One 10: e0142446. 26562158
Wang, Z. and K.L. Schey. (2018). Proteomic Analysis of S-Palmitoylated Proteins in Ocular Lens Reveals Palmitoylation of AQP5 and MP20. Invest Ophthalmol Vis Sci 59: 5648-5658. 30489624
Watanabe, S., C.S. Moniaga, S. Nielsen, and M. Hara-Chikuma. (2016). Aquaporin-9 facilitates membrane transport of hydrogen peroxide in mammalian cells. Biochem. Biophys. Res. Commun. 471: 191-197. 26837049
Watanabe, T., K. Sato, T. Kono, Y. Yamagishi, F. Kumazawa, M. Miyamoto, M. Takano, and H. Tsuda. (2020). Aquaporin 3 Expression in Endometrioid Carcinoma of the Uterine Body Correlated With Early Stage and Lower Grade. Pathol Oncol Res. [Epub: Ahead of Print] 32382899
Wysocki, R., C.C. Chéry, D. Wawrzycka, M. Van Hulle, R. Cornelis, J.M. Thevelein, and M.J. Tamás. (2001). The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Mol. Microbiol. 40: 1391-1401. 11442837
Yaba, A., B. Sozen, B. Suzen, and N. Demir. (2017). Expression of aquaporin-7 and aquaporin-9 in tanycyte cells and choroid plexus during mouse estrus cycle. Morphologie 101: 39-46. 27746040
Yang, B., Z. Zador, and A.S. Verkman. (2008). Glial cell aquaporin-4 overexpression in transgenic mice accelerates cytotoxic brain swelling. J. Biol. Chem. 283: 15280-15286. 18375385
Yang, G., G. Zhang, Q. Wu, and J. Zhao. (2011). A novel mutation in the MIP gene is associated with autosomal dominant congenital nuclear cataract in a Chinese family. Mol Vis 17: 1320-1323. 21647270
Yang, H.-C., J. Cheng, T.M. Finan, B.P. Rosen, and H. Bhattacharjee. (2005). Novel pathway for arsenic detoxification in the legume symbiont Sinorhizobium meliloti. J. Bacteriol. 187: 6991-6997. 16199569
Yang, Y., Y. Cui, W. Wang, L. Zhang, L. Bufford, S. Sasaki, Z. Fan, and H. Nishimura. (2004). Molecular and functional characterization of a vasotocin-sensitive aquaporin water channel in quail kidney. Am. J. Physiol. Regul Integr Comp Physiol 287: R915-924. 15205186
Yasui, M., A. Hazama, T.-H. Kwon, S. Nielsen, W.B. Guggino, and P. Agre. (1999). Rapid gating and anion permeability of an intracellular aquaporin. Nature 402: 184-187. 10647010
Yeste, M., R. Morató, J.E. Rodríguez-Gil, S. Bonet, and N. Prieto-Martínez. (2017). Aquaporins in the male reproductive tract and sperm: Functional implications and cryobiology. Reprod Domest Anim 52Suppl4: 12-27. 29052330
Yilmaz, O., F. Chauvigné, A. Ferré, F. Nilsen, P.G. Fjelldal, J. Cerdà, and R.N. Finn. (2020). Unravelling the Complex Duplication History of Deuterostome Glycerol Transporters. Cells 9:. 32664262
Yoo, Y.J., H.K. Lee, W. Han, D.H. Kim, M. Lee, J. Jeon, D.W. Lee, J. Lee, Y. Lee, J. Lee, J.S. Kim, Y. Cho, J.K. Han, and I. Hwang. (2016). Interactions between transmembrane helices within monomers of the aquaporin AtPIP2;1 play a crucial role in tetramer formation. Mol Plant. [Epub: Ahead of Print] 27142778
Yool, A.J. (2007). Dominant-negative suppression of big brain ion channel activity by mutation of a conserved glutamate in the first transmembrane domain. Gene Expr. 13: 329-337. 17708419
Yool, A.J. and E.M. Campbell. (2012). Structure, function and translational relevance of aquaporin dual water and ion channels. Mol Aspects Med 33: 553-561. 22342689
Yu, X.S., X. Yin, E.M. Lafer, and J.X. Jiang. (2005). Developmental regulation of the direct interaction between the intracellular loop of connexin 45.6 and the C terminus of major intrinsic protein (aquaporin-0). J. Biol. Chem. 280: 22081-22090. 15802270
Yusupov, M., J. Razzokov, R.M. Cordeiro, and A. Bogaerts. (2019). Transport of Reactive Oxygen and Nitrogen Species across Aquaporin: A Molecular Level Picture. Oxid Med Cell Longev 2019: 2930504. 31316715
Zardoya, R. and S. Villalba. (2001). A phylogenetic framework for the aquaporin family in eukaryotes. J. Mol. Evol. 52: 391-404. 11443343
Zeuthen T., B. Wu, S. Pavlovic-Djuranovic, L.M. Holm, N.L. Uzcategui, M. Duszenko, J.F. Kun, J.E. Schultz, E. Beitz. (2006). Ammonia permeability of the aquaglyceroporins from Plasmodium falciparum, Toxoplasma gondii and Trypansoma brucei. Mol. Microbiol. 61: 1598-1608. 16889642
Zhang, H. and A.S. Verkman. (2010). Aquaporin-1 tunes pain perception by interaction with Na(v)1.8 Na+ channels in dorsal root ganglion neurons. J. Biol. Chem. 285: 5896-5906. 20018876
Zhang, Z., P. Xu, Z. Xie, F. Shen, N. Chen, L. Yu, and R. He. (2017). Downregulation of AQP2 in the anterior vaginal wall is associated with the pathogenesis of female stress urinary incontinence. Mol Med Rep 16: 3503-3509. 28713996
Zhao, R., X. Liang, M. Zhao, S.L. Liu, Y. Huang, S. Idell, X. Li, and H.L. Ji. (2014). Correlation of apical fluid-regulating channel proteins with lung function in human COPD lungs. PLoS One 9: e109725. 25329998
Zhao, X.Q., N. Mitani, N. Yamaji, R.F. Shen, and J.F. Ma. (2010). Involvement of silicon influx transporter OsNIP2;1 in selenite uptake in rice. Plant Physiol. 153: 1871-1877. 20498338
Zhou, Y., L. Li, J. Qian, H. Jia, and Y. Cui. (2018). Identification of three aquaporin subgroups from Blomia tropicalis by transcriptomics. Int J Mol Med. [Epub: Ahead of Print] 30221673
Zwiazek, J.J., H. Xu, X. Tan, A. Navarro-Ródenas, and A. Morte. (2017). Significance of oxygen transport through aquaporins. Sci Rep 7: 40411. 28079178


and Franks NP. (2015). Structural comparisons of ligand-gated ion channels in open, closed, and desensitized states identify a novel propofol-binding site on mammalian gamma-aminobutyric acid type A receptors. Anesthesiology. 122(4):787-94. 25575161
and Rothberg BS. (2012). The BK channel: a vital link between cellular calcium and electrical signaling. Protein Cell. 3(12):883-92. 22996175
Absalom, N.L., P.K. Ahring, V.M. Liao, T. Balle, T. Jiang, L.L. Anderson, J.C. Arnold, I.S. McGregor, M.T. Bowen, and M. Chebib. (2019). Functional genomics of epilepsy-associated mutations in the GABA receptor subunits reveal that one mutation impairs function and two are catastrophic. J. Biol. Chem. [Epub: Ahead of Print] 30728247
Al Rawashdah, S., A. Hamrouni, B. Sadek, R. Amer, M. Metwaly, N. Atatreh, and M.A. Ghattas. (2019). Molecular modelling studies on ɑ7 nicotinic receptor allosteric modulators yields novel filter-based virtual screening protocol. J Mol Graph Model 92: 44-54. 31306865
Alberola-Die, A., G. Fernández-Ballester, J.M. González-Ros, I. Ivorra, and A. Morales. (2016). Muscle-Type Nicotinic Receptor Modulation by 2,6-Dimethylaniline, a Molecule Resembling the Hydrophobic Moiety of Lidocaine. Front Mol Neurosci 9: 127. 27932949
Alexander, S.P.H. and J.A. Peters. (1997). Receptor and ion channel nomenclature supplement. Trends Pharmacol. Sci. 18: 4-6; 36-40; 42-44.
Alldred, M.J., J. Mulder-Rosi, S.E. Lingenfelter, G. Chen, and B. Lüscher. (2005). Distinct gamma2 subunit domains mediate clustering and synaptic function of postsynaptic GABAA receptors and gephyrin. J. Neurosci. 25: 594-603. 15659595
Althoff, T., R.E. Hibbs, S. Banerjee, and E. Gouaux. (2014). X-ray structures of GluCl in apo states reveal a gating mechanism of Cys-loop receptors. Nature 512: 333-337. 25143115
Alvarez, L.D. and A. Pecci. (2018). Structure and dynamics of neurosteroid binding to the αβγ GABA receptor. J Steroid Biochem Mol Biol. [Epub: Ahead of Print] 29705269
Alvarez, L.D. and A. Pecci. (2019). Mapping the neurosteroid binding sites on glycine receptors. J Steroid Biochem Mol Biol 192: 105388. 31176751
Alvarez, L.D., A. Pecci, and D.A. Estrin. (2019). In Search of GABA Receptor''s Neurosteroid Binding Sites. J Med Chem 62: 5250-5260. 30566352
Amanzougaghene, N., F. Fenollar, G. Diatta, C. Sokhna, D. Raoult, and O. Mediannikov. (2018). Mutations in GluCl associated with field ivermectin-resistant head lice from Senegal. Int J Antimicrob Agents 52: 593-598. 30055248
Amundarain, M.J., J.F. Viso, F. Zamarreño, A. Giorgetti, and M. Costabel. (2018). Orthosteric and benzodiazepine cavities of the αβγ GABA receptor: insights from experimentally validated in silico methods. J Biomol Struct Dyn 1-19. [Epub: Ahead of Print] 29633901
Arcario, M.J., C.G. Mayne, and E. Tajkhorshid. (2017). A membrane-embedded pathway delivers general anesthetics to two interacting binding sites in the Gloeobacter violaceus Ion Channel. J. Biol. Chem. [Epub: Ahead of Print] 28420728
Ashcroft, F.M. (2000). Ion Channels and Disease. San Diego: Academic Press.
Atif, M., A. Estrada-Mondragon, B. Nguyen, J.W. Lynch, and A. Keramidas. (2017). Effects of glutamate and ivermectin on single glutamate-gated chloride channels of the parasitic nematode H. contortus. PLoS Pathog 13: e1006663. 28968469
Baenziger, J.E. and P.J. Corringer. (2011). 3D structure and allosteric modulation of the transmembrane domain of pentameric ligand-gated ion channels. Neuropharmacology 60: 116-125. 20713066
Baenziger, J.E., J.A. Domville, and J.P.D. Therien. (2017). The Role of Cholesterol in the Activation of Nicotinic Acetylcholine Receptors. Curr Top Membr 80: 95-137. 28863823
Baier, C.J., J. Fantini, and F.J. Barrantes. (2011). Disclosure of cholesterol recognition motifs in transmembrane domains of the human nicotinic acetylcholine receptor. Sci Rep 1: 69. 22355588
Baker, C., B.L. Sturt, and B.A. Bamber. (2010). Multiple roles for the first transmembrane domain of GABAA receptor subunits in neurosteroid modulation and spontaneous channel activity. Neurosci Lett 473: 242-247. 20193738
Barrantes, F.J. and J. Fantini. (2016). From hopanoids to cholesterol: Molecular clocks of pentameric ligand-gated ion channels. Prog Lipid Res 63: 1-13. 27084463
Basak, S., Y. Gicheru, S. Rao, M.S.P. Sansom, and S. Chakrapani. (2018). Cryo-EM reveals two distinct serotonin-bound conformations of full-length 5-HT receptor. Nature 563: 270-274. 30401837
Baylis, H.A., K. Matsuda, M.D. Squire, J.T. Fleming, R.J. Harvey, M.G. Darlison, E.A. Barnard, and D.B. Sattelle. (1997). ACR-3, a Caenorhabditis elegans nicotinic acetylcholine receptor subunit. Molecular cloning and functional expression. Receptors Channels 5: 149-58. 9606719
Beg, A.A. and E.M. Jorgensen. (2003). EXP-1 is an excitatory GABA-gated cation channel. Nature Neurosci. (in press). 14555952
Bentley, G.N., A.K. Jones, and A. Agnew. (2007). ShAR2beta, a divergent nicotinic acetylcholine receptor subunit from the blood fluke Schistosoma. Parasitology 134: 833-840. 17214911
Blednov, Y.A., C.M. Borghese, C.I. Ruiz, M.A. Cullins, A. Da Costa, E.A. Osterndorff-Kahanek, G.E. Homanics, and R.A. Harris. (2017). Mutation of the inhibitory ethanol site in GABA ρ1 receptors promotes tolerance to ethanol-induced motor incoordination. Neuropharmacology 123: 201-209. 28623169
Bocquet, N., H. Nury, M. Baaden, C. Le Poupon, J.P. Changeux, M. Delarue, and P.J. Corringer. (2009). X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature 457: 111-114. 18987633
Bocquet, N., L. Prado de Carvalho, J. Cartaud, J. Neyton, C. Le Poupon, A. Taly, T. Grutter, J.P. Changeux, and P.J. Corringer. (2007). A prokaryotic proton-gated ion channel from the nicotinic acetylcholine receptor family. Nature 445: 116-119. 17167423
Bondarenko V., Mowrey D., Liu LT., Xu Y. and Tang P. (2013). NMR resolved multiple anesthetic binding sites in the TM domains of the alpha4beta2 nAChR. Biochim Biophys Acta. 1828(2):398-404. 23000369
Bondarenko V., Mowrey DD., Tillman TS., Seyoum E., Xu Y. and Tang P. (2014). NMR structures of the human alpha7 nAChR transmembrane domain and associated anesthetic binding sites. Biochim Biophys Acta. 1838(5):1389-95. 24384062
Bouzat, C., F. Gumilar, G. Spitzmaul, H.-L. Wang, D. Rayes, S.B. Hansen, P. Taylor, and S.M. Sine. (2004). Coupling of agonist binding to channel gating in an ACh-binding protein linked to an ion channel. Nature 430: 896-900. 15318223
Brejc, K., W.J. van Dijk, R.V. Klaassen, M. Schuurmans, J. van der Oost, A.B. Smit, and T.K. Sixma. (2001). Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411: 269-276. 11357122
Brömstrup, T., R.J. Howard, J.R. Trudell, R.A. Harris, and E. Lindahl. (2013). Inhibition versus potentiation of ligand-gated ion channels can be altered by a single mutation that moves ligands between intra- and intersubunit sites. Structure 21: 1307-1316. 23891290
Brownlow, S., R. Webster, R. Croxen, M. Brydson, B. Neville, J.P. Lin, A. Vincent, J. Newsom-Davis, and D. Beeson. (2001). Acetylcholine receptor delta subunit mutations underlie a fast-channel myasthenic syndrome and arthrogryposis multiplex congenita. J. Clin. Invest. 108: 125-130. 11435464
Budelier, M.M., W.W.L. Cheng, Z.W. Chen, J.R. Bracamontes, Y. Sugasawa, K. Krishnan, L. Mydock-McGrane, D.F. Covey, and A.S. Evers. (2019). Common binding sites for cholesterol and neurosteroids on a pentameric ligand-gated ion channel. Biochim. Biophys. Acta. Mol. Cell Biol. Lipids 1864: 128-136. 30471426
Burzomato, V., M. Beato, P.J. Groot-Kormelink, D. Colquhoun, and L.G. Sivilotti. (2004). Single-channel behavior of heteromeric α1β glycine receptors: an attempt to detect a conformational change before the channel opens. J. Neurosci. 24: 10924-10940. 15574743
Camacho-Hernandez, G.A. and P. Taylor. (2020). Lessons from nature: Structural studies and drug design driven by a homologous surrogate from invertebrates, AChBP. Neuropharmacology 108108. [Epub: Ahead of Print] 32353365
Cao, Y., H. Yan, G. Yu, and R. Su. (2019). Flumazenil-insensitive benzodiazepine binding sites in GABA receptors contribute to benzodiazepine-induced immobility in zebrafish larvae. Life Sci 239: 117033. 31697950
Cascio M. (2004). Structure and function of the glycine receptor and related nicotinicoid receptors. J. Biol. Chem. 279: 19383-19386. 15023997
Castro Janer, E., G.M. Klafke, F. Fontes, M.L. Capurro, and T.S.S. Schumaker. (2019). Mutations in Rhipicephalus microplus GABA gated chloride channel gene associated with fipronil resistance. Ticks Tick Borne Dis. [Epub: Ahead of Print] 30898542
Chatzidaki A. and Millar NS. (2015). Allosteric modulation of nicotinic acetylcholine receptors. Biochem Pharmacol. 97(4):408-17. 26231943
Chen, I.S., M. Tateyama, Y. Fukata, M. Uesugi, and Y. Kubo. (2017). Ivermectin activates GIRK channels in a PIP2 -dependent, Gβγ -independent manner and an amino acid residue at the slide helix governs the activation. J. Physiol. [Epub: Ahead of Print] 28715108
Chen, Q., M.M. Wells, P. Arjunan, T.S. Tillman, A.E. Cohen, Y. Xu, and P. Tang. (2018). Structural basis of neurosteroid anesthetic action on GABA receptors. Nat Commun 9: 3972. 30266951
Chen, Q., M.M. Wells, T.S. Tillman, M.N. Kinde, A. Cohen, Y. Xu, and P. Tang. (2016). Structural Basis of Alcohol Inhibition of the Pentameric Ligand-Gated Ion Channel ELIC. Structure. [Epub: Ahead of Print] 27916519
Chen, Y., K. Reilly, and Y. Chang. (2006). Evolutionarily conserved allosteric network in the Cys loop family of ligand-gated ion channels revealed by statistical covariance analyses. J. Biol. Chem. 281: 18184-18192. 16595655
Cheng, W.W.L., Z.W. Chen, J.R. Bracamontes, M.M. Budelier, K. Krishnan, D.J. Shin, C. Wang, X. Jiang, D.F. Covey, G. Akk, and A.S. Evers. (2018). Mapping two neurosteroid-modulatory sites in the prototypic pentameric ligand-gated ion channel GLIC. J. Biol. Chem. 293: 3013-3027. 29301936
Cheng, X., I. Ivanov, H. Wang, S.M. Sine, and J.A. McCammon. (2009). Molecular-dynamics simulations of ELIC-a prokaryotic homologue of the nicotinic acetylcholine receptor. Biophys. J. 96: 4502-4513. 19486673
Chiara, D.C., S.S. Jayakar, X. Zhou, X. Zhang, P.Y. Savechenkov, K.S. Bruzik, K.W. Miller, and J.B. Cohen. (2013). Specificity of intersubunit general anesthetic-binding sites in the transmembrane domain of the human α1β3γ2 γ-aminobutyric acid type A (GABAA) receptor. J. Biol. Chem. 288: 19343-19357. 23677991
Chiara, D.C., Z. Dostalova, S.S. Jayakar, X. Zhou, K.W. Miller, and J.B. Cohen. (2012). Mapping general anesthetic binding site(s) in human α1β3 γ-aminobutyric acid type A receptors with [³H]TDBzl-etomidate, a photoreactive etomidate analogue. Biochemistry 51: 836-847. 22243422
Chiodo, L., T.E. Malliavin, L. Maragliano, G. Cottone, and G. Ciccotti. (2015). A Structural Model of the Human α7 Nicotinic Receptor in an Open Conformation. PLoS One 10: e0133011. 26208301
Chiodo, L., T.E. Malliavin, S. Giuffrida, L. Maragliano, and G. Cottone. (2018). Closed-Locked and Apo-Resting State Structures of the Human α7 Nicotinic Receptor: A Computational Study. J Chem Inf Model 58: 2278-2293. 30359518
Chisari, M., K. Wu, C.F. Zorumski, and S. Mennerick. (2011). Hydrophobic anions potently and uncompetitively antagonize GABA(A) receptor function in the absence of a conventional binding site. Br J Pharmacol 164: 667-680. 21457224
Çiçek, S.S. (2018). Structure-Dependent Activity of Natural GABA(A) Receptor Modulators. Molecules 23:. 29932138
Colon-Saez JO. and Yakel JL. (2014). A mutation in the extracellular domain of the alpha7 nAChR reduces calcium permeability. Pflugers Arch. 466(8):1571-9. 24177919
Connolly, C.N. (2008). Trafficking of 5-HT(3) and GABA(A) receptors (Review). Mol. Membr. Biol. 25: 293-301. 18446615
Corringer, P.J., M. Baaden, N. Bocquet, M. Delarue, V. Dufresne, H. Nury, M. Prevost, and C. Van Renterghem. (2010). Atomic structure and dynamics of pentameric ligand-gated ion channels: new insight from bacterial homologues. J. Physiol. 588: 565-572. 19995852
Costa, B., E. Da Pozzo, and C. Martini. (2012). Translocator protein as a promising target for novel anxiolytics. Curr Top Med Chem 12: 270-285. 22204481
Cottone, G., L. Chiodo, and L. Maragliano. (2020). Thermodynamics and Kinetics of Ion Permeation in Wild-Type and Mutated Open Active Conformation of the Human α7 Nicotinic Receptor. J Chem Inf Model. [Epub: Ahead of Print] 32803965
Crnjar, A., F. Comitani, W. Hester, and C. Molteni. (2019). Trans- Cis Proline Switches in a Pentameric Ligand-Gated Ion Channel: How They Are Affected by and How They Affect the Biomolecular Environment. J Phys Chem Lett 10: 694-700. 30668119
Culetto, E., H.A. Baylis, J.E. Richmond, A.K. Jones, J.T. Fleming, M.D. Squire, J.A. Lewis, and D.B. Sattelle. (2004). The Caenorhabditis elegans unc-63 gene encodes a levamisole-sensitive nicotinic acetylcholine receptor alpha subunit. J. Biol. Chem. 279: 42476-42483. 15280391
Cully, D.F., D.K. Vassilatis, K.K. Liu, P.S. Paress, L.H. Van der Ploeg, J.M. Schaeffer, and J.P. Arena. (1994). Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature 371: 707-711. 7935817
Cymes, G.D., Y. Ni, and C. Grosman. (2005). Probing ion-channel pores one proton at a time. Nature 438: 975-980. 16355215
da Costa Couto, A.R.G.M., K.L. Price, S. Mesoy, E. Capes, and S.C.R. Lummis. (2020). The M4 Helix Is Involved in α7 nACh Receptor Function. ACS Chem Neurosci. [Epub: Ahead of Print] 32364364
Das, P. and G.H. Dillon. (2005). Molecular determinants of picrotoxin inhibition of 5-hydroxytryptamine type 3 receptors. J Pharmacol Exp Ther 314: 320-328. 15814570
Deba, F., H.I. Ali, A. Tairu, K. Ramos, J. Ali, and A.K. Hamouda. (2018). LY2087101 and dFBr share transmembrane binding sites in the (α4)3(β2)2 Nicotinic Acetylcholine Receptor. Sci Rep 8: 1249. 29352227
Degani-Katzav, N., R. Gortler, M. Weissman, and Y. Paas. (2017). Mutational Analysis at Intersubunit Interfaces of an Anionic Glutamate Receptor Reveals a Key Interaction Important for Channel Gating by Ivermectin. Front Mol Neurosci 10: 92. 28428744
Dellisanti, C.D., B. Ghosh, S.M. Hanson, J.M. Raspanti, V.A. Grant, G.M. Diarra, A.M. Schuh, K. Satyshur, C.S. Klug, and C. Czajkowski. (2013). Site-directed spin labeling reveals pentameric ligand-gated ion channel gating motions. PLoS Biol 11: e1001714. 24260024
Dent, J.A., M.M. Smith, D.K. Vassilatis, and L. Avery. (2000). The genetics of ivermectin resistance in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 97: 2674-2679. 10716995
Di Maio, D., B. Chandramouli, and G. Brancato. (2015). Pathways and Barriers for Ion Translocation through the 5-HT3A Receptor Channel. PLoS One 10: e0140258. 26465896
Di Scala, C., C.J. Baier, L.S. Evans, P.T.F. Williamson, J. Fantini, and F.J. Barrantes. (2017). Relevance of CARC and CRAC Cholesterol-Recognition Motifs in the Nicotinic Acetylcholine Receptor and Other Membrane-Bound Receptors. Curr Top Membr 80: 3-23. 28863821
Díaz-Otero, F., M. Quesada, J. Morales-Corraliza, C. Martínez-Parra, P. Gómez-Garre, and J.M. Serratosa. (2008). Autosomal dominant nocturnal frontal lobe epilepsy with a mutation in the CHRNB2 gene. Epilepsia 49: 516-520. 17900292
Du J., Dong H. and Zhou HX. (2012). Size matters in activation/inhibition of ligand-gated ion channels. Trends Pharmacol Sci. 33(9):482-93. 22789930
Du J., Lu W., Wu S., Cheng Y. and Gouaux E. (2015). Glycine receptor mechanism elucidated by electron cryo-microscopy. Nature. 526(7572):224-9. 26344198
Dworakowska, B., E. Nurowska, and K. Dołowy. (2018). Hydrocortisone inhibition of wild-type and αD200Q nicotinic acetylcholine receptors. Chem Biol Drug Des 92: 1610-1617. 29729083
Fahrenbach, V.S. and E.J. Bertaccini. (2018). Insights Into Receptor-Based Anesthetic Pharmacophores and Anesthetic-Protein Interactions. Methods Enzymol 602: 77-95. 29588042
Faulkner, C., D.F. Plant, and N.H. de Leeuw. (2019). Modulation of the Ion Channel by Fentanyl: A Molecular Dynamics Study. Biochemistry 58: 4804-4808. 31718178
Feng, H.J. and S.A. Forman. (2018). Comparison of αβδ and αβγ GABA receptors: Allosteric modulation and identification of subunit arrangement by site-selective general anesthetics. Pharmacol Res 133: 289-300. 29294355
Feng, Z., W. Li, A. Ward, B.J. Piggott, E.R. Larkspur, P.W. Sternberg, and X.Z. Xu. (2006). A C. elegans model of nicotine-dependent behavior: regulation by TRP-family channels. Cell 127: 621-633. 17081982
Filippova, N., V.E. Wotring, and D.S. Weiss. (2004). Evidence that the TM1-TM2 loop contributes to the ρ1 GABA receptor pore. J. Biol. Chem. 279: 20906-20914. 15007065
Fisher, J.L. (2009). The anti-convulsant stiripentol acts directly on the GABA(A) receptor as a positive allosteric modulator. Neuropharmacology 56: 190-197. 18585399
Forman, S.A. and K.W. Miller. (2016). Mapping General Anesthetic Sites in Heteromeric γ-Aminobutyric Acid Type A Receptors Reveals a Potential For Targeting Receptor Subtypes. Anesth Analg 123: 1263-1273. 27167687
Fourati, Z., R.J. Howard, S.A. Heusser, H. Hu, R.R. Ruza, L. Sauguet, E. Lindahl, and M. Delarue. (2018). Structural Basis for a Bimodal Allosteric Mechanism of General Anesthetic Modulation in Pentameric Ligand-Gated Ion Channels. Cell Rep 23: 993-1004. 29694907
Fritsch, S., I. Ivanov, H. Wang, and X. Cheng. (2011). Ion selectivity mechanism in a bacterial pentameric ligand-gated ion channel. Biophys. J. 100: 390-398. 21244835
Fucile, S. (2017). The Distribution of Charged Amino Acid Residues and the Ca2+ Permeability of Nicotinic Acetylcholine Receptors: A Predictive Model. Front Mol Neurosci 10: 155. 28611586
Furutani, S., D. Okuhara, A. Hashimoto, M. Ihara, K. Kai, H. Hayashi, D.B. Sattelle, and K. Matsuda. (2017). An L319F mutation in transmembrane region 3 (TM3) selectively reduces sensitivity to okaramine B of the Bombyx mori l-glutamate-gated chloride channel. Biosci. Biotechnol. Biochem. 1-7. [Epub: Ahead of Print] 28825521
Gasiorek, A., S.M. Trattnig, P.K. Ahring, U. Kristiansen, B. Frølund, K. Frederiksen, and A.A. Jensen. (2016). Delineation of the functional properties and the mechanism of action of TMPPAA, an allosteric agonist and positive allosteric modulator of 5-HT3 receptors. Biochem Pharmacol 110-111: 92-108. 27086281
Ge, Y., Y. Kang, R.M. Cassidy, K.M. Moon, R. Lewis, R.O.L. Wong, L.J. Foster, and A.M. Craig. (2018). Clptm1 Limits Forward Trafficking of GABA Receptors to Scale Inhibitory Synaptic Strength. Neuron. 97: 596-610.e8. 29395912
Ghosh B., Satyshur KA. and Czajkowski C. (2013). Propofol binding to the resting state of the gloeobacter violaceus ligand-gated ion channel (GLIC) induces structural changes in the inter- and intrasubunit transmembrane domain (TMD) cavities. J Biol Chem. 288(24):17420-31. 23640880
Ghosh, R., E.C. Andersen, J.A. Shapiro, J.P. Gerke, and L. Kruglyak. (2012). Natural variation in a chloride channel subunit confers avermectin resistance in C. elegans. Science 335: 574-578. 22301316
Gielen, M., P. Thomas, and T.G. Smart. (2015). The desensitization gate of inhibitory Cys-loop receptors. Nat Commun 6: 6829. 25891813
Gill, J.K., M. Savolainen, G.T. Young, R. Zwart, E. Sher, and N.S. Millar. (2011). Agonist activation of alpha7 nicotinic acetylcholine receptors via an allosteric transmembrane site. Proc. Natl. Acad. Sci. USA 108: 5867-5872. 21436053
Gill-Thind, J.K., P. Dhankher, J.M. D'Oyley, T.D. Sheppard, and N.S. Millar. (2015). Structurally similar allosteric modulators of α7 nicotinic acetylcholine receptors exhibit five distinct pharmacological effects. J. Biol. Chem. 290: 3552-3562. 25516597
Gimenez C., Perez-Siles G., Martinez-Villarreal J., Arribas-Gonzalez E., Jimenez E., Nunez E., de Juan-Sanz J., Fernandez-Sanchez E., Garcia-Tardon N., Ibanez I., Romanelli V., Nevado J., James VM., Topf M., Chung SK., Thomas RH., Desviat LR., Aragon C., Zafra F., Rees MI., Lapunzina P., Harvey RJ. and Lopez-Corcuera B. (2012). A novel dominant hyperekplexia mutation Y705C alters trafficking and biochemical properties of the presynaptic glycine transporter GlyT2. J Biol Chem. 287(34):28986-9002. 22753417
Gisselmann, G., J. Plonka, H. Pusch, and H. Hatt. (2004). Drosophila melanogaster GRD and LCCH3 subunits form heteromultimeric GABA-gated cation channels. Br J Pharmacol 142: 409-413. 15148245
Gonzalez-Gutierrez G. and Grosman C. (2015). The atypical cation-conduction and gating properties of ELIC underscore the marked functional versatility of the pentameric ligand-gated ion-channel fold. J Gen Physiol. 146(1):15-36. 26078054
Gonzalez-Gutierrez, G., L.G. Cuello, S.K. Nair, and C. Grosman. (2013). Gating of the proton-gated ion channel from Gloeobacter violaceus at pH 4 as revealed by X-ray crystallography. Proc. Natl. Acad. Sci. USA 110: 18716-18721. 24167270
Gottschalk, A., R.B. Almedom, T. Schedletzky, S.D. Anderson, J.R. Yates, 3rd, and W.R. Schafer. (2005). Identification and characterization of novel nicotinic receptor-associated proteins in Caenorhabditis elegans. EMBO. J. 24: 2566-2578. 15990870
Goyal, R., A.A. Salahudeen, and M. Jansen. (2011). Engineering a prokaryotic Cys-loop receptor with a third functional domain. J. Biol. Chem. 286: 34635-34642. 21844195
Grupe, M., M. Grunnet, J.F. Bastlund, and A.A. Jensen. (2015). Targeting α4β2 nicotinic acetylcholine receptors in central nervous system disorders: perspectives on positive allosteric modulation as a therapeutic approach. Basic Clin Pharmacol Toxicol 116: 187-200. 25441336
Grutter, T., L.P. de Carvalho, V. Dufresne, A. Taly, and J.P. Changeux. (2006). Identification of two critical residues within the Cys-loop sequence that determine fast-gating kinetics in a pentameric ligand-gated ion channel. J Mol Neurosci 30: 63-64. 17192629
Gu, S., D. Knowland, J.A. Matta, M.L. O''Carroll, W.B. Davini, M. Dhara, H.J. Kweon, and D.S. Bredt. (2020). Hair cell α9α10 nicotinic acetylcholine receptor functional expression regulated by ligand binding and deafness gene products. Proc. Natl. Acad. Sci. USA 117: 24534-24544. 32929005
Gupta, S., S. Chakraborty, R. Vij, and A. Auerbach. (2016). A mechanism for acetylcholine receptor gating based on structure, coupling, phi, and flip. J Gen Physiol. [Epub: Ahead of Print] 27932572
Guros, N.B., A. Balijepalli, and J.B. Klauda. (2019). Microsecond-timescale simulations suggest 5-HT-mediated preactivation of the 5-HT serotonin receptor. Proc. Natl. Acad. Sci. USA. [Epub: Ahead of Print] 31871207
Hammer, H., B.M. Bader, C. Ehnert, C. Bundgaard, L. Bunch, K. Hoestgaard-Jensen, O.H. Schroeder, J.F. Bastlund, A. Gramowski-Voß, and A.A. Jensen. (2015). A Multifaceted GABAA Receptor Modulator: Functional Properties and Mechanism of Action of the Sedative-Hypnotic and Recreational Drug Methaqualone (Quaalude). Mol Pharmacol 88: 401-420. 26056160
Hanna, M.C., P.A. Davies, T.G. Hales, and E.F. Kirkness. (2000). Evidence for expression of heteromeric serotonin 5-HT(3) receptors in rodents. J. Neurochem. 75: 240-247. 10854267
Hannan, S. and T.G. Smart. (2018). Cell surface expression of homomeric GABAA receptors depends on single residues in subunit transmembrane domains. J. Biol. Chem. [Epub: Ahead of Print] 29986886
Harpole, T.J. and C. Grosman. (2019). A Crucial Role for Side-Chain Conformation in the Versatile Charge Selectivity of Cys-Loop Receptors. Biophys. J. 116: 1667-1681. 31005237
Has, A.T.C. and M. Chebib. (2018). GABAA receptors: Various stoichiometrics of subunit arrangement in α1β3 and α1β3ε receptors. Curr Pharm Des. [Epub: Ahead of Print] 29766792
Hassan, M., S. Shahzadi, H. Raza, M.A. Abbasi, H. Alashwal, N. Zaki, A.A. Moustafa, and S.Y. Seo. (2019). Computational investigation of mechanistic insights of Aβ42 interactions against extracellular domain of nAChRα7 in Alzheimer''s disease. Int J. Neurosci. 129: 666-680. 30422726
He, W., Y. Su, H.B. Peng, and P. Tong. (2020). Dynamic heterogeneity and non-Gaussian statistics for ganglioside GM1s and acetylcholine receptors on live cell membrane. Mol. Biol. Cell mbcE19080473. [Epub: Ahead of Print] 32348189
Heath, G.R. and S. Scheuring. (2019). Advances in high-speed atomic force microscopy (HS-AFM) reveal dynamics of transmembrane channels and transporters. Curr. Opin. Struct. Biol. 57: 93-102. 30878714
Henault CM., Juranka PF. and Baenziger JE. (2015). The M4 Transmembrane alpha-Helix Contributes Differently to Both the Maturation and Function of Two Prokaryotic Pentameric Ligand-gated Ion Channels. J Biol Chem. 290(41):25118-28. 26318456
Hénault, C.M. and J.E. Baenziger. (2016). Functional characterization of two prokaryotic pentameric ligand-gated ion channel chimeras - role of the GLIC transmembrane domain in proton sensing. Biochim. Biophys. Acta. [Epub: Ahead of Print] 27845033
Hénault, C.M., C. Govaerts, R. Spurny, M. Brams, A. Estrada-Mondragon, J. Lynch, D. Bertrand, E. Pardon, G.L. Evans, K. Woods, B.W. Elberson, L.G. Cuello, G. Brannigan, H. Nury, J. Steyaert, J.E. Baenziger, and C. Ulens. (2019). A lipid site shapes the agonist response of a pentameric ligand-gated ion channel. Nat Chem Biol. [Epub: Ahead of Print] 31591563
Henderson, B.J., S. Grant, B.W. Chu, R. Shahoei, S.M. Huard, S.S.M. Saladi, E. Tajkhorshid, D.A. Dougherty, and H.A. Lester. (2019). Menthol Stereoisomers Exhibit Different Effects on α4β2 nAChR Upregulation and Dopamine Neuron. Spontaneous Firing. eNeuro 5:. 30627659
Herb, A., W. Wisden, H. Lüddens, G. Puia, S. Vicini, and P.H. Seeburg. (1992). The third γ subunit of the gamma-aminobutyric acid type A receptor family. Proc. Natl. Acad. Sci. U.S.A. 89: 1433-1437. 1311098
Hernandez, C.C., W. Kong, N. Hu, Y. Zhang, W. Shen, L. Jackson, X. Liu, Y. Jiang, and R.L. Macdonald. (2017). Altered Channel Conductance States and Gating of GABAA Receptors by a Pore Mutation Linked to Dravet Syndrome. eNeuro 4:. 28197552
Hernandez, C.C., W. XiangWei, N. Hu, D. Shen, W. Shen, A.H. Lagrange, Y. Zhang, L. Dai, C. Ding, Z. Sun, J. Hu, H. Zhu, Y. Jiang, and R.L. Macdonald. (2019). Altered inhibitory synapses in de novo GABRA5 and GABRA1 mutations associated with early onset epileptic encephalopathies. Brain. [Epub: Ahead of Print] 31056671
Heusser, S.A., &.#.2.1.4.;. Yoluk, G. Klement, E.A. Riederer, E. Lindahl, and R.J. Howard. (2016). Functional characterization of neurotransmitter activation and modulation in a nematode model ligand-gated ion channel. J Neurochem. [Epub: Ahead of Print] 27102368
Heusser, S.A., M. Lycksell, X. Wang, S.E. McComas, R.J. Howard, and E. Lindahl. (2018). Allosteric potentiation of a ligand-gated ion channel is mediated by access to a deep membrane-facing cavity. Proc. Natl. Acad. Sci. USA 115: 10672-10677. 30275330
Hibbs, R.E. and E. Gouaux. (2011). Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature 474: 54-60. 21572436
Hilf, R.J., and R. Dutzler. (2008). X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature 452: 375-379. 18322461
Hilf, R.J., C. Bertozzi, I. Zimmermann, A. Reiter, D. Trauner, and R. Dutzler. (2010). Structural basis of open channel block in a prokaryotic pentameric ligand-gated ion channel. Nat Struct Mol Biol 17: 1330-1336. 21037567
Holden-Dye, L., M. Joyner, V. O'Connor, and R.J. Walker. (2013). Nicotinic acetylcholine receptors: a comparison of the nAChRs of Caenorhabditis elegans and parasitic nematodes. Parasitol Int 62: 606-615. 23500392
Howard, R.J., S. Murail, K.E. Ondricek, P.J. Corringer, E. Lindahl, J.R. Trudell, and R.A. Harris. (2011). Structural basis for alcohol modulation of a pentameric ligand-gated ion channel. Proc. Natl. Acad. Sci. USA 108: 12149-12154. 21730162
Hu, H., &.#.1.9.3.;. Nemecz, C. Van Renterghem, Z. Fourati, L. Sauguet, P.J. Corringer, and M. Delarue. (2018). Crystal structures of a pentameric ion channel gated by alkaline pH show a widely open pore and identify a cavity for modulation. Proc. Natl. Acad. Sci. USA. [Epub: Ahead of Print] 29632192
Hu, H., K. Ataka, A. Menny, Z. Fourati, L. Sauguet, P.J. Corringer, P. Koehl, J. Heberle, and M. Delarue. (2018). Electrostatics, proton sensor, and networks governing the gating transition in GLIC, a proton-gated pentameric ion channel. Proc. Natl. Acad. Sci. USA 115: E12172-E12181. 30541892
Huang X., Chen H., Michelsen K., Schneider S. and Shaffer PL. (2015). Crystal structure of human glycine receptor-alpha3 bound to antagonist strychnine. Nature. 526(7572):277-80. 26416729
Huang Y., Wang JJ. and Yung WH. (2013). Coupling between GABA-A receptor and chloride transporter underlies ionic plasticity in cerebellar Purkinje neurons. Cerebellum. 12(3):328-30. 23341142
Huang, C., C. Xiong, and K. Kornfeld. (2004). Measurements of age-related changes of physiological processes that predict lifespan of Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 101: 8084-8089. 15141086
Huang, Q.T., C.W. Sheng, J. Jiang, T. Tang, Z.Q. Jia, Z.J. Han, and C.Q. Zhao. (2018). Interaction of insecticides with heteromeric GABA-gated chloride channels from zebrafish Danio rerio (Hamilton). J Hazard Mater 366: 643-650. [Epub: Ahead of Print] 30580138
Hussein, R.A., M. Ahmed, H. Sticht, H.G. Breitinger, and U. Breitinger. (2020). Fine-Tuning of Ion Channels-Mapping of Residues Involved in Glucose Sensitivity of Recombinant Human Glycine Receptors. ACS Chem Neurosci 11: 3474-3483. 33007159
Ion, B.F., M.M. Wells, Q. Chen, Y. Xu, and P. Tang. (2017). Ketamine Inhibition of the Pentameric Ligand-Gated Ion Channel GLIC. Biophys. J. 113: 605-612. 28793215
Iovchev, M., A. Boutanaev, I. Ivanov, A. Wolstenholme, D. Nurminsky, and E. Semenov. (2006). Phylogenetic shadowing of a histamine-gated chloride channel involved in insect vision. Insect Biochem Mol Biol 36: 10-17. 16360945
Ivanov, I., X. Cheng, S.M. Sine, and J.A. McCammon. (2007). Barriers to ion translocation in cationic and anionic receptors from the Cys-loop family. J. Am. Chem. Soc. 129: 8217-8224. 17552523
Ivica, J., R. Lape, V. Jazbec, J. Yu, H. Zhu, E. Gouaux, M.G. Gold, and L.G. Sivilotti. (2020). The intracellular domain of homomeric glycine receptors modulates agonist efficacy. J. Biol. Chem. [Epub: Ahead of Print] 32075914
Jayakar SS., Zhou X., Savechenkov PY., Chiara DC., Desai R., Bruzik KS., Miller KW. and Cohen JB. (2015). Positive and Negative Allosteric Modulation of an alpha1beta3gamma2 gamma-Aminobutyric Acid Type A (GABAA) Receptor by Binding to a Site in the Transmembrane Domain at the gamma+-beta- Interface. J Biol Chem. 290(38):23432-46. 26229099
Jayakar, S.S., X. Zhou, D.C. Chiara, C. Jarava-Barrera, P.Y. Savechenkov, K.S. Bruzik, M. Tortosa, K.W. Miller, and J.B. Cohen. (2019). Identifying Drugs that Bind Selectively to Intersubunit General Anesthetic Sites in the 132 GABAR Transmembrane Domain. Mol Pharmacol 95: 615-628. 30952799
Jensen, M.L., A. Schousboe, and P.K. Ahring. (2005). Charge selectivity of the Cys-loop family of ligand-gated ion channels. J Neurochem 92: 217-225. 15663470
Jiao, Y., Y. Cao, Z. Zheng, M. Liu, and X. Guo. (2019). Massive expansion and diversity of nicotinic acetylcholine receptors in lophotrochozoans. BMC Genomics 20: 937. 31805848
Joseph, T.T. and J.S. Mincer. (2016). Common Internal Allosteric Network Links Anesthetic Binding Sites in a Pentameric Ligand-Gated Ion Channel. PLoS One 11: e0158795. 27403526
Jospin, M., Y.B. Qi, T.M. Stawicki, T. Boulin, K.R. Schuske, H.R. Horvitz, J.L. Bessereau, E.M. Jorgensen, and Y. Jin. (2009). A neuronal acetylcholine receptor regulates the balance of muscle excitation and inhibition in Caenorhabditis elegans. PLoS Biol 7: e1000265. 20027209
Jung, S. and R.A. Harris. (2006). Sites in TM2 and 3 are critical for alcohol-induced conformational changes in GABA receptors. J Neurochem 96: 885-892. 16405501
Kalashnyk, O., O. Lykhmus, K. Uspenska, M. Izmailov, S. Komisarenko, and M. Skok. (2020). Mitochondrial α7 nicotinic acetylcholine receptors are displaced from complexes with VDAC1 to form complexes with Bax upon apoptosis induction. Int J Biochem. Cell Biol. 129: 105879. [Epub: Ahead of Print] 33147521
Keramidas A. and Lynch JW. (2013). An outline of desensitization in pentameric ligand-gated ion channel receptors. Cell Mol Life Sci. 70(7):1241-53. 22936353
Khiroug, S.S., P.C. Harkness, P.W. Lamb, S.N. Sudweeks, L. Khiroug, N.S. Millar, and J.L. Yakel. (2002). Rat nicotinic ACh receptor alpha7 and beta2 subunits co-assemble to form functional heteromeric nicotinic receptor channels. J. Physiol. 540: 425-434. 11956333
Kim, E.Y., N. Schrader, B. Smolinsky, C. Bedet, C. Vannier, G. Schwarz, and H. Schindelin. (2006). Deciphering the structural framework of glycine receptor anchoring by gephyrin. EMBO. J. 25: 1385-1395. 16511563
Kim, J.J., A. Gharpure, J. Teng, Y. Zhuang, R.J. Howard, S. Zhu, C.M. Noviello, R.M. Walsh, Jr, E. Lindahl, and R.E. Hibbs. (2020). Shared structural mechanisms of general anaesthetics and benzodiazepines. Nature 585: 303-308. 32879488
Kim, M.K., K.T. Min, and B.N. Koo. (2009). Amino acid residues involved in agonist binding and its linking to channel gating, proximal to transmembrane domain of 5-HT3A receptor for halothane modulation. Korean J Anesthesiol 56: 66-73. 30625697
Kinde, M.N., W. Bu, Q. Chen, Y. Xu, R.G. Eckenhoff, and P. Tang. (2016). Common Anesthetic-binding Site for Inhibition of Pentameric Ligand-gated Ion Channels. Anesthesiology 124: 664-673. 26756520
Klesse, G., S.J. Tucker, and M.S.P. Sansom. (2020). Electric Field Induced Wetting of a Hydrophobic Gate in a Model Nanopore Based on the 5-HT Receptor Channel. ACS Nano. [Epub: Ahead of Print] 32673478
Kodera, H., C. Ohba, M. Kato, T. Maeda, K. Araki, D. Tajima, M. Matsuo, N. Hino-Fukuyo, K. Kohashi, A. Ishiyama, S. Takeshita, H. Motoi, T. Kitamura, A. Kikuchi, Y. Tsurusaki, M. Nakashima, N. Miyake, M. Sasaki, S. Kure, K. Haginoya, H. Saitsu, and N. Matsumoto. (2016). De novo GABRA1 mutations in Ohtahara and West syndromes. Epilepsia 57: 566-573. 26918889
Korte, M. (2019). function of Alzheimer''s protein. Science 363: 123-124. 30630916
Kudelska, M.M., L. Holden-Dye, V. O''Connor, and D.A. Doyle. (2017). Concentration-dependent effects of acute and chronic neonicotinoid exposure on the behaviour and development of the nematode Caenorhabditis elegans. Pest Manag Sci 73: 1345-1351. 28261957
Kudryashev, M., D. Castaño-Díez, C. Deluz, G. Hassaine, L. Grasso, A. Graf-Meyer, H. Vogel, and H. Stahlberg. (2016). The Structure of the Mouse Serotonin 5-HT3 Receptor in Lipid Vesicles. Structure 24: 165-170. 26724993
Kudryavtsev, D., I. Shelukhina, C. Vulfius, T. Makarieva, V. Stonik, M. Zhmak, I. Ivanov, I. Kasheverov, Y. Utkin, and V. Tsetlin. (2015). Natural compounds interacting with nicotinic acetylcholine receptors: from low-molecular weight ones to peptides and proteins. Toxins (Basel) 7: 1683-1701. 26008231
Kumar, M., M. Kumar, J.M. Freund, and G.H. Dillon. (2017). A Single Amino Acid Residue at Transmembrane Domain 4 of the α Subunit Influences Carisoprodol Direct Gating Efficacy at GABAA Receptors. J Pharmacol Exp Ther 362: 395-404. 28642232
Kumar, P., Y. Wang, Z. Zhang, Z. Zhao, G.D. Cymes, E. Tajkhorshid, and C. Grosman. (2020). Cryo-EM structures of a lipid-sensitive pentameric ligand-gated ion channel embedded in a phosphatidylcholine-only bilayer. Proc. Natl. Acad. Sci. USA 117: 1788-1798. 31911476
Langlhofer, G. and C. Villmann. (2016). The Intracellular Loop of the Glycine Receptor: It''s not all about the Size. Front Mol Neurosci 9: 41. 27330534
Lansdell SJ., Sathyaprakash C., Doward A. and Millar NS. (2015). Activation of human 5-hydroxytryptamine type 3 receptors via an allosteric transmembrane site. Mol Pharmacol. 87(1):87-95. 25338672
Lara, C.O., C.F. Burgos, T. Silva-Grecchi, C. Muñoz-Montesino, L.G. Aguayo, J. Fuentealba, P.A. Castro, J.L. Guzmán, P.J. Corringer, G.E. Yévenes, and G. Moraga-Cid. (2019). Large Intracellular Domain-Dependent Effects of Positive Allosteric Modulators on Glycine Receptors. ACS Chem Neurosci. [Epub: Ahead of Print] 30893555
Lasala, M., J. Corradi, A. Bruzzone, M.D.C. Esandi, and C. Bouzat. (2018). A human-specific, truncated α7 nicotinic receptor subunit assembles with full-length α7 and forms functional receptors with different stoichiometries. J. Biol. Chem. [Epub: Ahead of Print] 29784875
Lee, B.H., S.H. Hwang, S.H. Choi, T.J. Shin, J. Kang, S.M. Lee, and S.Y. Nah. (2011). Resveratrol enhances 5-hydroxytryptamine type 3A receptor-mediated ion currents: the role of arginine 222 residue in pre-transmembrane domain I. Biol Pharm Bull 34: 523-527. 21467640
Lev, B., S. Murail, F. Poitevin, B.A. Cromer, M. Baaden, M. Delarue, and T.W. Allen. (2017). String method solution of the gating pathways for a pentameric ligand-gated ion channel. Proc. Natl. Acad. Sci. USA 114: E4158-E4167. 28487483
Lin, B., S. Xiang, and M. Li. (2016). Residues Responsible for the Selectivity of α-Conotoxins for Ac-AChBP or nAChRs. Mar Drugs 14:. 27727162
Livesey, M.R., M.A. Cooper, J.J. Lambert, and J.A. Peters. (2011). Rings of charge within the extracellular vestibule influence ion permeation of the 5-HT3A receptor. J. Biol. Chem. 286: 16008-16017. 21454663
Lozon, Y., A. Sultan, S.J. Lansdell, T. Prytkova, B. Sadek, K.H. Yang, F.C. Howarth, N.S. Millar, and M. Oz. (2016). Inhibition of human α7 nicotinic acetylcholine receptors by cyclic monoterpene carveol. Eur J Pharmacol 776: 44-51. 26849939
Luger, D., G. Poli, M. Wieder, M. Stadler, S. Ke, M. Ernst, A. Hohaus, T. Linder, T. Seidel, T. Langer, S. Khom, and S. Hering. (2015). Identification of the putative binding pocket of valerenic acid on GABAA receptors using docking studies and site-directed mutagenesis. Br J Pharmacol 172: 5403-5413. 26375408
Lummis, S.C., D.L. Beene, L.W. Lee, H.A. Lester, R.W. Broadhurst, and D.A. Dougherty. (2005). Cis-trans isomerization at a proline opens the pore of a neurotransmitter-gated ion channel. Nature 438: 248-252. 16281040
Luu, T., P.W. Gage, and M.L. Tierney. (2006). GABA increases both the conductance and mean open time of recombinant GABAA channels co-expressed with GABARAP. J. Biol. Chem. 281: 35699-35708. 16954214
Lynagh, T. and J.W. Lynch. (2012). Molecular mechanisms of Cys-loop ion channel receptor modulation by ivermectin. Front Mol Neurosci 5: 60. 22586367
Lynagh, T., B.A. Cromer, V. Dufour, and B. Laube. (2014). Comparative pharmacology of flatworm and roundworm glutamate-gated chloride channels: Implications for potential anthelmintics. Int J Parasitol Drugs Drug Resist 4: 244-255. 25516835
Madjroh, N., E.R. Olander, C. Bundgaard, P.C. Söderhielm, and A.A. Jensen. (2018). Functional properties and mechanism of action of PPTQ, an allosteric agonist and low nanomolar positive allosteric modulator at GABAA receptors. Biochem Pharmacol 147: 153-169. 29155148
Maldifassi, M.C., R. Baur, and E. Sigel. (2016). Molecular mode of action of CGS 9895 at α1 β2 γ2 GABAA receptors. J Neurochem 138: 722-730. 27319298
Maldifassi, M.C., R. Baur, D. Pierce, A. Nourmahnad, S.A. Forman, and E. Sigel. (2016). Novel positive allosteric modulators of GABAA receptors with anesthetic activity. Sci Rep 6: 25943. 27198062
Manetti, D., C. Bellucci, S. Dei, E. Teodori, K. Varani, E. Spirova, D. Kudryavtsev, I. Shelukhina, V. Tsetlin, and M.N. Romanelli. (2016). New quinoline derivatives as nicotinic receptor modulators. Eur J Med Chem 110: 246-258. 26840365
Markus, F., C. Angelini, A. Trimouille, G. Rudolf, G. Lesca, C. Goizet, E. Lasseaux, B. Arveiler, M. van Slegtenhorst, A.S. Brooks, R. Abou Jamra, G.C. Korenke, J. Neidhardt, and M. Owczarek-Lipska. (2020). Rare variants in the GABA receptor subunit ε identified in patients with a wide spectrum of epileptic phenotypes. Mol Genet Genomic Med e1388. [Epub: Ahead of Print] 32588540
Martínez-Torres, A. and R. Miledi. (2013). A single amino acid change within the ion-channel domain of the γ-aminobutyric acid rho1 receptor accelerates desensitization and increases taurine agonism. Arch Med Res 35: 194-198. 15163459
Masiulis, S., R. Desai, T. Uchański, I. Serna Martin, D. Laverty, D. Karia, T. Malinauskas, J. Zivanov, E. Pardon, A. Kotecha, J. Steyaert, K.W. Miller, and A.R. Aricescu. (2019). GABA receptor signalling mechanisms revealed by structural pharmacology. Nature. [Epub: Ahead of Print] 30602790
McCracken, M.L., C.M. Borghese, J.R. Trudell, and R.A. Harris. (2010). A transmembrane amino acid in the GABAA receptor β2 subunit critical for the actions of alcohols and anesthetics. J Pharmacol Exp Ther 335: 600-606. 20826568
McKay, J.P., D.M. Raizen, A. Gottschalk, W.R. Schafer, and L. Avery. (2004). eat-2 and eat-18 are required for nicotinic neurotransmission in the Caenorhabditis elegans pharynx. Genetics 166: 161-169. 15020415
McKinnon, N.K., D.C. Reeves, and M.H. Akabas. (2011). 5-HT3 receptor ion size selectivity is a property of the transmembrane channel, not the cytoplasmic vestibule portals. J Gen Physiol 138: 453-466. 21948949
Menard, C., H.R. Horvitz, and S. Cannon. (2005). Chimeric mutations in the M2 segment of the 5-hydroxytryptamine-gated chloride channel MOD-1 define a minimal determinant of anion/cation permeability. J. Biol. Chem. 280: 27502-27507. 15878844
Mesoy, S., J. Jeffreys, and S.C.R. Lummis. (2019). Characterization of Residues in the 5-HT Receptor M4 Region That Contribute to Function. ACS Chem Neurosci. [Epub: Ahead of Print] 30835437
Milenkovic, I., A. Zimprich, M. Gencik, K. Platho-Elwischger, and S. Seidel. (2018). A novel nonsense autosomal dominant mutation in the GLRA1 gene causing hyperekplexia. J Neural Transm (Vienna) 125: 1877-1883. 30182260
Mineur, Y.S., A. Abizaid, Y. Rao, R. Salas, R.J. DiLeone, D. Gündisch, S. Diano, M. De Biasi, T.L. Horvath, X.B. Gao, and M.R. Picciotto. (2011). Nicotine decreases food intake through activation of POMC neurons. Science 332: 1330-1332. 21659607
Mitchell K.E., T. Iwamoto, J. Tomich, L.C. Freeman. (2000). A synthetic peptide based on a glycine-gated chloride channel induces a novel chloride conductance in isolated epithelial cells. Biochim. Biophys. Acta. 1466: 47-60. 10825430
Miyazawa, A. Y. Fujiyoshi, and N. Unwin. (2003). Structure and gating mechanism of the acetylcholine receptor pore. Nature 423: 949-955. 12827192
Moraga-Cid, G., L. Sauguet, C. Huon, L. Malherbe, C. Girard-Blanc, S. Petres, S. Murail, A. Taly, M. Baaden, M. Delarue, and P.J. Corringer. (2015). Allosteric and hyperekplexic mutant phenotypes investigated on an α1 glycine receptor transmembrane structure. Proc. Natl. Acad. Sci. USA 112: 2865-2870. 25730860
Morales-Perez, C.L., C.M. Noviello, and R.E. Hibbs. (2016). X-ray structure of the human α4β2 nicotinic receptor. Nature 538: 411-415. 27698419
Moroni, M., J.O. Meyer, C. Lahmann, and L.G. Sivilotti. (2011). In glycine and GABA(A) channels, different subunits contribute asymmetrically to channel conductance via residues in the extracellular domain. J. Biol. Chem. 286: 13414-13422. 21343294
Mukherjee, A. (2015). [Computational analysis of a cys-loop ligand gated ion channel from the green alga Chlamydomonas reinhardtii]. Mol Biol (Mosk) 49: 832-845. 26510602
Naffaa, M.M. and A. Samad. (2016). The binding mode of picrotoxinin in GABAA-ρ receptors: Insight into the subunit''s selectivity in the transmembrane domain. Comput Biol Chem 64: 202-209. [Epub: Ahead of Print] 27423910
Nakamura, Y., M. Kondo, Y. Koyama, and S. Shimada. (2019). SR 57227A is a partial agonist/partial antagonist of 5-HT receptor and inhibits subsequent 5-HT- or SR 57227A-induced 5-HT receptor current. Biochem. Biophys. Res. Commun. 508: 590-596. 30509492
Nakao, T. and S. Banba. (2020). Important amino acids for function of the insect Rdl GABA receptor. Pest Manag Sci. [Epub: Ahead of Print] 33002317
Nakata, Y., T. Fuse, K. Yamato, M. Asahi, K. Nakahira, F. Ozoe, and Y. Ozoe. (2017). A Single Amino Acid Substitution in the Third Transmembrane Region Has Opposite Impacts on the Selectivity of the Parasiticides Fluralaner and Ivermectin for Ligand-Gated Chloride Channels. Mol Pharmacol 92: 546-555. 28887352
Nemecz, &.#.1.9.3.;., H. Hu, Z. Fourati, C. Van Renterghem, M. Delarue, and P.J. Corringer. (2017). Full mutational mapping of titratable residues helps to identify proton-sensors involved in the control of channel gating in the Gloeobacter violaceus pentameric ligand-gated ion channel. PLoS Biol 15: e2004470. [Epub: Ahead of Print] 29281623
Newcombe, J., A. Chatzidaki, T.D. Sheppard, M. Topf, and N.S. Millar. (2017). Diversity of nicotinic acetylcholine receptor positive allosteric modulators revealed by mutagenesis and a revised structural model. Mol Pharmacol. [Epub: Ahead of Print] 29196491
Nguyen, V.T., A. Ndoye, and S.A. Grando. (2000). Novel human alpha9 acetylcholine receptor regulating keratinocyte adhesion is targeted by Pemphigus vulgaris autoimmunity. Am J Pathol 157: 1377-1391. 11021840
Nielsen, B.E., I. Bermudez, and C. Bouzat. (2019). Flavonoids as positive allosteric modulators of α7 nicotinic receptors. Neuropharmacology 107794. [Epub: Ahead of Print] 31560909
Nielsen, B.E., S. Stabile, C. Vitale, and C. Bouzat. (2020). Design, Synthesis, and Functional Evaluation of a Novel Series of Phosphonate-Functionalized 1,2,3-Triazoles as Positive Allosteric Modulators of α7 Nicotinic Acetylcholine Receptors. ACS Chem Neurosci 11: 2688-2704. 32786318
Niturad, C.E., D. Lev, V.M. Kalscheuer, A. Charzewska, J. Schubert, T. Lerman-Sagie, H.Y. Kroes, R. Oegema, M. Traverso, N. Specchio, M. Lassota, J. Chelly, O. Bennett-Back, N. Carmi, T. Koffler-Brill, M. Iacomino, M. Trivisano, G. Capovilla, P. Striano, M. Nawara, S. Rzonca, U. Fischer, M. Bienek, C. Jensen, H. Hu, H. Thiele, J. Altmüller, R. Krause, P. May, F. Becker, , R. Balling, S. Biskup, S.A. Haas, P. Nürnberg, K.L.I. van Gassen, H. Lerche, F. Zara, S. Maljevic, and E. Leshinsky-Silver. (2017). Rare GABRA3 variants are associated with epileptic seizures, encephalopathy and dysmorphic features. Brain 140: 2879-2894. 29053855
Norleans, J., J. Wang, A. Kuryatov, A. Leffler, C. Doebelin, T.M. Kamenecka, and J. Lindstrom. (2019). Discovery of an intrasubunit nicotinic acetylcholine receptor binding site for the positive allosteric modulator Br-PBTC. J. Biol. Chem. [Epub: Ahead of Print] 31221718
Nury, H., C. Van Renterghem, Y. Weng, A. Tran, M. Baaden, V. Dufresne, J.P. Changeux, J.M. Sonner, M. Delarue, and P.J. Corringer. (2011). X-ray structures of general anaesthetics bound to a pentameric ligand-gated ion channel. Nature 469: 428-431. 21248852
Nury, H., F. Poitevin, C. Van Renterghem, J.P. Changeux, P.J. Corringer, M. Delarue, and M. Baaden. (2010). One-microsecond molecular dynamics simulation of channel gating in a nicotinic receptor homologue. Proc. Natl. Acad. Sci. USA 107: 6275-6280. 20308576
Oertel, J., C. Villmann, H. Kettenmann, F. Kirchhoff, and C.M. Becker. (2007). A novel glycine receptor beta subunit splice variant predicts an unorthodox transmembrane topology. Assembly into heteromeric receptor complexes. J. Biol. Chem. 282: 2798-2807. 17145751
Oflaz, F.E., &.#.1.9.9.;.D. Son, and A. Arslan. (2019). Oligomerization and cell surface expression of recombinant GABAA receptors tagged in the δ subunit. J Integr Neurosci 18: 341-350. 31912692
Olander, E.R., N. Madjroh, L. Bunch, P.C. Söderhielm, and A.A. Jensen. (2018). Delineation of the functional properties and the mechanism of action of AA29504, an allosteric agonist and positive allosteric modulator of GABA receptors. Biochem Pharmacol 150: 305-319. 29454619
Oliveira, A.S.F., D.K. Shoemark, H.R. Campello, S. Wonnacott, T. Gallagher, R.B. Sessions, and A.J. Mulholland. (2019). Identification of the Initial Steps in Signal Transduction in the α4β2 Nicotinic Receptor: Insights from Equilibrium and Nonequilibrium Simulations. Structure 27: 1171-1183.e3. 31130483
Olsen, R.W. (2018). GABA receptor: Positive and negative allosteric modulators. Neuropharmacology 136: 10-22. 29407219
Pan, Z., M. Zhao, Y. Peng, and J. Wang. (2019). Functional divergence analysis of vertebrate neuronal nicotinic acetylcholine receptor subunits. J Biomol Struct Dyn 37: 2938-2948. 30044167
Pandya, A. and J.L. Yakel. (2011). Allosteric modulator Desformylflustrabromine relieves the inhibition of α2β2 and α4β2 nicotinic acetylcholine receptors by β-amyloid(1-42) peptide. J Mol Neurosci 45: 42-47. 21424792
Pandya, A. and J.L. Yakel. (2011). Allosteric modulators of the α4β2 subtype of neuronal nicotinic acetylcholine receptors. Biochem Pharmacol 82: 952-958. 21596025
Panicker, S., H. Cruz, C. Arrabit, K.F. Suen, and P.A. Slesinger. (2004). Minimal structural rearrangement of the cytoplasmic pore during activation of the 5-HT3A receptor. J. Biol. Chem. 279: 28149-28158. 15131114
Pantazis, A., A. Segaran, C.H. Liu, A. Nikolaev, J. Rister, A.S. Thum, T. Roeder, E. Semenov, M. Juusola, and R.C. Hardie. (2008). Distinct roles for two histamine receptors (HclA and HclB) at the Drosophila photoreceptor synapse. J. Neurosci. 28: 7250-7259. 18632929
Papke, R.L., J.D. Buhr, M.M. Francis, K.I. Choi, J.S. Thinschmidt, and N.A. Horenstein. (2005). The effects of subunit composition on the inhibition of nicotinic receptors by the amphipathic blocker 2,2,6,6-tetramethylpiperidin-4-yl heptanoate. Mol Pharmacol 67: 1977-1990. 15761116
Parikh, R.B., M. Bali, and M.H. Akabas. (2011). Structure of the M2 transmembrane segment of GLIC, a prokaryotic Cys loop receptor homologue from Gloeobacter violaceus, probed by substituted cysteine accessibility. J. Biol. Chem. 286: 14098-14109. 21362624
Peters, J.A., M.A. Cooper, J.E. Carland, M.R. Livesey, T.G. Hales, and J.J. Lambert. (2010). Novel structural determinants of single channel conductance and ion selectivity in 5-hydroxytryptamine type 3 and nicotinic acetylcholine receptors. J. Physiol. 588: 587-596. 19933751
Pirayesh, E., A.G. Stuebler, A. Pandhare, and M. Jansen. (2019). Delineating the Site of Interaction of the 5-HT Receptor with the Chaperone Protein RIC-3. Biophys. J. [Epub: Ahead of Print] 31870537
Price, K.L. and S.C.R. Lummis. (2018). Characterization of a 5-HT-ELIC Chimera Revealing the Sites of Action of Modulators. ACS Chem Neurosci. [Epub: Ahead of Print] 29508995
Price, K.L., Y. Hirayama, and S.C. Lummis. (2017). Subtle Differences among 5-HT3AC, 5-HT3AD, and 5-HT3AE Receptors Are Revealed by Partial Agonists. ACS Chem Neurosci. [Epub: Ahead of Print] 28367632
Puinean AM., Lansdell SJ., Collins T., Bielza P. and Millar NS. (2013). A nicotinic acetylcholine receptor transmembrane point mutation (G275E) associated with resistance to spinosad in Frankliniella occidentalis. J Neurochem. 124(5):590-601. 23016960
Purohit, P. and A. Auerbach. (2007). Acetylcholine receptor gating: movement in the α-subunit extracellular domain. J. Gen. Physiol. 130(6):569-579. 18040059
Purohit, P., A. Mitra, and A. Auerbach. (2007). A stepwise mechanism for acetylcholine receptor channel gating. Nature 446: 930-933. 17443187
Quadri, M., S. Garai, G.A. Thakur, C. Stokes, A. Gulsevin, N.A. Horenstein, and R.L. Papke. (2018). Macroscopic and microscopic activation of α7 nicotinic acetylcholine receptors by the structurally unrelated ago-PAMs B-973B and GAT107. Mol Pharmacol. [Epub: Ahead of Print] 30348894
Ranganathan, R., S.C. Cannon and H.R. Horvitz. (2000). MOD-1 is a serotonin-gated chloride channel that modulates locomotory behavior in C. elegans. Nature 408: 470-473. 11100728
Reeves, D.C. and S.C.R. Lummis. (2002). The molecular basis of the structure and function of the 5-HT3 receptor: a model ligand-gated ion channel. Mol. Membrane Biol. 19: 11-26. 11989819
Rice, H.C., D. de Malmazet, A. Schreurs, S. Frere, I. Van Molle, A.N. Volkov, E. Creemers, I. Vertkin, J. Nys, F.M. Ranaivoson, D. Comoletti, J.N. Savas, H. Remaut, D. Balschun, K.D. Wierda, I. Slutsky, K. Farrow, B. De Strooper, and J. de Wit. (2019). Secreted amyloid-β precursor protein functions as a GABAR1a ligand to modulate synaptic transmission. Science 363:. 30630900
Rienzo, M., S.C. Lummis, and D.A. Dougherty. (2014). Structural requirements in the transmembrane domain of GLIC revealed by incorporation of noncanonical histidine analogs. Chem Biol 21: 1700-1706. 25525989
Ringstad, N., N. Abe, and H.R. Horvitz. (2009). Ligand-gated chloride channels are receptors for biogenic amines in C. elegans. Science 325: 96-100. 19574391
Roberts, M.T., R. Phelan, B.S. Erlichman, R.N. Pillai, L. Ma, G.F. Lopreato, and S.J. Mihic. (2006). Occupancy of a single anesthetic binding pocket is sufficient to enhance glycine receptor function. J. Biol. Chem. 281: 3305-3311. 16361257
Rossokhin, A.V., I.N. Sharonova, A. Dvorzhak, J.V. Bukanova, and V.G. Skrebitsky. (2019). The mechanisms of potentiation and inhibition of GABA receptors by non-steroidal anti-inflammatory drugs, niflumic and mefenamic acids. Neuropharmacology 107795. [Epub: Ahead of Print] 31560908
Safratowich, B.D., C. Lor, L. Bianchi, and L. Carvelli. (2013). Amphetamine activates an amine-gated chloride channel to generate behavioral effects in Caenorhabditis elegans. J. Biol. Chem. 288: 21630-21637. 23775081
Sanchis-Juan, A., M.A. Hasenahuer, J.A. Baker, A. McTague, K. Barwick, M.A. Kurian, S.T. Duarte, , K.J. Carss, J. Thornton, and F.L. Raymond. (2020). Structural analysis of pathogenic missense mutations in GABRA2 and identification of a novel de novo variant in the desensitization gate. Mol Genet Genomic Med e1106. [Epub: Ahead of Print] 32347641
Sarang, S.S., S.M. Lukyanova, D.D. Brown, B.S. Cummings, S.R. Gullans, and R.G. Schnellmann. (2008). Identification, coassembly, and activity of γ- aminobutyric acid receptor subunits in renal proximal tubular cells. J. Pharmacol. Exp. Ther. 324: 376-382. 17959749
Sauguet L., Shahsavar A., Poitevin F., Huon C., Menny A., Nemecz A., Haouz A., Changeux JP., Corringer PJ. and Delarue M. (2014). Crystal structures of a pentameric ligand-gated ion channel provide a mechanism for activation. Proc Natl Acad Sci U S A. 111(3):966-71. 24367074
Sauguet, L., R.J. Howard, L. Malherbe, U.S. Lee, P.J. Corringer, R. Adron Harris, and M. Delarue. (2013). Structural basis for potentiation by alcohols and anaesthetics in a ligand-gated ion channel. Nat Commun 4: 1697. 23591864
Schaefer, N., A. Berger, J. van Brederode, F. Zheng, Y. Zhang, S. Leacock, L. Littau, S. Jablonka, S. Malhotra, M. Topf, F. Winter, D. Davydova, J.W. Lynch, C.J. Paige, C. Alzheimer, R.J. Harvey, and C. Villmann. (2017). Disruption of a Structurally Important Extracellular Element in the Glycine Receptor Leads to Decreased Synaptic Integration and Signaling Resulting in Severe Startle Disease. J. Neurosci. 37: 7948-7961. 28724750
Schaefer, N., V. Roemer, D. Janzen, and C. Villmann. (2018). Impaired Glycine Receptor Trafficking in Neurological Diseases. Front Mol Neurosci 11: 291. 30186111
Schmandt, N., P. Velisetty, S.V. Chalamalasetti, R.A. Stein, R. Bonner, L. Talley, M.D. Parker, H.S. Mchaourab, V.C. Yee, D.T. Lodowski, and S. Chakrapani. (2015). A chimeric prokaryotic pentameric ligand-gated channel reveals distinct pathways of activation. J Gen Physiol 146: 323-340. 26415570
Seljeset, S., D.P. Bright, P. Thomas, and T.G. Smart. (2018). Probing GABAreceptors with inhibitory neurosteroids. Neuropharmacology. [Epub: Ahead of Print] 29447845
Sgard, F., E. Charpantier, S. Bertrand, N. Walker, D. Caput, D. Graham, D. Bertrand, and F. Besnard. (2002). A novel human nicotinic receptor subunit, alpha10, that confers functionality to the alpha9-subunit. Mol Pharmacol 61: 150-159. 11752216
Shalabi, A.R., Z. Yu, X. Zhou, Y. Jounaidi, H. Chen, J. Dai, D.E. Kent, H.J. Feng, S.A. Forman, J.B. Cohen, K.S. Bruzik, and K.W. Miller. (2020). A potent photoreactive general anesthetic with novel binding site selectivity for GABA receptors. Eur J Med Chem 194: 112261. 32247113
Shan, T., C. Chen, Q. Ding, X. Chen, H. Zhang, A. Chen, X. Shi, and X. Gao. (2020). Molecular characterization and expression profiles of nicotinic acetylcholine receptors in Bradysia odoriphaga. Pestic Biochem Physiol 165: 104563. 32359542
Shen, X.M., M. Milone, H.L. Wang, B. Banwell, D. Selcen, S.M. Sine, and A.G. Engel. (2019). Slow-channel myasthenia due to novel mutation in M2 domain of AChR delta subunit. Ann Clin Transl Neurol 6: 2066-2078. 31560172
Shen, X.M., T. Okuno, M. Milone, K. Otsuka, K. Takahashi, H. Komaki, E. Giles, K. Ohno, and A.G. Engel. (2016). Mutations Causing Slow-Channel Myasthenia Reveal that a Valine ring in the Channel Pore of Muscle AChR is Optimized for Stabilizing Channel Gating. Hum Mutat. [Epub: Ahead of Print] 27375219
Sheng, C.W., Z.Q. Jia, Y. Ozoe, Q.T. Huang, Z.J. Han, and C.Q. Zhao. (2018). Molecular cloning, spatiotemporal and functional expression of GABA receptor subunits RDL1 and RDL2 of the rice stem borer Chilo suppressalis. Insect Biochem Mol Biol 94: 18-27. [Epub: Ahead of Print] 29408355
Shin, D.J., A.L. Germann, A.D. Johnson, S.A. Forman, J.H. Steinbach, and G. Akk. (2018). Propofol Is an Allosteric Agonist with Multiple Binding Sites on Concatemeric Ternary GABA Receptors. Mol Pharmacol 93: 178-189. 29192122
Shivers, B.D., I. Killisch, R. Sprengel, H. Sontheimer, M. Köhler, P.R. Schofield, and P.H. Seeburg. (1989). Two novel GABAA receptor subunits exist in distinct neuronal subpopulations. Neuron. 3: 327-337. 2561970
Sigel, E., R. Baur, I. Rácz, J. Marazzi, T.G. Smart, A. Zimmer, and J. Gertsch. (2011). The major central endocannabinoid directly acts at GABA(A) receptors. Proc. Natl. Acad. Sci. USA 108: 18150-18155. 22025726
Sine, S.M. and A.G. Engel. (2006). Recent advances in Cys-loop receptor structure and function. Nature 440: 448-455. 16554804
Sivilotti, L.G. (2010). What single-channel analysis tells us of the activation mechanism of ligand-gated channels: the case of the glycine receptor. J. Physiol. 588: 45-58. 19770192
Smelt, C.L.C., V.R. Sanders, J. Newcombe, R.P. Burt, T.D. Sheppard, M. Topf, and N.S. Millar. (2018). Identification by virtual screening and functional characterisation of novel positive and negative allosteric modulators of the α7 nicotinic acetylcholine receptor. Neuropharmacology 139: 194-204. 30009834
Smit, A.B., N.I. Syed, D. Schaap, J. van Minnen, J. Klumperman, K.S. Kits, H. Lodder, R.C. van der Schors, R. van Elk, B. Sorgedrager, K. Brejc, T.K. Sixma, and W.P. Geraerts. (2001). A glia-derived acetylcholine-binding protein that modulates synaptic transmission. Nature 411: 261-268. 11357121
Snell, H.D. and E.B. Gonzales. (2016). 5-(N, N-Hexamethylene) amiloride is a GABA-A ρ1 receptor positive allosteric modulator. Channels (Austin) 1-9. [Epub: Ahead of Print] 27367557
Solt, K., J.S. Johansson, and D.E. Raines. (2006). Kinetics of anesthetic-induced conformational transitions in a four-α-helix bundle protein. Biochemistry 45: 1435-1441. 16445285
Spurny R., Billen B., Howard RJ., Brams M., Debaveye S., Price KL., Weston DA., Strelkov SV., Tytgat J., Bertrand S., Bertrand D., Lummis SC. and Ulens C. (2013). Multisite binding of a general anesthetic to the prokaryotic pentameric Erwinia chrysanthemi ligand-gated ion channel (ELIC). J Biol Chem. 288(12):8355-64. 23364792
Squire, M.D., C. Tornøe, H.A. Baylis, J.T. Fleming, E.A. Barnard, and D.B. Sattelle. (1995). Molecular cloning and functional co-expression of a Caenorhabditis elegans nicotinic acetylcholine receptor subunit (acr-2). Receptors Channels 3: 107-115. 8581398
Stewart, D.S., D.W. Pierce, M. Hotta, A.T. Stern, and S.A. Forman. (2014). Mutations at beta N265 in γ-aminobutyric acid type A receptors alter both binding affinity and efficacy of potent anesthetics. PLoS One 9: e111470. 25347186
Sugasawa, Y., J.R. Bracamontes, K. Krishnan, D.F. Covey, D.E. Reichert, G. Akk, Q. Chen, P. Tang, A.S. Evers, and W.W.L. Cheng. (2019). The molecular determinants of neurosteroid binding in the GABA(A) receptor. J Steroid Biochem Mol Biol 192: 105383. [Epub: Ahead of Print] 31150831
Sun, J., J.F. Comeau, and J.E. Baenziger. (2016). Probing the structure of the uncoupled nicotinic acetylcholine receptor. Biochim. Biophys. Acta. 1859: 146-154. [Epub: Ahead of Print] 27871840
Sundararajan, T., A.M. Manzardo, and M.G. Butler. (2018). Functional analysis of schizophrenia genes using GeneAnalytics program and integrated databases. Gene 641: 25-34. 29032150
Szabo, A., A. Nourmahnad, E. Halpin, and S.A. Forman. (2019). Monod-Wyman-Changeux Allosteric Shift Analysis in Mutant α1β3γ2L GABAA Receptors Indicates Selectivity and Cross-Talk Among Intersubunit Transmembrane Anesthetic Sites. Mol Pharmacol. [Epub: Ahead of Print] 30696720
Szarecka, A., Y. Xu, and P. Tang. (2007). Dynamics of heteropentameric nicotinic acetylcholine receptor: implications of the gating mechanism. Proteins 68: 948-960. 17546671
Tang, B. and S.C.R. Lummis. (2018). The roles of aromatic residues in the glycine receptor transmembrane domain. BMC Neurosci 19: 53. 30189850
Tapia, L., A. Kuryatov, and J. Lindstrom. (2007). Ca2+ permeability of the (alpha4)3(beta2)2 stoichiometry greatly exceeds that of (alpha4)2(beta2)3 human acetylcholine receptors. Mol Pharmacol 71: 769-776. 17132685
Targowska-Duda, K.M., A.A. Kaczor, K. Jozwiak, and H.R. Arias. (2019). Molecular interactions of type I and type II positive allosteric modulators with the human α7 nicotinic acetylcholine receptor: an in silico study. J Biomol Struct Dyn 37: 411-439. 29363414
Tasneem, A., L.M. Iyer, E. Jakobsson, and L. Aravind. (2005). Identification of the prokaryotic ligand-gated ion channels and their implications for the mechanisms and origins of animal Cys-loop ion channels. Genome Biol 6: R4. 15642096
Therien, J.P. and J.E. Baenziger. (2017). Pentameric ligand-gated ion channels exhibit distinct transmembrane domain archetypes for folding/expression and function. Sci Rep 7: 450. 28348412
Thompson, A.J., H.A. Lester, and S.C. Lummis. (2010). The structural basis of function in Cys-loop receptors. Q. Rev. Biophys. 43: 449-499. 20849671
Thompson, M.J., J.A. Domville, and J.E. Baenziger. (2020). The functional role of the αM4 transmembrane helix in the muscle nicotinic acetylcholine receptor probed through mutagenesis and co-evolutionary analyses. J. Biol. Chem. [Epub: Ahead of Print] 32527728
Tomita, S. (2019). Molecular constituents and localization of the ionotropic GABA receptor complex in vivo. Curr Opin Neurobiol 57: 81-86. [Epub: Ahead of Print] 30784980
Tong, A., J.T. Petroff, 2nd, F.F. Hsu, P.A. Schmidpeter, C.M. Nimigean, L. Sharp, G. Brannigan, and W.W. Cheng. (2019). Direct binding of phosphatidylglycerol at specific sites modulates desensitization of a ligand-gated ion channel. Elife 8:. 31724949
Touroutine, D., R.M. Fox, S.E. Von Stetina, A. Burdina, D.M. Miller, 3rd, and J.E. Richmond. (2005). acr-16 encodes an essential subunit of the levamisole-resistant nicotinic receptor at the Caenorhabditis elegans neuromuscular junction. J. Biol. Chem. 280: 27013-27021. 15917232
Towers, P.R., L. Pym, M. Yokota, K. Matsuda, and D.B. Sattelle. (2006). Alpha7 mutants mimicking atypical motifs (YxxCC of loop-C, and E to H at -1'' in TM2) in the C. elegans LEV-8 subunit affect nicotinic acetylcholine receptor function. Invert Neurosci 6: 69-73. 16758254
Trattnig, S.M., A. Gasiorek, T.Z. Deeb, E.J. Ortiz, S.J. Moss, A.A. Jensen, and P.A. Davies. (2016). Copper and protons directly activate the zinc-activated channel. Biochem Pharmacol 103: 109-117. 26872532
Treinin, M. (2008). RIC-3 and nicotinic acetylcholine receptors: biogenesis, properties, and diversity. Biotechnol J 3: 1539-1547. 18956371
Treinin, M., B. Gillo, L. Liebman, and M. Chalfie. (1998). Two functionally dependent acetylcholine subunits are encoded in a single Caenorhabditis elegans operon. Proc. Natl. Acad. Sci. USA 95: 15492-15495. 9860996
Tricoire-Leignel, H. and S.H. Thany. (2010). Identification of critical elements determining toxins and insecticide affinity, ligand binding domains and channel properties. Adv Exp Med Biol 683: 45-52. 20737787
Tsetlin, V., D. Kuzmin, and I. Kasheverov. (2011). Assembly of nicotinic and other Cys-loop receptors. J Neurochem 116: 734-741. 21214570
Unwin, N. (1995). Acetylcholine receptor channel imaged in the open state. Nature 373: 37-43. 7800037
Unwin, N. (2013). Nicotinic acetylcholine receptor and the structural basis of neuromuscular transmission: insights from Torpedo postsynaptic membranes. Q. Rev. Biophys. 46: 283-322. 24050525
Unwin, N. (2017). Segregation of lipids near acetylcholine-receptor channels imaged by cryo-EM. IUCrJ 4: 393-399. 28875026
Velisetty P., Chalamalasetti SV. and Chakrapani S. (2012). Conformational transitions underlying pore opening and desensitization in membrane-embedded Gloeobacter violaceus ligand-gated ion channel (GLIC). J Biol Chem. 287(44):36864-72. 22977232
Velisetty, P., S.V. Chalamalasetti, and S. Chakrapani. (2014). Structural basis for allosteric coupling at the membrane-protein interface in Gloeobacter violaceus ligand-gated ion channel (GLIC). J. Biol. Chem. 289: 3013-3025. 24338475
Wang HL., Cheng X. and Sine SM. (2012). Intramembrane proton binding site linked to activation of bacterial pentameric ion channel. J Biol Chem. 287(9):6482-9. 22084238
Wang, H.T., C.L. Tsai, and M.E. Chen. (2018). Nicotinic acetylcholine receptor subunit α6 associated with spinosad resistance in Rhyzopertha dominica (Coleoptera: Bostrichidae). Pestic Biochem Physiol 148: 68-73. 29891379
Wang, J., X. Wang, S.J. Lansdell, J. Zhang, N.S. Millar, and Y. Wu. (2016). A three amino acid deletion in the transmembrane domain of the nicotinic acetylcholine receptor α6 subunit confers high-level resistance to spinosad in Plutella xylostella. Insect Biochem Mol Biol 71: 29-36. 26855198
Wang, Q. and J.W. Lynch. (2012). A comparison of glycine- and ivermectin-mediated conformational changes in the glycine receptor ligand-binding domain. Int J Biochem. Cell Biol. 44: 335-340. 22094187
Wang, S., Q. Liu, X. Li, X. Zhao, L. Qiu, and J. Lin. (2018). Possible binding sites and interactions of propanidid and AZD3043 within the γ-aminobutyric acid type A receptor (GABAR). J Biomol Struct Dyn 36: 3926-3937. 29125020
Wang, W., E.A. Perens, G. Oikonomou, S.W. Wallace, Y. Lu, and S. Shaham. (2017). IGDB-2, an Ig/FNIII protein, binds the ion channel LGC-34 and controls sensory compartment morphogenesis in C. elegans. Dev Biol 430: 105-112. 28803967
Wang, X., A.M. Puinean, A.O. O Reilly, M.S. Williamson, C.L.C. Smelt, N.S. Millar, and Y. Wu. (2017). Mutations on M3 helix of Plutella xylostella glutamate-gated chloride channel confer unequal resistance to abamectin by two different mechanisms. Insect Biochem Mol Biol 86: 50-57. 28576654
Wang, X., R. Wang, Y. Yang, S. Wu, A.O. O''Reilly, and Y. Wu. (2015). A point mutation in the glutamate-gated chloride channel of Plutella xylostella is associated with resistance to abamectin. Insect Mol Biol. [Epub: Ahead of Print] 26592158
Webster, R., S. Maxwell, H. Spearman, K. Tai, O. Beckstein, M. Sansom, and D. Beeson. (2012). A novel congenital myasthenic syndrome due to decreased acetylcholine receptor ion-channel conductance. Brain 135: 1070-1080. 22382357
Wei, Q., S.F. Wu, and C.F. Gao. (2017). Molecular characterization and expression pattern of three GABA receptor-like subunits in the small brown planthopper Laodelphax striatellus (Hemiptera: Delphacidae). Pestic Biochem Physiol 136: 34-40. 28187828
Wells, M.M., T.S. Tillman, D.D. Mowrey, T. Sun, Y. Xu, and P. Tang. (2015). Ensemble-based virtual screening for cannabinoid-like potentiators of the human glycine receptor α1 for the treatment of pain. J Med Chem 58: 2958-2966. 25790278
Westergard, T., R. Salari, J.V. Martin, and G. Brannigan. (2015). Interactions of L-3,5,4''-Triiodothyronine, Allopregnanolone, and Ivermectin with the GABAA Receptor: Evidence for Overlapping Intersubunit Binding Modes. PLoS One 10: e0139072. 26421724
Witzemann, V., E. Stein, B. Barg, T. Konno, M. Koenen, W. Kues, M. Criado, M. Hofmann, and B. Sakmann. (1990). Primary structure and functional expression of the α-, β-, γ-, δ- and ε-subunits of the acetylcholine receptor from rat muscle. Eur J Biochem 194: 437-448. 1702709
Woll, K.A., X. Zhou, N.V. Bhanu, B.A. Garcia, M. Covarrubias, K.W. Miller, and R.G. Eckenhoff. (2018). Identification of binding sites contributing to volatile anesthetic effects on GABA type A receptors. FASEB J. 32: 4172-4189. 29505303
Wu, P., D. Ma, M. Pierzchala, J. Wu, L.C. Yang, X. Mai, X. Chang, and T. Schmidt-Glenewinkel. (2005). The Drosophila acetylcholine receptor subunit D alpha5 is part of an α-bungarotoxin binding acetylcholine receptor. J. Biol. Chem. 280: 20987-20994. 15781463
Wu, Z., R. Lape, L. Jopp-Saile, B.J. O''Callaghan, T. Greiner, and L.G. Sivilotti. (2020). The Startle disease mutation, α1S270T, predicts shortening of glycinergic synaptic currents. J. Physiol. [Epub: Ahead of Print] 32445491
Xiong, W., X. Wu, D.M. Lovinger, and L. Zhang. (2012). A common molecular basis for exogenous and endogenous cannabinoid potentiation of glycine receptors. J. Neurosci. 32: 5200-5208. 22496565
Xue, H. (1998). Identification of major phylogenetic branches of inhibitory ligand-gated channel receptors. J. Mol. Evol. 47: 323-333. 9732459
Yamaguchi, M., Y. Sawa, K. Matsuda, F. Ozoe, and Y. Ozoe. (2012). Amino acid residues of both the extracellular and transmembrane domains influence binding of the antiparasitic agent milbemycin to Haemonchus contortus AVR-14B glutamate-gated chloride channels. Biochem. Biophys. Res. Commun. 419: 562-566. 22369940
Yamato, K., Y. Nakata, M. Takashima, F. Ozoe, M. Asahi, M. Kobayashi, and Y. Ozoe. (2020). Effects of intersubunit amino acid substitutions on GABA receptor sensitivity to the ectoparasiticide fluralaner. Pestic Biochem Physiol 163: 123-129. 31973848
Yao, L., M. Wells, X. Wu, Y. Xu, L. Zhang, and W. Xiong. (2020). Membrane cholesterol dependence of cannabinoid modulation of glycine receptor. FASEB J. [Epub: Ahead of Print] 32608538
Yassin, L., B. Gillo, T. Kahan, S. Halevi, M. Eshel, and M. Treinin. (2001). Characterization of the deg-3/des-2 receptor: a nicotinic acetylcholine receptor that mutates to cause neuronal degeneration. Mol. Cell Neurosci 17: 589-599. 11273652
Yévenes, G.E. and H.U. Zeilhofer. (2011). Molecular sites for the positive allosteric modulation of glycine receptors by endocannabinoids. PLoS One 6: e23886. 21901142
Yoluk O., Lindahl E. and Andersson M. (2015). Conformational Gating Dynamics in the GluCl Anion-Selective Chloride Channel. ACS Chem Neurosci. 6(8):1459-67. 25992588
Yu, R., H.S. Tae, Q. Xu, D.J. Craik, D.J. Adams, T. Jiang, and Q. Kaas. (2019). Molecular dynamics simulations of dihydro-β-erythroidine bound to the human α4β2 nicotinic acetylcholine receptor. Br J Pharmacol. [Epub: Ahead of Print] 31062355
Yu, X., M. Wang, M. Kang, L. Liu, X. Guo, and B. Xu. (2011). Molecular cloning and characterization of two nicotinic acetylcholine receptor β subunit genes from Apis cerana cerana. Arch Insect Biochem Physiol 77: 163-178. 21618599
Yu, Z., D.C. Chiara, P.Y. Savechenkov, K.S. Bruzik, and J.B. Cohen. (2019). A photoreactive analog of allopregnanolone enables identification of steroid-binding sites in a nicotinic acetylcholine receptor. J. Biol. Chem. [Epub: Ahead of Print] 30923128
Yuan, S., S. Filipek, and H. Vogel. (2016). A Gating Mechanism of the Serotonin 5-HT3 Receptor. Structure 24: 816-825. 27112600
Zemkova, H., V. Tvrdonova, A. Bhattacharya, and M. Jindrichova. (2014). Allosteric modulation of ligand gated ion channels by ivermectin. Physiol Res 63Suppl1: S215-224. 24564661
Zhang, D., M. McGregor, T. Bordia, X.A. Perez, J.M. McIntosh, M.W. Decker, and M. Quik. (2015). α7 nicotinic receptor agonists reduce levodopa-induced dyskinesias with severe nigrostriatal damage. Mov Disord. [Epub: Ahead of Print] 26573698
Zhang, Z.Y., H.H. Bai, Z. Guo, H.L. Li, Y.T. He, X.L. Duan, Z.W. Suo, X. Yang, Y.X. He, and X.D. Hu. (2019). mGluR5/ERK signaling regulated the phosphorylation and function of glycine receptor α1ins subunit in spinal dorsal horn of mice. PLoS Biol 17: e3000371. 31433808
Zheng, F., A.P. Robertson, M. Abongwa, E.W. Yu, and R.J. Martin. (2016). The Ascaris suum nicotinic receptor, ACR-16, as a drug target: Four novel negative allosteric modulators from virtual screening. Int J Parasitol Drugs Drug Resist 6: 60-73. 27054065
Zhu, F. and G. Hummer. (2009). Gating transition of pentameric ligand-gated ion channels. Biophys. J. 97: 2456-2463. 19883588
Zhu, F. and G. Hummer. (2010). Pore opening and closing of a pentameric ligand-gated ion channel. Proc. Natl. Acad. Sci. USA 107: 19814-19819. 21041674
Zouridakis, M., P. Giastas, E. Zarkadas, D. Chroni-Tzartou, P. Bregestovski, and S.J. Tzartos. (2014). Crystal structures of free and antagonist-bound states of human α9 nicotinic receptor extracellular domain. Nat Struct Mol Biol 21: 976-980. 25282151
Zuo, H., L. Gao, Z. Hu, H. Liu, and G. Zhong. (2013). Cloning, expression analysis, and molecular modeling of the γ-aminobutyric acid receptor alpha2 subunit gene from the common cutworm, Spodoptera litura. J Insect Sci 13: 49. 23909412


Alexander, S.P.H. and J.A. Peters. (1997). Receptor and ion channel nomenclature supplement. Trends Pharmacol. Sci. 18: 36-40.
Alsaloum, M., R. Kazi, Q. Gan, J. Amin, and L.P. Wollmuth. (2016). A Molecular Determinant of Subtype-Specific Desensitization in Ionotropic Glutamate Receptors. J. Neurosci. 36: 2617-2622. 26937003
Amin, J.B., C.L. Salussolia, K. Chan, M.C. Regan, J. Dai, H.X. Zhou, H. Furukawa, M.E. Bowen, and L.P. Wollmuth. (2017). Divergent roles of a peripheral transmembrane segment in AMPA and NMDA receptors. J Gen Physiol. [Epub: Ahead of Print] 28507080
Amin, J.B., X. Leng, A. Gochman, H.X. Zhou, and L.P. Wollmuth. (2018). A conserved glycine harboring disease-associated mutations permits NMDA receptor slow deactivation and high Ca permeability. Nat Commun 9: 3748. 30217972
Armstrong, N., J. Jasti, M. Beich-Frandsen, and E. Gouaux. (2006). Measurement of conformational changes accompanying desensitization in an ionotropic glutamate receptor. Cell 127: 85-97. 17018279
Ayalon, G., E. Segev, S. Elgavish, and Y. Stern-Bach. (2005). Two regions in the N-terminal domain of ionotropic glutamate receptor 3 form the subunit oligomerization interfaces that control subtype-specific receptor assembly. J Biol Chem. 280: 15053-15060. 15703162
Bats C., Soto D., Studniarczyk D., Farrant M. and Cull-Candy SG. (2012). Channel properties reveal differential expression of TARPed and TARPless AMPARs in stargazer neurons. Nat Neurosci. 15(6):853-61. 22581185
Becchetti, A., S. Pillozzi, R. Morini, E. Nesti, and A. Arcangeli. (2010). New insights into the regulation of ion channels by integrins. Int Rev Cell Mol Biol 279: 135-190. 20797679
Bettler B., J. Boulter, I. Hermans-Borgmeyer, A. O'Shea-Greenfield, E.S. Deneris, C. Moll, U. Borgmeyer, M. Hollmann, S. Heinemann. (1990). Cloning of a novel glutamate receptor subunit, GluR5: expression in the nervous system during development. Neuron. 5: 583-595. 1977421
Bhatia, N.K., E. Carrillo, R.J. Durham, V. Berka, and V. Jayaraman. (2020). Allosteric Changes in the NMDA Receptor Associated with Calcium-Dependent Inactivation. Biophys. J. [Epub: Ahead of Print] 33098865
Birdsey-Benson, A., A. Gill, L.P. Henderson, and D.R. Madden. (2010). Enhanced efficacy without further cleft closure: reevaluating twist as a source of agonist efficacy in AMPA receptors. J. Neurosci. 30: 1463-1470. 20107073
Bouron, A. (2020). Transcriptomic Profiling of Ca2+ Transport Systems During the Formation of the Cerebral Cortex in Mice. Cells 9:. 32751129
Bowie, D. (2018). Polyamine-mediated channel block of ionotropic glutamate receptors and its regulation by auxiliary proteins. J. Biol. Chem. [Epub: Ahead of Print] 30333231
Cais, O., B. Herguedas, K. Krol, S.G. Cull-Candy, M. Farrant, and I.H. Greger. (2014). Mapping the interaction sites between AMPA receptors and TARPs reveals a role for the receptor N-terminal domain in channel gating. Cell Rep 9: 728-740. 25373908
Campbell, J.C., L.F. Polan-Couillard, I.D. Chin-Sang, and W.G. Bendena. (2016). NPR-9, a Galanin-Like G-Protein Coupled Receptor, and GLR-1 Regulate Interneuronal Circuitry Underlying Multisensory Integration of Environmental Cues in Caenorhabditis elegans. PLoS Genet 12: e1006050. 27223098
Carbone, A.L. and A.J. Plested. (2016). Superactivation of AMPA receptors by auxiliary proteins. Nat Commun 7: 10178. 26744192
Carrillo, E., S.A. Shaikh, V. Berka, R.J. Durham, D.B. Litwin, G. Lee, D.M. MacLean, L.M. Nowak, and V. Jayaraman. (2020). Mechanism of modulation of AMPA receptors by TARP-γ8. J Gen Physiol 152:. 31748249
Černý, J., P. Božíková, A. Balík, S.M. Marques, and L. Vyklický. (2019). NMDA Receptor Opening and Closing-Transitions of a Molecular Machine Revealed by Molecular Dynamics. Biomolecules 9:. 31569344
Chaudhry, C., A.J. Plested, P. Schuck, and M.L. Mayer. (2009). Energetics of glutamate receptor ligand binding domain dimer assembly are modulated by allosteric ions. Proc. Natl. Acad. Sci. USA 106: 12329-12334. 19617541
Chen, C., E. Buhl, M. Xu, V. Croset, J.S. Rees, K.S. Lilley, R. Benton, J.J. Hodge, and R. Stanewsky. (2015). Drosophila Ionotropic Receptor 25a mediates circadian clock resetting by temperature. Nature 527: 516-520. 26580016
Chen, G.-Q., C. Cui, M.L. Mayer, and E. Gouaux. (1999). Functional characterization of a potassium-selective prokaryotic glutamate receptor. Nature 402: 817-819. 10617203
Chen, Q., Y. Man, J. Li, D. Pei, and W. Wu. (2017). Olfactory Ionotropic Receptors in Mosquito Aedes albopictus (Diptera: Culicidae). J Med Entomol. [Epub: Ahead of Print] 28399284
Chen, S., Y. Zhao, Y. Wang, M. Shekhar, E. Tajkhorshid, and E. Gouaux. (2017). Activation and Desensitization Mechanism of AMPA Receptor-TARP Complex by Cryo-EM. Cell. [Epub: Ahead of Print] 28823560
Chen, W., A. Tankovic, P.B. Burger, H. Kusumoto, S.F. Traynelis, and H. Yuan. (2017). Functional Evaluation of a De Novo GRIN2A Mutation Identified in a Patient with Profound Global Developmental Delay and Refractory Epilepsy. Mol Pharmacol. [Epub: Ahead of Print] 28126851
Chen, X., Y. Ouyang, Y. Fan, B. Qiu, G. Zhang, and F. Zeng. (2018). The Pathway of Transmembrane Cadmium Influx via Calcium-Permeable Channels and Its Spatial Characteristics along Rice Root. J Exp Bot. [Epub: Ahead of Print] 30099559
Chou, T.H., N. Tajima, A. Romero-Hernandez, and H. Furukawa. (2020). Structural Basis of Functional Transitions in Mammalian NMDA Receptors. Cell. [Epub: Ahead of Print] 32610085
Cokić, B. and V. Stein. (2008). Stargazin modulates AMPA receptor antagonism. Neuropharmacology 54: 1062-1070. 18378265
Coombs, I.D., D. Soto, M. Zonouzi, M. Renzi, C. Shelley, M. Farrant, and S.G. Cull-Candy. (2012). Cornichons modify channel properties of recombinant and glial AMPA receptors. J. Neurosci. 32: 9796-9804. 22815494
Danielson, E., J. Metallo, and S.H. Lee. (2012). Role of TARP interaction in S-SCAM-mediated regulation of AMPA receptors. Channels (Austin) 6: 393-397. 22878254
Das, U., J. Kumar, M.L. Mayer, and A.J. Plested. (2010). Domain organization and function in GluK2 subtype kainate receptors. Proc. Natl. Acad. Sci. USA 107: 8463-8468. 20404149
Davies, B., L.A. Brown, O. Cais, J. Watson, A.J. Clayton, V.T. Chang, D. Biggs, C. Preece, P. Hernandez-Pliego, J. Krohn, A. Bhomra, S.R.F. Twigg, A. Rimmer, A. Kanapin, , A. Sen, Z. Zaiwalla, G. McVean, R. Foster, P. Donnelly, J.C. Taylor, E. Blair, D. Nutt, A.R. Aricescu, I.H. Greger, S.N. Peirson, J. Flint, and H.C. Martin. (2017). A point mutation in the ion conduction pore of AMPA receptor GRIA3 causes dramatically perturbed sleep patterns as well as intellectual disability. Hum Mol Genet 26: 3869-3882. 29016847
Dolino, D.M., S. Chatterjee, D.M. MacLean, C. Flatebo, L.D.C. Bishop, S.A. Shaikh, C.F. Landes, and V. Jayaraman. (2017). The structure-energy landscape of NMDA receptor gating. Nat Chem Biol. [Epub: Ahead of Print] 28991238
Dong, H. and H.X. Zhou. (2011). Atomistic mechanism for the activation and desensitization of an AMPA-subtype glutamate receptor. Nat Commun 2: 354. 21673675
Du J., Dong H. and Zhou HX. (2012). Size matters in activation/inhibition of ligand-gated ion channels. Trends Pharmacol Sci. 33(9):482-93. 22789930
Durham, R.J., N. Paudyal, E. Carrillo, N.K. Bhatia, D.M. Maclean, V. Berka, D.M. Dolino, A.A. Gorfe, and V. Jayaraman. (2020). Conformational spread and dynamics in allostery of NMDA receptors. Proc. Natl. Acad. Sci. USA 117: 3839-3847. 32015122
Dutta A., Krieger J., Lee JY., Garcia-Nafria J., Greger IH. and Bahar I. (2015). Cooperative Dynamics of Intact AMPA and NMDA Glutamate Receptors: Similarities and Subfamily-Specific Differences. Structure. 23(9):1692-704. 26256538
Elegheert, J., W. Kakegawa, J.E. Clay, N.F. Shanks, E. Behiels, K. Matsuda, K. Kohda, E. Miura, M. Rossmann, N. Mitakidis, J. Motohashi, V.T. Chang, C. Siebold, I.H. Greger, T. Nakagawa, M. Yuzaki, and A.R. Aricescu. (2016). Structural basis for integration of GluD receptors within synaptic organizer complexes. Science 353: 295-299. 27418511
Fisher, J.L. and D.D. Mott. (2012). The auxiliary subunits neto1 and neto2 reduce voltage-dependent inhibition of recombinant kainate receptors. J. Neurosci. 32: 12928-12933. 22973017
Fu, H., Z. Chen, L. Josephson, Z. Li, and S.H. Liang. (2019). Positron Emission Tomography (PET) Ligand Development for Ionotropic Glutamate Receptors: Challenges and Opportunities for Radiotracer Targeting N-Methyl-d-aspartate (NMDA), α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA), and Kainate Receptors. J Med Chem 62: 403-419. 30110164
Fukata, Y., A.V. Tzingounis, J.C. Trinidad, M. Fukata, A.L. Burlingame, R.A. Nicoll, and D.S. Bredt. (2005). Molecular constituents of neuronal AMPA receptors. J. Cell Biol. 169: 399-404. 15883194
Furukawa, H., S.K. Singh, R. Mancusso, and E. Gouaux. (2005). Subunit arrangement and function in NMDA receptors. Nature 438: 185-192. 16281028
Gan, Q., J. Dai, H.X. Zhou, and L.P. Wollmuth. (2016). The Transmembrane Domain Mediates Tetramerization of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors. J. Biol. Chem. 291: 6595-6606. 26839312
Gibb, A., K.K. Ogden, M.J. McDaniel, K.M. Vance, S.A. Kell, C. Butch, P. Burger, D.C. Liotta, and S.F. Traynelis. (2018). A structurally-derived model of subunit-dependent NMDA receptor function. J. Physiol. [Epub: Ahead of Print] 29917241
Gill, A., A. Birdsey-Benson, B.L. Jones, L.P. Henderson, and D.R. Madden. (2008). Correlating AMPA receptor activation and cleft closure across subunits: crystal structures of the GluR4 ligand-binding domain in complex with full and partial agonists. Biochemistry 47: 13831-13841. 19102704
Gouaux, E. (2004). Structure and function of AMPA receptors. J. Physiol. 554: 249-253. 14645452
Greiner, T., A. Moroni, J.L. Van Etten, and G. Thiel. (2018). Genes for Membrane Transport Proteins: Not So Rare in Viruses. Viruses 10:. 30149667
Greppi, C., W.J. Laursen, G. Budelli, E.C. Chang, A.M. Daniels, L. van Giesen, A.L. Smidler, F. Catteruccia, and P.A. Garrity. (2020). Mosquito heat seeking is driven by an ancestral cooling receptor. Science 367: 681-684. 32029627
Gudasheva, T.A., V.V. Grigoriev, K.N. Koliasnikova, V.L. Zamoyski, and S.B. Seredenin. (2016). Neuropeptide cycloprolylglycine is an endogenous positive modulator of AMPA receptors. Dokl Biochem Biophys 471: 387-389. 28058675
Ha, T.J., A.B. Kohn, Y.V. Bobkova, and L.L. Moroz. (2006). Molecular characterization of NMDA-like receptors in Aplysia and Lymnaea: relevance to memory mechanisms. Biol Bull 210: 255-270. 16801499
Hald, H., P. Naur, D.S. Pickering, D. Sprogøe, U. Madsen, D.B. Timmermann, P.K. Ahring, T. Liljefors, A. Schousboe, J. Egebjerg, M. Gajhede, and J.S. Kastrup. (2007). Partial agonism and antagonism of the ionotropic glutamate receptor iGLuR5: structures of the ligand-binding core in complex with domoic acid and 2-amino-3-[5-tert-butyl-3-(phosphonomethoxy)-4-isoxazolyl]propionic acid. J. Biol. Chem. 282: 25726-25736. 17581823
Hamada, S., I. Ogawa, M. Yamasaki, Y. Kiyama, H. Kassai, A.M. Watabe, K. Nakao, A. Aiba, M. Watanabe, and T. Manabe. (2014). The glutamate receptor GluN2 subunit regulates synaptic trafficking of AMPA receptors in the neonatal mouse brain. Eur J. Neurosci. 40: 3136-3146. 25131300
Herguedas, B., J.F. Watson, H. Ho, O. Cais, J. García-Nafría, and I.H. Greger. (2019). Architecture of the heteromeric GluA1/2 AMPA receptor in complex with the auxiliary subunit TARP γ8. Science 364:. 30872532
Hoffmann, J., C. Villmann, M. Werner, and M. Hollmann. (2006). Investigation via ion pore transplantation of the putative relationship between glutamate receptors and K+ channels. Mol. Cell Neurosci 33: 358-370. 17011207
Howe, J.R. (2014). Modulation of non-NMDA receptor gating by auxiliary subunits. J. Physiol. [Epub: Ahead of Print] 25172949
Humeau, Y., D. Reisel, A.W. Johnson, T. Borchardt, V. Jensen, C. Gebhardt, V. Bosch, P. Gass, D.M. Bannerman, M.A. Good, Ø. Hvalby, R. Sprengel, and A. Lüthi. (2007). A pathway-specific function for different AMPA receptor subunits in amygdala long-term potentiation and fear conditioning. J. Neurosci. 27: 10947-10956. 17928436
Ishii, T., J.R. Stolz, and G.T. Swanson. (2020). Auxiliary Proteins are the Predominant Determinants of Differential Efficacy of Clinical Candidates Acting as AMPA Receptor Positive Allosteric Modulators. Mol Pharmacol 97: 336-350. 32111699
Jackson, A.C. and R.A. Nicoll. (2011). The expanding social network of ionotropic glutamate receptors: TARPs and other transmembrane auxiliary subunits. Neuron. 70: 178-199. 21521608
Jiao, H.F., X.D. Sun, R. Bates, L. Xiong, L. Zhang, F. Liu, L. Li, H.S. Zhang, S.Q. Wang, M.T. Xiong, M. Patel, A.M. Stranahan, W.C. Xiong, B.M. Li, and L. Mei. (2017). Transmembrane protein 108 is required for glutamatergic transmission in dentate gyrus. Proc. Natl. Acad. Sci. USA 114: 1177-1182. 28096412
Jin, R., S. Clark, A.M. Weeks, J.T. Dudman, E. Gouaux, and K.M. Partin. (2005). Mechanism of positive allosteric modulators acting on AMPA receptors. J. Neurosci. 25: 9027-9036. 16192394
Kamboj, R.K., D.D. Schoepp, S. Nutt, L. Shekter, B. Korczak, R.A. True, V. Rampersad, D.M. Zimmerman, and M.A. Wosnick MA. (1994). Molecular cloning, expression, and pharmacological characterization of humEAA1, a human kainate receptor subunit. J. Neurochem. 62:1-9. 8263508
Kang, J., and F.J. Turano. (2003). The putative glutamate receptor 1.1 (AtGLR1.1) functions as a regulator of carbon and nitrogen metabolism in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 100: 6872-6877. 12738881
Karakas, E. and H. Furukawa. (2014). Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 344: 992-997. 24876489
Karataeva, A.R., R.V. Klaassen, J. Ströder, M. Ruiperez-Alonso, J.J. Hjorth, P. van Nierop, S. Spijker, H.D. Mansvelder, and A.B. Smit. (2014). C-terminal interactors of the AMPA receptor auxiliary subunit Shisa9. PLoS One 9: e87360. 24498314
Kato, A.S., M.B. Gill, H. Yu, E.S. Nisenbaum, and D.S. Bredt. (2010). TARPs differentially decorate AMPA receptors to specify neuropharmacology. Trends Neurosci 33: 241-248. 20219255
Kato, A.S., M.B. Gill, M.T. Ho, H. Yu, Y. Tu, E.R. Siuda, H. Wang, Y.W. Qian, E.S. Nisenbaum, S. Tomita, and D.S. Bredt. (2010). Hippocampal AMPA receptor gating controlled by both TARP and cornichon proteins. Neuron. 68: 1082-1096. 21172611
Kennard, J.T., R. Barmanray, S. Sampurno, E. Ozturk, C.A. Reid, L. Paradiso, G.M. D'Abaco, A.H. Kaye, S.J. Foote, T.J. O'Brien, and K.L. Powell. (2011). Stargazin and AMPA receptor membrane expression is increased in the somatosensory cortex of Genetic Absence Epilepsy Rats from Strasbourg. Neurobiol Dis 42: 48-54. 21220022
Kim, K.S., D. Yan, and S. Tomita. (2010). Assembly and stoichiometry of the AMPA receptor and transmembrane AMPA receptor regulatory protein complex. J. Neurosci. 30: 1064-1072. 20089915
Krieger J., Bahar I. and Greger IH. (2015). Structure, Dynamics, and Allosteric Potential of Ionotropic Glutamate Receptor N-Terminal Domains. Biophys J. 109(6):1136-48. 26255587
Krieger, J., J.Y. Lee, I.H. Greger, and I. Bahar. (2019). Activation and desensitization of ionotropic glutamate receptors by selectively triggering pre-existing motions. Neurosci Lett 700: 22-29. 29481851
Ladislav, M., J. Cerny, J. Krusek, M. Horak, A. Balik, and L. Vyklicky. (2018). The LILI Motif of M3-S2 Linkers Is a Component of the NMDA Receptor Channel Gate. Front Mol Neurosci 11: 113. 29681798
Lee, C.H., W. Lü, J.C. Michel, A. Goehring, J. Du, X. Song, and E. Gouaux. (2014). NMDA receptor structures reveal subunit arrangement and pore architecture. Nature 511: 191-197. 25008524
Lee, J.H., G.B. Kang, H.H. Lim, K.S. Jin, S.H. Kim, M. Ree, C.S. Park, S.J. Kim, and S.H. Eom. (2008). Crystal structure of the GluR0 ligand-binding core from Nostoc punctiforme in complex with L-glutamate: structural dissection of the ligand interaction and subunit interface. J. Mol. Biol. 376: 308-316. 18164033
Lee, J.H., S.J. Park, S.H. Rho, Y.J. Im, M.K. Kim, G.B. Kang, and S.H. Eom. (2005). Crystallization and preliminary X-ray crystallographic analysis of the GluR0 ligand-binding core from Nostoc punctiforme. Acta Crystallogr Sect F Struct Biol Cryst Commun 61: 1020-1022. 16511224
Lemke, J.R., K. Geider, K.L. Helbig, H.O. Heyne, H. Schütz, J. Hentschel, C. Courage, C. Depienne, C. Nava, D. Heron, R.S. Møller, H. Hjalgrim, D. Lal, B.A. Neubauer, P. Nürnberg, H. Thiele, G. Kurlemann, G.L. Arnold, V. Bhambhani, D. Bartholdi, C.R. Pedurupillay, D. Misceo, E. Frengen, P. Strømme, D.J. Dlugos, E.S. Doherty, E.K. Bijlsma, C.A. Ruivenkamp, M.J. Hoffer, A. Goldstein, D.S. Rajan, V. Narayanan, K. Ramsey, N. Belnap, I. Schrauwen, R. Richholt, B.P. Koeleman, J. Sá, C. Mendonça, C.G. de Kovel, S. Weckhuysen, K. Hardies, P. De Jonghe, L. De Meirleir, M. Milh, C. Badens, M. Lebrun, T. Busa, C. Francannet, A. Piton, E. Riesch, S. Biskup, H. Vogt, T. Dorn, I. Helbig, J.L. Michaud, B. Laube, and S. Syrbe. (2016). Delineating the GRIN1 phenotypic spectrum: A distinct genetic NMDA receptor encephalopathy. Neurology 86: 2171-2178. 27164704
Li KW., Chen N. and Smit AB. (2013). Interaction proteomics of the AMPA receptor: towards identification of receptor sub-complexes. Amino Acids. 44(5):1247-51. 23344883
Li, D., H. Yuan, X.R. Ortiz-Gonzalez, E.D. Marsh, L. Tian, E.M. McCormick, G.J. Kosobucki, W. Chen, A.J. Schulien, R. Chiavacci, A. Tankovic, C. Naase, F. Brueckner, C. von Stülpnagel-Steinbeis, C. Hu, H. Kusumoto, U.B. Hedrich, G. Elsen, K. Hörtnagel, E. Aizenman, J.R. Lemke, H. Hakonarson, S.F. Traynelis, and M.J. Falk. (2016). GRIN2D Recurrent De Novo Dominant Mutation Causes a Severe Epileptic Encephalopathy Treatable with NMDA Receptor Channel Blockers. Am J Hum Genet. [Epub: Ahead of Print] 27616483
Li, J., J. Zhang, W. Tang, R.K. Mizu, H. Kusumoto, W. XiangWei, Y. Xu, W. Chen, J.B. Amin, C. Hu, V. Kannan, S.R. Keller, W.R. Wilcox, J.R. Lemke, S.J. Myers, S.A. Swanger, L.P. Wollmuth, S. Petrovski, S.F. Traynelis, and H. Yuan. (2019). De novo GRIN variants in NMDA receptor M2 channel pore-forming loop are associated with neurological diseases. Hum Mutat. [Epub: Ahead of Print] 31429998
Limapichat, W., W.Y. Yu, E. Branigan, H.A. Lester, and D.A. Dougherty. (2013). Key Binding Interactions for Memantine in the NMDA Receptor. ACS Chem Neurosci 4: 255-260. 23421676
Lopez MN., Wilding TJ. and Huettner JE. (2013). Q/R site interactions with the M3 helix in GluK2 kainate receptor channels revealed by thermodynamic mutant cycles. J Gen Physiol. 142(3):225-39. 23940260
Lü, W., J. Du, A. Goehring, and E. Gouaux. (2017). Cryo-EM structures of the triheteromeric NMDA receptor and its allosteric modulation. Science 355:. 28232581
Martin, S., A. Chamberlin, D.N. Shinde, M. Hempel, T.M. Strom, A. Schreiber, J. Johannsen, L.B. Ousager, M.J. Larsen, L.K. Hansen, A. Fatemi, J.S. Cohen, J. Lemke, K.P. Sørensen, K.L. Helbig, D. Lessel, and R. Abou Jamra. (2017). De Novo Variants in GRIA4 Lead to Intellectual Disability with or without Seizures and Gait Abnormalities. Am J Hum Genet 101: 1013-1020. 29220673
Mayer, M.L. (2006). Glutamate receptors at atomic resolution. Nature 440: 456-462. 16554805
Mayer, M.L. (2011). Emerging models of glutamate receptor ion channel structure and function. Structure 19: 1370-1380. 22000510
Mayer, M.L., R. Olson, and E. Gouaux. (2001). Mechanisms for ligand binding to GluR0 ion channels: crystal structures of the glutamate and serine complexes and a closed apo state. J. Mol. Biol. 311: 815-836. 11518533
McDaniel, M.J., K.K. Ogden, S.A. Kell, P.B. Burger, D.C. Liotta, and S.F. Traynelis. (2020). NMDA receptor channel gating control by the pre-M1 helix. J Gen Physiol 152:. 32221541
Midgett, C.R., A. Gill, and D.R. Madden. (2012). Domain architecture of a calcium-permeable AMPA receptor in a ligand-free conformation. Front Mol Neurosci 4: 56. 22232575
Monyer H., R. Sprengel, R. Schoepfer, A. Herb, M. Higuchi, H. Lomeli, N. Burnashev, B. Sakmann, P.H. Seeburg. (1992). Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science. 256: 1217-1221. 1350383
Moreau, A., P. Gosselin-Badaroudine, and M. Chahine. (2015). Gating pore currents, a new pathological mechanism underlying cardiac arrhythmias associated with dilated cardiomyopathy. Channels (Austin) 9: 139-144. 26046592
Motazacker, M.M., B.R. Rost, T. Hucho, M. Garshasbi, K. Kahrizi, R. Ullmann, S.S. Abedini, S.E. Nieh, S.H. Amini, C. Goswami, A. Tzschach, L.R. Jensen, D. Schmitz, H.H. Ropers, H. Najmabadi, and A.W. Kuss. (2007). A defect in the ionotropic glutamate receptor 6 gene (GRIK2) is associated with autosomal recessive mental retardation. Am J Hum Genet 81: 792-798. 17847003
Mousavi, S.A., A. Chauvin, F. Pascaud, S. Kellenberger, and E.E. Farmer. (2013). GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling. Nature 500: 422-426. 23969459
Nakagawa, T., Y. Cheng, E. Ramm, M. Sheng, and T. Walz. (2005). Structure and different conformational states of native AMPA receptor complexes. Nature 433: 545-549. 15690046
Nakagawa, T., Y. Cheng, M. Sheng, and T. Walz. (2006). Three-dimensional structure of an AMPA receptor without associated stargazin/TARP proteins. Biol Chem 387: 179-187. 16497150
Nakanishi, N., N.A. Shneider, and R. Axel. (1990). A family of glutamate receptor genes: Evidence for the formation of heteromultimeric receptors with distinct channel properties. Neuron 5: 569-581. 1699567
Narangoda, C., S.N. Sakipov, and M.G. Kurnikova. (2019). AMPA Receptor Noncompetitive Inhibitors Occupy a Promiscuous Binding Site. ACS Chem Neurosci 10: 4511-4521. 31596070
Ogden, K.K., W. Chen, S.A. Swanger, M.J. McDaniel, L.Z. Fan, C. Hu, A. Tankovic, H. Kusumoto, G.J. Kosobucki, A.J. Schulien, Z. Su, J. Pecha, S. Bhattacharya, S. Petrovski, A.E. Cohen, E. Aizenman, S.F. Traynelis, and H. Yuan. (2017). Molecular Mechanism of Disease-Associated Mutations in the Pre-M1 Helix of NMDA Receptors and Potential Rescue Pharmacology. PLoS Genet 13: e1006536. 28095420
Ohba, C., M. Shiina, J. Tohyama, K. Haginoya, T. Lerman-Sagie, N. Okamoto, L. Blumkin, D. Lev, S. Mukaida, F. Nozaki, M. Uematsu, A. Onuma, H. Kodera, M. Nakashima, Y. Tsurusaki, N. Miyake, F. Tanaka, M. Kato, K. Ogata, H. Saitsu, and N. Matsumoto. (2015). GRIN1 mutations cause encephalopathy with infantile-onset epilepsy, and hyperkinetic and stereotyped movement disorders. Epilepsia 56: 841-848. 25864721
Olson, R. and E. Gouaux. (2005). Crystal structure of the Vibrio cholerae cytolysin (VCC) pro-toxin and its assembly into a heptameric transmembrane pore. J. Mol. Biol. 350: 997-1016. 15978620
Pang, X. and H.X. Zhou. (2017). Structural modeling for the open state of an NMDA receptor. J Struct Biol. [Epub: Ahead of Print] 28739483
Pozo, K., L.A. Cingolani, S. Bassani, F. Laurent, M. Passafaro, and Y. Goda. (2012). β3 integrin interacts directly with GluA2 AMPA receptor subunit and regulates AMPA receptor expression in hippocampal neurons. Proc. Natl. Acad. Sci. USA 109: 1323-1328. 22232691
Pressey, J.C., V. Mahadevan, C.S. Khademullah, Z. Dargaei, J. Chevrier, W. Ye, M. Huang, A.K. Chauhan, S.J. Meas, P. Uvarov, M.S. Airaksinen, and M.A. Woodin. (2017). A kainate receptor subunit promotes the recycling of the neuron-specific K+-Cl- co-transporter KCC2 in hippocampal neurons. J. Biol. Chem. 292: 6190-6201. 28235805
Rajani, V., A.S. Sengar, and M.W. Salter. (2020). Tripartite signalling by NMDA receptors. Mol Brain 13: 23. 32070387
Regan MC., Romero-Hernandez A. and Furukawa H. (2015). A structural biology perspective on NMDA receptor pharmacology and function. Curr Opin Struct Biol. 33:68-75. 26282925
Rigby, M., S.G. Cull-Candy, and M. Farrant. (2015). Transmembrane AMPAR Regulatory Protein γ-2 Is Required for the Modulation of GABA Release by Presynaptic AMPARs. J. Neurosci. 35: 4203-4214. 25762667
Safferling, M., W. Tichelaar, G. Kümmerle, A. Jouppila, A. Kuusinen, K. Keinänen, and D.R. Madden. (2001). First images of a glutamate receptor ion channel: oligomeric state and molecular dimensions of GluRB homomers. Biochemistry 40: 13948-13953. 11705385
Sager, C., D. Tapken, and M. Hollmann. (2011). The C-terminal domains of TARPs: unexpectedly versatile domains. Channels (Austin) 4: 155-158. 20224299
Sakakura, M., Y. Ohkubo, H. Oshima, S. Re, M. Ito, Y. Sugita, and H. Takahashi. (2019). Structural Mechanisms Underlying Activity Changes in an AMPA-type Glutamate Receptor Induced by Substitutions in Its Ligand-Binding Domain. Structure. [Epub: Ahead of Print] 31585769
Salussolia, C.L., A. Corrales, I. Talukder, R. Kazi, G. Akgul, M. Bowen, and L.P. Wollmuth. (2011). Interaction of the M4 Segment with Other Transmembrane Segments Is Required for Surface Expression of Mammalian α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors. J. Biol. Chem. 286: 40205-40218. 21930708
Scanlon, D.P., A. Bah, M. Krzeminski, W. Zhang, H.L. Leduc-Pessah, Y.N. Dong, J.D. Forman-Kay, and M.W. Salter. (2017). An evolutionary switch in ND2 enables Src kinase regulation of NMDA receptors. Nat Commun 8: 15220. 28508887
Sceniak, M.P., K.N. Fedder, Q. Wang, S. Droubi, K. Babcock, S. Patwardhan, J. Wright-Zornes, L. Pham, and S.L. Sabo. (2019). An autism-associated mutation in GluN2B prevents NMDA receptor trafficking and interferes with dendrite growth. J Cell Sci 132:. 31548203
Schober, D.A., M.B. Gill, H. Yu, D.L. Gernert, M.W. Jeffries, P.L. Ornstein, A.S. Kato, C.C. Felder, and D.S. Bredt. (2011). Transmembrane AMPA receptor regulatory proteins and cornichon-2 allosterically regulate AMPA receptor antagonists and potentiators. J. Biol. Chem. 286: 13134-13142. 21343286
Schüler, T., I. Mesic, C. Madry, I. Bartholomäus, and B. Laube. (2008). Formation of NR1/NR2 and NR1/NR3 heterodimers constitutes the initial step in N-methyl-D-aspartate receptor assembly. J. Biol. Chem. 283(1): 37-46. 17959602
Shaikh, S.A., D.M. Dolino, G. Lee, S. Chatterjee, D.M. MacLean, C. Flatebo, C.F. Landes, and V. Jayaraman. (2016). Stargazin Modulation of AMPA Receptors. Cell Rep 17: 328-335. 27705782
Shi, E.Y., C.L. Yuan, M.T. Sipple, J. Srinivasan, C.P. Ptak, R.E. Oswald, and L.M. Nowak. (2019). Noncompetitive antagonists induce cooperative AMPA receptor channel gating. J Gen Physiol 151: 156-173. 30622133
Siegler Retchless B., Gao W. and Johnson JW. (2012). A single GluN2 subunit residue controls NMDA receptor channel properties via intersubunit interaction. Nat Neurosci. 15(3):406-13. 22246434
Simeone, T.A., R.M. Sanchez, and J.M. Rho. (2004). Molecular biology and ontogeny of glutamate receptors in the mammalian central nervous system. J Child Neurol 19: 343-60; discussion 361. 15224708
Slotboom, D.J., I. Sobczak, W.N. Konings, and J.S. Lolkema. (1999). A conserved serine-rich stretch in the glutamate transporter family forms a substrate-sensitive reentrant loop. Proc. Natl. Acad. Sci. USA 96: 14282-14287. 10588697
Sobolevsky, A.I., M.P. Rosconi, and E. Gouaux. (2009). X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462: 745-756. 19946266
Soto, D., I.D. Coombs, E. Gratacòs-Batlle, M. Farrant, and S.G. Cull-Candy. (2014). Molecular mechanisms contributing to TARP regulation of channel conductance and polyamine block of calcium-permeable AMPA receptors. J. Neurosci. 34: 11673-11683. 25164663
Stenum-Berg, C., M. Musgaard, S. Chavez-Abiega, C.L. Thisted, L. Barrella, P.C. Biggin, and A.S. Kristensen. (2019). Mutational analysis and modeling of negative allosteric modulator binding sites in AMPA receptors. Mol Pharmacol. [Epub: Ahead of Print] 31582576
Stephens, N.R., Z. Qi, and E.P. Spalding. (2008). Glutamate receptor subtypes evidenced by differences in desensitization and dependence on the GLR3.3 and GLR3.4 genes. Plant Physiol. 146: 529-538. 18162597
Straub, C. and S. Tomita. (2012). The regulation of glutamate receptor trafficking and function by TARPs and other transmembrane auxiliary subunits. Curr Opin Neurobiol 22: 488-495. 21993243
Strehlow, V., H.O. Heyne, D.R.M. Vlaskamp, K.F.M. Marwick, G. Rudolf, J. de Bellescize, S. Biskup, E.H. Brilstra, O.F. Brouwer, P.M.C. Callenbach, J. Hentschel, E. Hirsch, P.C. Kind, C. Mignot, K. Platzer, P. Rump, P.A. Skehel, D.J.A. Wyllie, G.E. Hardingham, C.M.A. van Ravenswaaij-Arts, G. Lesca, J.R. Lemke, and. (2019). GRIN2A-related disorders: genotype and functional consequence predict phenotype. Brain 142: 80-92. 30544257
Studniarczyk, D., I. Coombs, S.G. Cull-Candy, and M. Farrant. (2013). TARP γ-7 selectively enhances synaptic expression of calcium-permeable AMPARs. Nat Neurosci 16: 1266-1274. 23872597
Sumioka, A. (2013). Auxiliary subunits provide new insights into regulation of AMPA receptor trafficking. J Biochem 153: 331-337. 23426437
Sun, Y., R. Olson, M. Horning, N. Armstrong, M. Mayer, and E. Gouaux. (2002). Mechanism of glutamate receptor desensitization. Nature 417: 245-253. 12015593
Talukder, I. and L.P. Wollmuth. (2011). Local constraints in either the GluN1 or GluN2 subunit equally impair NMDA receptor pore opening. J Gen Physiol 138: 179-194. 21746848
Tichelaar, W., M. Safferling, K. Keinänen, H. Stark, and D.R. Madden. (2004). The Three-dimensional Structure of an Ionotropic Glutamate Receptor Reveals a Dimer-of-dimers Assembly. J. Mol. Biol. 344: 435-442. 15522296
Tikhonov, D.B. and B.S. Zhorov. (2020). The pore domain in glutamate-gated ion channels: Structure, drug binding and similarity with potassium channels. Biochim. Biophys. Acta. Biomembr 183401. [Epub: Ahead of Print] 32562696
Toyota, M., D. Spencer, S. Sawai-Toyota, W. Jiaqi, T. Zhang, A.J. Koo, G.A. Howe, and S. Gilroy. (2018). Glutamate triggers long-distance, calcium-based plant defense signaling. Science 361: 1112-1115. 30213912
Traynelis, S.F., L.P. Wollmuth, C.J. McBain, F.S. Menniti, K.M. Vance, K.K. Ogden, K.B. Hansen, H. Yuan, S.J. Myers, and R. Dingledine. (2010). Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62: 405-496. 20716669
Troutwine, B., A. Park, M.E. Velez-Hernandez, L. Lew, S.J. Mihic, and N.S. Atkinson. (2019). F654A and K558Q Mutations in NMDA Receptor 1 affect ethanol-induced behaviors in Drosophila. Alcohol Clin Exp Res. [Epub: Ahead of Print] 31593608
Twomey, E.C., M.V. Yelshanskaya, R.A. Grassucci, J. Frank, and A.I. Sobolevsky. (2016). Elucidation of AMPA receptor-stargazin complexes by cryo-electron microscopy. Science 353: 83-86. 27365450
Uemura, T., H. Mori, and M. Mishina. (2004). Direct interaction of GluRδ2 with Shank scaffold proteins in cerebellar Purkinje cells. Mol. Cell Neurosci. 26: 330-241. 15207857
Unwin, N. (1993). Neurotransmitter action: Opening of ligand-gated ion channels. Cell 72: 31-41. 7679054
Vance, K.M., N. Simorowski, S.F. Traynelis, and H. Furukawa. (2011). Ligand-specific deactivation time course of GluN1/GluN2D NMDA receptors. Nat Commun 2: 294. 21522138
Walker, C.S., M.M. Francis, P.J. Brockie, D.M. Madsen, Y. Zheng, and A.V. Maricq. (2006). Conserved SOL-1 proteins regulate ionotropic glutamate receptor desensitization. Proc. Natl. Acad. Sci. USA 103: 10787-10792. 16818875
Wheeler, G.L. and C. Brownlee. (2008). Ca2+ signalling in plants and green algae--changing channels. Trends Plant Sci. 13: 506-514. 18703378
Wilding, T.J. and J.E. Huettner. (2020). Cadmium activates AMPA and NMDA receptors with M3 helix cysteine substitutions. J Gen Physiol 152:. 32342094
Wilding, T.J., M.N. Lopez, and J.E. Huettner. (2014). Radial symmetry in a chimeric glutamate receptor pore. Nat Commun 5: 3349. 24561802
Witkin, J.M., J. Li, G. Gilmour, S.N. Mitchell, G. Carter, S.D. Gleason, W.F. Seidel, B.J. Eastwood, A. McCarthy, W.J. Porter, J. Reel, K.M. Gardinier, A.S. Kato, and K.A. Wafford. (2017). Electroencephalographic, cognitive, and neurochemical effects of LY3130481 (CERC-611), a selective antagonist of TARP-γ8-associated AMPA receptors. Neuropharmacology 126: 257-270. 28757050
Wudick, M.M., M.T. Portes, E. Michard, P. Rosas-Santiago, M.A. Lizzio, C.O. Nunes, C. Campos, D. Santa Cruz Damineli, J.C. Carvalho, P.T. Lima, O. Pantoja, and J.A. Feijó. (2018). CORNICHON sorting and regulation of GLR channels underlie pollen tube Ca homeostasis. Science 360: 533-536. 29724955
Xia, S., T. Miyashita, T.F. Fu, W.Y. Lin, C.L. Wu, L. Pyzocha, I.R. Lin, M. Saitoe, T. Tully, and A.S. Chiang. (2005). NMDA receptors mediate olfactory learning and memory in Drosophila. Curr. Biol. 15: 603-615. 15823532
XiangWei, W., V. Kannan, Y. Xu, G.J. Kosobucki, A.J. Schulien, H. Kusumoto, C. Moufawad El Achkar, S. Bhattacharya, G. Lesca, S. Nguyen, K.L. Helbig, J.M. Cuisset, C.D. Fenger, D. Marjanovic, E. Schuler, Y. Wu, X. Bao, Y. Zhang, N. Dirkx, A.S. Schoonjans, S. Syrbe, S.J. Myers, A. Poduri, E. Aizenman, S.F. Traynelis, J.R. Lemke, H. Yuan, and Y. Jiang. (2019). Heterogeneous clinical and functional features of GRIN2D-related developmental and epileptic encephalopathy. Brain 142: 3009-3027. 31504254
Yan, D. and S. Tomita. (2012). Defined criteria for auxiliary subunits of glutamate receptors. J. Physiol. 590: 21-31. 21946847
Yang, Y.C., C.H. Lee, and C.C. Kuo. (2010). Ionic flow enhances low-affinity binding: a revised mechanistic view into Mg2+ block of NMDA receptors. J. Physiol. 588: 633-650. 20026615
Yelshanskaya, M.V., A.K. Singh, C. Narangoda, R.S.B. Williams, M.G. Kurnikova, and A.I. Sobolevsky. (2020). Structural basis of AMPA receptor inhibition by 4-BCCA. Br J Pharmacol. [Epub: Ahead of Print] 32959886
Yelshanskaya, M.V., A.K. Singh, J.M. Sampson, C. Narangoda, M. Kurnikova, and A.I. Sobolevsky. (2016). Structural Bases of Noncompetitive Inhibition of AMPA-Subtype Ionotropic Glutamate Receptors by Antiepileptic Drugs. Neuron. 91: 1305-1315. 27618672
Yelshanskaya, M.V., M. Li, and A.I. Sobolevsky. (2014). Structure of an agonist-bound ionotropic glutamate receptor. Science 345: 1070-1074. 25103407
Yelshanskaya, M.V., S. Mesbahi-Vasey, M.G. Kurnikova, and A.I. Sobolevsky. (2017). Role of the Ion Channel Extracellular Collar in AMPA Receptor Gating. Sci Rep 7: 1050. 28432359
Yu, A. and A.Y. Lau. (2017). Energetics of Glutamate Binding to an Ionotropic Glutamate Receptor. J Phys Chem B. [Epub: Ahead of Print] 29065265
Yuan, C.L., E.Y. Shi, J. Srinivasan, C.P. Ptak, R.E. Oswald, and L.M. Nowak. (2019). Modulation of AMPA Receptor Gating by the Anticonvulsant Drug, Perampanel. ACS Med Chem Lett 10: 237-242. 30891119
Yuan, H., K.B. Hansen, J. Zhang, T.M. Pierson, T.C. Markello, K.V. Fajardo, C.M. Holloman, G. Golas, D.R. Adams, C.F. Boerkoel, W.A. Gahl, and S.F. Traynelis. (2014). Functional analysis of a de novo GRIN2A missense mutation associated with early-onset epileptic encephalopathy. Nat Commun 5: 3251. 24504326
Zamudio, P.A., C.T. Smothers, G.E. Homanics, and J.J. Woodward. (2019). Knock-in mice expressing an ethanol-resistant GluN2A NMDA receptor subunit show altered responses to ethanol. Alcohol Clin Exp Res. [Epub: Ahead of Print] 31872888
Zhang, H., C. Zhang, J. Vincent, D. Zala, C. Benstaali, M. Sainlos, D. Grillo-Bosch, S. Daburon, F. Coussen, Y. Cho, D.J. David, F. Saudou, Y. Humeau, and D. Choquet. (2018). Modulation of AMPA receptor surface diffusion restores hippocampal plasticity and memory in Huntington''s disease models. Nat Commun 9: 4272. 30323233
Zhang, Y.V., J. Ni, and C. Montell. (2013). The molecular basis for attractive salt-taste coding in Drosophila. Science 340: 1334-1338. 23766326
Zhang, Z.Y., H.H. Bai, Z. Guo, H.L. Li, Y.T. He, X.L. Duan, Z.W. Suo, X. Yang, Y.X. He, and X.D. Hu. (2019). mGluR5/ERK signaling regulated the phosphorylation and function of glycine receptor α1ins subunit in spinal dorsal horn of mice. PLoS Biol 17: e3000371. 31433808
Zhao, Y., S. Chen, A.C. Swensen, W.J. Qian, and E. Gouaux. (2019). Architecture and subunit arrangement of native AMPA receptors elucidated by cryo-EM. Science 364: 355-362. 30975770
Zhao, Y., S. Chen, C. Yoshioka, I. Baconguis, and E. Gouaux. (2016). Architecture of fully occupied GluA2 AMPA receptor-TARP complex elucidated by cryo-EM. Nature 536: 108-111. 27368053


Andrade, S.L. and O. Einsle. The Amt/Mep/Rh family of ammonium transport proteins. Mol. Membr. Biol. 24: 357-365. 17710640
Andrade, S.L., A. Dickmanns, R. Ficner, and O. Einsle. (2005). Crystal structure of the archaeal ammonium transporter Amt-1 from Archaeoglobus fulgidus. Proc. Natl. Acad. Sci. USA 102: 14994-14999. 16214888
Ardin, A.C., K. Fujita, K. Nagayama, Y. Takashima, R. Nomura, K. Nakano, T. Ooshima, and M. Matsumoto-Nakano. (2014). Identification and functional analysis of an ammonium transporter in Streptococcus mutans. PLoS One 9: e107569. 25229891
Bakouh, N., F. Benjelloun, P. Hulin, F. Brouillard, A. Edelman, B. Chérif-Zahar, and G. Planelles. (2004). NH3 is involved in the NH4+ transport induced by the functional expression of the human RhC glycoprotein. J. Biol. Chem. 279: 15975-15983. 14761968
Barnes, E.M., Jr. and A. Jayakumar. (1993). NH4+ transport systems in Escherichia coli. In: E.P. Bakker (Ed.), Alkali Cation Transport Systems in Prokaryotes, Boca Raton, FL: CRC Press, pp. 397-409.
Blakey, D., A. Leech, G.H. Thomas, G. Coutts, K. Findlay, and M. Merrick. (2002). Purification of the Escherichia coli ammonium transporter AmtB reveals a trimeric stoichiometry. Biochem. J. 364: 527-535. 12023896
Blauwkamp, T.A. and A.J. Ninfa. (2003). Antagonism of PII signalling by the AmtB protein of Escherichia coli. Mol. Microbiol. 48: 1017-1028. 12753193
Boeckstaens, M., B. André, and A.M. Marini. (2008). Distinct transport mechanisms in yeast ammonium transport/sensor proteins of the mep/amt/rh family and impact on filamentation. J. Biol. Chem. 283: 21362-21370. 18508774
Chen, X.L., B. Zhang, Y.R. Chng, J.L.Y. Ong, S.F. Chew, W.P. Wong, S.H. Lam, T. Nakada, and Y.K. Ip. (2017). Ammonia exposure affects the mRNA and protein expression levels of certain Rhesus glycoproteins in the gills of climbing perch. J Exp Biol. [Epub: Ahead of Print] 28576822
Cherif-Zahar, B., A. Durand, I. Schmidt, N. Hamdaoui, I. Matic, M. Merrick, and G. Matassi. (2007). Evolution and functional characterization of the RH50 gene from the ammonia-oxidizing bacterium Nitrosomonas europaea. J. Bacteriol. 189: 9090-9100. 17921289
Conroy, M.J., P.A. Bullough, M. Merrick, and N.D. Avent. (2005). Modelling the human rhesus proteins: implications for structure and function. Br J Haematol 131: 543-551. 16281947
Cruz-Bustos, T., E. Potapenko, M. Storey, and R. Docampo. (2018). An Intracellular Ammonium Transporter Is Necessary for Replication, Differentiation, and Resistance to Starvation and Osmotic Stress in. mSphere 3:. 29359189
Dabas, N., S. Schneider, and J. Morschhäuser. (2009). Mutational analysis of the Candida albicans ammonium permease Mep2p reveals residues required for ammonium transport and signaling. Eukaryot. Cell. 8: 147-160. 19060183
Deschuyteneer, A., M. Boeckstaens, C. De Mees, P. Van Vooren, R. Wintjens, and A.M. Marini. (2013). SNPs altering ammonium transport activity of human Rhesus factors characterized by a yeast-based functional assay. PLoS One 8: e71092. 23967154
Durand A. and M. Merrick. (2006). In Vitro Analysis of the Escherichia coli AmtB-GlnK Complex Reveals a Stoichiometric Interaction and Sensitivity to ATP and 2-Oxoglutarate. J. Biol. Chem. 281: 29558-29567. 16864585
Fan, T.F., X.Y. Cheng, D.X. Shi, M.J. He, C. Yang, L. Liu, C.J. Li, Y.C. Sun, Y.Y. Chen, C. Xu, L. Zhang, and L.H. Liu. (2017). Molecular identification of tobacco NtAMT1.3 that mediated ammonium root-influx with high affinity and improved plant growth on ammonium when overexpressed in Arabidopsis and tobacco. Plant Sci 264: 102-111. 28969790
Filiz, E. and M.A. Akbudak. (2020). Ammonium transporter 1 (AMT1) gene family in tomato (Solanum lycopersicum L.): Bioinformatics, physiological and expression analyses under drought and salt stresses. Genomics. [Epub: Ahead of Print] 32320821
Fong, R.N., K.S. Kim, C. Yoshihara, W.B. Inwood, and S. Kustu. (2007). The W148L substitution in the Escherichia coli ammonium channel AmtB increases flux and indicates that the substrate is an ion. Proc. Natl. Acad. Sci. USA 104: 18706-18711. 17998534
Gruswitz, F., J. O'Connell 3rd, and R.M. Stroud. (2007). Inhibitory complex of the transmembrane ammonia channel, AmtB, and the cytosolic regulatory protein, GlnK, at 1.96 A. Proc. Natl. Acad. Sci. U.S.A. 104: 42-47. 17190799
Gruswitz, F., S. Chaudhary, J.D. Ho, A. Schlessinger, B. Pezeshki, C.M. Ho, A. Sali, C.M. Westhoff, and R.M. Stroud. (2010). Function of human Rh based on structure of RhCG at 2.1 Å. Proc. Natl. Acad. Sci. USA 107: 9638-9643. 20457942
Hall, J.A. and S. Kustu. (2011). The pivotal twin histidines and aromatic triad of the Escherichia coli ammonium channel AmtB can be replaced. Proc. Natl. Acad. Sci. USA 108: 13270-13274. 21775672
Huergo, L.F., M. Merrick, F.O. Pedrosa, L.S. Chubatsu, L.M. Araujo, and E.M. Souza. (2007). Ternary complex formation between AmtB, GlnZ and the nitrogenase regulatory enzyme DraG reveals a novel facet of nitrogen regulation in bacteria. Mol. Microbiol. 66: 1523-1535. 18028310
Inwood, W.B., J.A. Hall, K.S. Kim, R. Fong, and S. Kustu. (2009). Genetic evidence for an essential oscillation of transmembrane-spanning segment 5 in the Escherichia coli ammonium channel AmtB. Genetics 183: 1341-1355. 19884311
Ishikita, H. and E.W. Knapp. (2007). Protonation states of ammonia/ammonium in the hydrophobic pore of ammonia transporter protein AmtB. J. Am. Chem. Soc. 129(5):1210-1215. 17263403
Javelle, A., B. André, A.-M. Marini, and M. Chalot. (2003a). High-affinity ammonium transporters and nitrogen sensing in mycorrhizas. Trends Microbiol. 11: 53-55. 12598122
Javelle, A., B.-R. Rodríguez-Pastrana, C. Jacob, B. Botton, A. Brun, B. André, A.-M. Marini, and M. Chalot. (2001). Molecular characterization of two ammonium transporters from the ectomycorrhizal fungus Hebeloma cylindrosporum. FEBS Lett. 505: 393-398. 11576535
Javelle, A., D. Lupo, L. Zheng, X.D. Li, F.K. Winkler, and M. Merrick. (2006). An unusual twin-his arrangement in the pore of ammonia channels is essential for substrate conductance. J. Biol. Chem. 281: 39492-39498. 17040913
Javelle, A., M. Morel, B.-R. Rodríguez-Pastrana, B. Botton, B. André, A.-M. Marini, A. Brun, and M. Chalot. (2003b). Molecular characterization, function and regulation of ammonium transporters (Amt) and ammonium-metabolizing enzymes (GS, NADP-GDH) in the ectomycorrhizal fungus Hebeloma cylindrosporum. Mol. Microbiol. 47: 411-430. 12519192
Ji, Q., S. Hashmi, Z. Liu, J. Zhang, Y. Chen, and C.H. Huang. (2006). CeRh1 (rhr-1) is a dominant Rhesus gene essential for embryonic development and hypodermal function in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 103: 5881-5886. 16595629
Kakinuma, M., C. Nakamoto, K. Kishi, D.A. Coury, and H. Amano. (2016). Isolation and functional characterization of an ammonium transporter gene, PyAMT1, related to nitrogen assimilation in the marine macroalga Pyropia yezoensis (Rhodophyta). Mar Environ Res. [Epub: Ahead of Print] 27581686
Khademi, S., J. O'Connell, III, J. Remis, Y. Robles-Colmenares, L.J.W. Miercke, and R.M. Stroud. (2004). Mechanism of ammonia transport by Amt/MEP/Rh: Structure of AmtB at 1.35 Å. Science 305: 1587-1594. 15361618
Kleiner, D. (1993). NH4+ transport systems. In: E.P. Bakker (Ed.), Alkali Cation Transport Systems in Prokaryotes. Boca Raton, FL: CRC Press, pp. 378-396.
Knepper, M.A. and P. Agre. (2004). Structural biology. The atomic architecture of a gas channel. Science 305: 1573-1574. 15361612
Lalonde, S., D.W. Ehrhardt, D. Loqué, J. Chen, S.Y. Rhee, and W.B. Frommer. (2008). Molecular and cellular approaches for the detection of protein-protein interactions: latest techniques and current limitations. Plant J. 53: 610-635. 18269572
Lanquar, V., D. Loqué, F. Hörmann, L. Yuan, A. Bohner, W.R. Engelsberger, S. Lalonde, W.X. Schulze, N. von Wirén, and W.B. Frommer. (2009). Feedback inhibition of ammonium uptake by a phospho-dependent allosteric mechanism in Arabidopsis. Plant Cell 21: 3610-3622. 19948793
Li, X., S. Jayachandran, H.H. Nguyen, and M.K. Chan. (2007). Structure of the Nitrosomonas europaea Rh protein. Proc. Natl. Acad. Sci. U.S.A. 104: 19279-19284. 18040042
Liu, Z., Y. Chen, R. Mo, C. Hui, J.F. Cheng, N. Mohandas, and C.H. Huang. (2000). Characterization of human RhCG and mouse RhCG as novel nonerythroid Rh glycoprotein homologues predominantly expressed in kidney and testis. J. Biol. Chem. 275: 25641-25651. 10852913
Lopez, C., S. Métral, D. Eladari, S. Drevensek, P. Gane, R. Chambreys, V. Bennett, J.-P. Cartron, C.L. Kim, and Y. Colin. (2005). The ammonium transporter RhBG. Requirement of a tyrosine-based signal and ankyrin-G for basolateral targeting and membrane anchorage in polarized kidney epithelial cells. J. Biol. Chem. 280: 8221-8228. 15611082
Loqué, D., L. Yuan, S. Kojima, A. Gojon, J. Wirth, S. Gazzarrini, K. Ishiyama, H. Takahashi, and N. von Wirén. (2006). Additive contribution of AMT1;1 and AMT1;3 to high-affinity ammonium uptake across the plasma membrane of nitrogen-deficient Arabidopsis roots. Plant J. 48: 522-534. 17026539
Loqué, D., S. Lalonde, L.L. Looger, N. von Wirén, and W.B. Frommer. (2007). A cytosolic trans-activation domain essential for ammonium uptake. Nature 446: 195-198. 17293878
Loqué, D., S.I. Mora, S.L. Andrade, O. Pantoja, and W.B. Frommer. (2009). Pore mutations in ammonium transporter AMT1 with increased electrogenic ammonium transport activity. J. Biol. Chem. 284: 24988-24995. 19581303
Lorenz, M.C. and J. Heitman. (1998). The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae. EMBO J. 17: 1236-1247. 9482721
Ludewig, U., B. Neuhäuser, and M. Dynowski. (2007). Molecular mechanisms of ammonium transport and accumulation in plants. FEBS Lett. 581: 2301-2308. 17397837
Ludewig, U., N. von Wirén, and W.B. Frommer. (2002). Uniport of NH4+ by the root hair plasma membrane ammonium transporter LeAMT1;1. J. Biol. Chem. 277: 13548-13555. 11821433
Lupo, D., X.D. Li, A. Durand, T. Tomizaki, B. Cherif-Zahar, G. Matassi, M. Merrick, and F.K. Winkler. (2007). The 1.3-A resolution structure of Nitrosomonas europaea Rh50 and mechanistic implications for NH3 transport by Rhesus family proteins. Proc. Natl. Acad. Sci. U.S.A. 104: 19303-19308. 18032606
Marini, A. and B. André. (2000). In vivo N-glycosylation of the Mep2 high-affinity ammonium transporter of Saccharomyces cerevisiae reveals an extracytosolic N-terminus. Mol. Microbiol. 38: 552-564. 11069679
Marini, A., J. Springael, W.B. Frommer, and B. André. (2000). Cross-talk between ammonium transporters in yeast and interference by the soybean SAT1 protein. Mol. Microbiol. 35: 378-385. 10652098
Marini, A., S. Vissers, A. Urrestarazu, and B. André. (1994). Cloning and expression of the MEP1 gene encoding an ammonium transporter in Saccharomyces cerevisiae. EMBO J. 13: 3456-3463. 8062822
Marini, A.-M., G. Matassi, V. Raynal, B. Andre, J.P. Cartron, and B. Cherif-Zahar. (2000). The human Rhesus-associated RhAG protein and a kidney homologue promote ammonium transport in yeast. Nat. Genet. 26: 341-344. 11062476
Meier-Wagner, J., L. Nolden, M. Jakoby, R. Siewe, R. Krämer, and A. Burkovski. (2001). Multiplicity of ammonium uptake systems in Corynebacterium glutamicum: role of Amt and AmtB. Microbiology 147: 135-143. 11160807
Merhi, A., C. De Mees, R. Abdo, J. Victoria Alberola, and A.M. Marini. (2015). Wnt/β-Catenin Signaling Regulates the Expression of the Ammonium Permease Gene RHBG in Human Cancer Cells. PLoS One 10: e0128683. 26029888
Musa-Aziz, R., L.M. Chen, M.F. Pelletier, and W.F. Boron. (2009). Relative CO2/NH3 selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG. Proc. Natl. Acad. Sci. USA 106: 5406-5411. 19273840
Nakhoul, N.L., S.M. Abdulnour-Nakhoul, E. Schmidt, R. Doetjes, E. Rabon, and L.L. Hamm. (2010). pH sensitivity of ammonium transport by Rhbg. Am. J. Physiol. Cell Physiol. 299: C1386-1397. 20810915
Neuhäuser, B., M. Dynowski, and U. Ludewig. (2009). Channel-like NH3 flux by ammonium transporter AtAMT2. FEBS Lett. 583: 2833-2838. 19635480
Ninnemann, O., J. Jauniaux, and W.B. Frommer. (1994). Identification of a high affinity NH4+ transporter from plants. EMBO J. 13: 3464-3471. 8062823
Ortiz-Ramirez, C., S.I. Mora, J. Trejo, and O. Pantoja. (2011). PvAMT1;1, a Highly Selective Ammonium Transporter That Functions as H+/NHFormula Symporter. J. Biol. Chem. 286: 31113-31122. 21757699
Pau, V.P., Y. Zhu, Z. Yuchi, Q.Q. Hoang, and D.S. Yang. (2007). Characterization of the C-terminal domain of a potassium channel from Streptomyces lividans (KcsA). J. Biol. Chem. 282: 29163-29169.
Paz-Yepes, J., A. Herrero, and E. Flores. (2007). The NtcA-regulated amtB gene is necessary for full methylammonium uptake activity in the cyanobacterium Synechococcus elongatus. J. Bacteriol. 189: 7791-7798. 17704220
Pedro-Roig, L., C. Lange, M.J. Bonete, J. Soppa, and J. Maupin-Furlow. (2013). Nitrogen regulation of protein-protein interactions and transcript levels of GlnK PII regulator and AmtB ammonium transporter homologs in Archaea. Microbiologyopen 2: 826-840. 24039236
Rutherford, J.C., G. Chua, T. Hughes, M.E. Cardenas, and J. Heitman. (2008). A Mep2-dependent Transcriptional Profile Links Permease Function to Gene Expression during Pseudohyphal Growth in Saccharomyces cerevisiae. Mol. Biol. Cell 19: 3028-3039. 18434596
Rutherford, J.C., X. Lin, K. Nielsen, and J. Heitman. (2008). Amt2 permease is required to induce ammonium-responsive invasive growth and mating in Cryptococcus neoformans. Eukaryot. Cell. 7(2): 237-246. 18055915
Saier, M.H., Jr., B.H. Eng, S. Fard, J. Garg, D.A. Haggerty, W.J. Hutchinson, D.L. Jack, E.C. Lai, H.J. Liu, D.P. Nusinew, A.M. Omar, S.S. Pao, I.T. Paulsen, J.A. Quan, M. Sliwinski, T.-T. Tseng, S. Wachi, and G.B. Young. (1999). Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochim. Biophys. Acta 1422: 1-56. 10082980
Salussolia, C.L., A. Corrales, I. Talukder, R. Kazi, G. Akgul, M. Bowen, and L.P. Wollmuth. (2011). Interaction of the M4 Segment with Other Transmembrane Segments Is Required for Surface Expression of Mammalian α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors. J. Biol. Chem. 286: 40205-40218. 21930708
Si, L., L. Pan, H. Wang, and X. Zhang. (2018). Identification of the role of Rh protein in ammonia excretion of swimming crab. J Exp Biol. [Epub: Ahead of Print] 30171094
Siewe, R.M., B. Weil, A. Burkovski, B.J. Eikmanns, M. Eikmanns, and R. Krämer. (1995). Functional and genetic characterization of the (Methyl)ammonium uptake carrier of Corynebacterium glutamicum. J. Biol. Chem. 271: 5398-5403. 8621394
Sohlenkamp, C., M. Shelden, S. Howitt, and M. Udvardi. (2000). Characterization of Arabidopsis AtAMT2, a novel ammonium transporter in plants. FEBS Lett. 467: 273-278. 10675553
Soupene, E., H. Lee, and S. Kustu. (2002b). Ammonium/methylammonium transport (Amt) proteins facilitate diffusion of NH3 bidirectionally. Proc. Natl. Acad. Sci. U.S.A. 99(6):3926-3931. 11891327
Soupene, E., L. He, D. Yan, and S. Kustu. (1998). Ammonia acquisition in enteric bacteria: physiological role of the ammonium/methylammonium transport B (AmtB) protein. Proc. Natl. Acad. Sci. USA 95: 7030-7034. 9618533
Soupene, E., N. King, E. Feild, P. Liu, K.K. Niyogi, C.-H. Huang, and S. Kustu. (2002d). Rhesus expression in a green alga is regulated by CO2. Proc. Natl. Acad. Sci. USA 99: 7769-7773. 12032358
Soupene, E., R.M. Ramirez, and S. Kustu. (2002c). Evidence that fungal MEP proteins mediate diffusion of the uncharged species NH3 across the cytoplasmic membrane. Mol. Cell Biol. 21(17):5733-5741.
Soupene, E., T. Chu, R.W. Corbin, D.F. Hunt, and S. Kustu. (2002a). Gas channels for NH3: proteins from hyperthermophiles complement an Escherichia coli mutant. J. Bacteriol. 184(12):3396-3400.
Soupene, E., W. Inwood, and S. Kustu. (2004). Lack of the Rhesus protein Rh1 impairs growth of the green alga Chlamydomonas reinhardtii at high CO2. Proc. Natl. Acad. Sci. USA 101: 7787-7792. 15096599
Szekely, D., B.E. Chapman, W.A. Bubb, and P.W. Kuchel. (2006). Rapid exchange of fluoroethylamine via the Rhesus complex in human erythrocytes: 19F NMR magnetization transfer analysis showing competition by ammonia and ammonia analogues. Biochemistry 45: 9354-9361. 16866382
Teichert, S., J.C. Rutherford, M. Wottawa, J. Heitman, and B. Tudzynski. (2008). Impact of ammonium permeases mepA, mepB, and mepC on nitrogen-regulated secondary metabolism in Fusarium fujikuroi. Eukaryot. Cell. 7(2): 187-201. 18083831
Thomas, G.H., J.G.L. Mullins, and M. Merrick. (2000). Membrane topology of the Mep/Amt family of ammonium transporters. Mol. Microbiol. 37: 331-344. 10931328
Thornton, J., D. Blakey, E. Scanlon, and M. Merrick. (2006). The ammonia channel protein AmtB from Escherichia coli is a polytopic membrane protein with a cleavable signal peptide. FEMS Microbiol. Lett. 258: 114-120. 16630265
Vázquez-Bermúdez, M.F., J. Paz-Yepes, A. Herrero, and E. Flores. (2002). The NtcA-activated amt1gene encodes a permease required for uptake of low concentrations of ammonium in the cyanobacterium Synechococcus sp. PCC7942. Microbiology 148: 861-869. 11882722
von Wittgenstein, N.J., C.H. Le, B.J. Hawkins, and J. Ehlting. (2014). Evolutionary classification of ammonium, nitrate, and peptide transporters in land plants. BMC Evol Biol 14: 11. 24438197
Walter, B., M. Küspert, D. Ansorge, R. Krämer, and A. Burkovski. (2008). Dissection of ammonium uptake systems in Corynebacterium glutamicum : mechanism of action and energetics of AmtA and AmtB. J. Bacteriol. 190: 2611-2614. 18245289
Wang, S., E.A. Orabi, S. Baday, S. Bernèche, and G. Lamoureux. (2012). Ammonium transporters achieve charge transfer by fragmenting their substrate. J. Am. Chem. Soc. 134: 10419-10427. 22631217
Weidinger, K., B. Neuhäuser, S. Gilch, U. Ludewig, O. Meyer, and I. Schmidt. (2007). Functional and physiological evidence for a rhesus-type ammonia transporter in Nitrosomonas europaea. FEMS Microbiol. Lett. 273: 260-267. 17608700
Westhoff, C.M., D.L. Siegel, C.G. Burd, and J.K. Foskett. (2004). Mechanism of genetic complementation of ammonium transport in yeast by human erythrocyte Rh-associated glycoprotein. J. Biol. Chem. 279: 17443-17448. 14966114
Westhoff, C.M., M. Ferreri-Jacobia, D.O. Mak, and J.K. Foskett. (2002). Identification of the erythrocyte Rh blood group glycoprotein as a mammalian ammonium transporter. J. Biol. Chem. 277: 12499-12502. 11861637
Worrell, R.T., L. Merk, and J.B. Matthews. (2008). Ammonium transport in the colonic crypt cell line, T84: role for Rhesus glycoproteins and NKCC1. Am. J. Physiol. Gastrointest Liver Physiol 294: G429-440. 18032481
Yakunin, A.F. and P.C. Hallenbeck. (2002). AmtB is necessary for NH4+-induced nitrogenase switch-off and ADP-ribosylation in Rhodobacter capsulatus. J. Bacteriol. 184: 4081-4088. 12107124
Yoshino, R., T. Morio, Y. Yamada, H. Kuwayama, M. Sameshima, Y. Tanaka, H. Sesaki, and M. Iijima. (2007). Regulation of Ammonia Homeostasis by the Ammonium Transporter AmtA in Dictyostelium discoideum. Eukaryot. Cell. 6: 2419-2428. 17951519
Yuan, L., D. Loqué, F. Ye, W.B. Frommer, and N. von Wirén. (2007). Nitrogen-dependent posttranscriptional regulation of the ammonium transporter AtAMT1;1. Plant Physiol. 143: 732-744. 17172286
Yuan, L., L. Graff, D. Loqué, S. Kojima, Y.N. Tsuchiya, H. Takahashi, and N. von Wirén. (2009). AtAMT1;4, a pollen-specific high-affinity ammonium transporter of the plasma membrane in Arabidopsis. Plant Cell Physiol. 50: 13-25. 19073648
Zidi-Yahiaoui N., Callebaut I., Genetet S., Le Van Kim C., Cartron JP., Colin Y., Ripoche P. and Mouro-Chanteloup I. (2009). Functional analysis of human RhCG: comparison with E. coli ammonium transporter reveals similarities in the pore and differences in the vestibule. Am J Physiol Cell Physiol. 297(3):C537-47. 19553567


and Singh H. (2010). Two decades with dimorphic Chloride Intracellular Channels (CLICs). FEBS Lett. 584(10):2112-21. 20226783
Al Khamici, H., L.J. Brown, K.R. Hossain, A.L. Hudson, A.A. Sinclair-Burton, J.P. Ng, E.L. Daniel, J.E. Hare, B.A. Cornell, P.M. Curmi, M.W. Davey, and S.M. Valenzuela. (2015). Members of the chloride intracellular ion channel protein family demonstrate glutaredoxin-like enzymatic activity. PLoS One 10: e115699. 25581026
Averaimo, S., R. Abeti, N. Savalli, L.J. Brown, P.M. Curmi, S.N. Breit, and M. Mazzanti. (2013). Point mutations in the transmembrane region of the clic1 ion channel selectively modify its biophysical properties. PLoS One 8: e74523. 24058583
Berryman, M., J. Bruno, J. Price, and J.C. Edwards. (2004). CLIC-5A functions as a chloride channel in vitro and associates with the cortical actin cytoskeleton in vitro and in vivo. J. Biol. Chem. 279: 34794-34801. 15184393
Carlini, V., I. Verduci, F. Cianci, G. Cannavale, C. Fenoglio, D. Galimberti, and M. Mazzanti. (2020). CLIC1 Protein Accumulates in Circulating Monocyte Membrane during Neurodegeneration. Int J Mol Sci 21:. 32098256
Cromer, B.A., M.A. Gorman, G. Hansen, J.J. Adams, M. Coggan, D.R. Littler, L.J. Brown, M. Mazzanti, S.N. Breit, P.M. Curmi, A.F. Dulhunty, P.G. Board, and M.W. Parker MW. (2007). Structure of the Janus protein human CLIC2. J. Mol. Biol. 374: 719-731. 17945253
Duncan, R.R., P.K. Westwood, A. Boyd, and R.H. Ashley. (1997). Rat brain p64H1, expression of a new member of the p64 chloride channel protein family in endoplasmic reticulum. J. Biol. Chem. 272: 23880-23886. 9295337
Edwards, J.C., C. Cohen, W. Xu, and P.H. Schlesinger. (2006). c-Src control of chloride channel support for osteoclast HCl transport and bone resorption. J. Biol. Chem. 281: 28011-28022. 16831863
Elter, A., A. Hartel, C. Sieben, B. Hertel, E. Fischer-Schliebs, U. Lüttge, A. Moroni, and G. Thiel. (2007). A plant homolog of animal chloride intracellular channels (CLICs) generates an ion conductance in heterologous systems. J. Biol. Chem. 282: 8786-8792. 17267397
Goodchild, S.C., C.N. Angstmann, S.N. Breit, P.M. Curmi, and L.J. Brown. (2011). Transmembrane Extension and Oligomerization of the CLIC1 Chloride Intracellular Channel Protein upon Membrane Interaction. Biochemistry 50: 10887-10897. 22082111
Gururaja Rao, S., N.J. Patel, and H. Singh. (2020). Intracellular Chloride Channels: Novel Biomarkers in Diseases. Front Physiol 11: 96. 32116799
Halpin, S.F. (2004). Brain imaging using multislice CT: a personal perspective. Br J Radiol 77SpecNo1: S20-26. 15546839
Hansen, A.M., Y. Qiu, N. Yeh, F.R. Blattner, T. Durfee, and D.J. Jin. (2005). SspA is required for acid resistance in stationary phase by downregulation of H-NS in Escherichia coli. Mol. Microbiol. 56: 719-734. 15819627
Harrop, S.J., M.Z. DeMaere, W.D. Fairlie, T. Reztsova, S.M. Valenzuela, M. Mazzanti, R. Tonini, M.R. Qiu, L. Jankova, K. Warton, A.R. Bauskin, W.M. Wu, S. Pankhurst, T.J. Campbell, S.N. Breit, and P.M. Curmi. (2001). Crystal structure of a soluble form of the intracellular chloride ion channel CLIC1 (NCC27) at 1.4-Å resolution. J. Biol. Chem. 276: 44993-5000. 11551966
Hossain, K.R., D.R. Turkewitz, S.A. Holt, L. Herson, L.J. Brown, B.A. Cornell, P.M.G. Curmi, and S.M. Valenzuela. (2019). A conserved GXXXG motif in the transmembrane domain of CLIC proteins is essential for their cholesterol-dependant membrane interaction. Biochim. Biophys. Acta. Gen Subj 1863: 1243-1253. [Epub: Ahead of Print] 31075359
Hu, H., R.J. Howard, U. Bastolla, E. Lindahl, and M. Delarue. (2020). Structural basis for allosteric transitions of a multidomain pentameric ligand-gated ion channel. Proc. Natl. Acad. Sci. USA 117: 13437-13446. 32482881
Kleba, B., T.R. Clark, E.I. Lutter, D.W. Ellison, and T. Hackstadt. (2010). Disruption of the Rickettsia rickettsii Sca2 autotransporter inhibits actin-based motility. Infect. Immun. 78: 2240-2247. 20194597
Landry, D, S. Sullivan, M. Nicolaides, C. Redhead, A. Edelman, M. Field, Q. al-Awqati, and J. Edwards. (1993). Molecular cloning and characterization of p64, a chloride channel protein from kidney microsomes. J. Biol. Chem. 268: 14948-14955. 7686908
Leanza, L., L. Biasutto, A. Managò, E. Gulbins, M. Zoratti, and I. Szabò. (2013). Intracellular ion channels and cancer. Front Physiol 4: 227. 24027528
Meng, X., G. Wang, C. Viero, Q. Wang, W. Mi, X.D. Su, T. Wagenknecht, A.J. Williams, Z. Liu, and C.C. Yin. (2009). CLIC2-RyR1 interaction and structural characterization by cryo-electron microscopy. J. Mol. Biol. 387: 320-334. 19356589
Murthi P., Stevenson JL., Money TT., Borg AJ., Brennecke SP. and Gude NM. (2012). Placental CLIC3 is increased in fetal growth restriction and pre-eclampsia affected human pregnancies. Placenta. 33(9):741-4. 22795578
Nishizawa, T., T. Nagao, T. Iwatsubo, J.G. Forte, and T. Urushidani. (2000). Molecular cloning and characterization of a novel chloride intracellular channel-related protein, parchorin, expressed in water-secreting cells. J. Biol. Chem. 275: 11164-11173. 10753923
Peretti M., Angelini M., Savalli N., Florio T., Yuspa SH. and Mazzanti M. (2015). Chloride channels in cancer: Focus on chloride intracellular channel 1 and 4 (CLIC1 AND CLIC4) proteins in tumor development and as novel therapeutic targets. Biochim Biophys Acta. 1848(10 Pt B):2523-31. 25546839
Peter B., Polyansky AA., Fanucchi S. and Dirr HW. (2014). A Lys-Trp cation-pi interaction mediates the dimerization and function of the chloride intracellular channel protein 1 transmembrane domain. Biochemistry. 53(1):57-67. 24328417
Peter, B., N.C. Ngubane, S. Fanucchi, and H.W. Dirr. (2013). Membrane mimetics induce helix formation and oligomerization of the chloride intracellular channel protein 1 transmembrane domain. Biochemistry 52: 2739-2749. 23547926
Peter, B., S. Fanucchi, and H.W. Dirr. (2014). A conserved cationic motif enhances membrane binding and insertion of the chloride intracellular channel protein 1 transmembrane domain. Eur Biophys. J. 43: 405-414. 24925575
Ponsioen B., van Zeijl L., Langeslag M., Berryman M., Littler D., Jalink K. and Moolenaar WH. (2009). Spatiotemporal regulation of chloride intracellular channel protein CLIC4 by RhoA. Mol Biol Cell. 20(22):4664-72. 19776349
Singh, H. and R.H. Ashley. CLIC4 (p64H1) and its putative transmembrane domain form poorly selective, redox-regulated ion channels. Mol. Membr. Biol. 24: 41-52. 17453412
Tulk, B.M., P.H. Schlesinger, S.A. Kapadia, and J.C. Edwards. (2000). CLIC-1 functions as a chloride channel when expressed and purified from bacteria. J. Biol. Chem. 275: 26986-26993. 10874038
Valenzuela, S., D.K. Martin, S.B. Por, J.M. Robbins, K. Warton, M.R. Bootcov, P.R. Schofield, T.J. Campbell, and S.N. Breit. (1997). Molecular cloning and expression of a chloride ion channel of cell nuclei. J. Biol. Chem. 272: 12575-12582. 9139710
Warton, K., R. Tonini, W.D. Fairlie, J.M. Matthews, S.M. Valenzuela, M.R. Qiu, W.M. Wu, S. Pankhurst, A.R. Bauskin, S.J. Harrop, T.J. Campbell, P.M.G. Curmi, S.N. Breit, and M. Mazzanti. (2002). Recombinant CLIC1 (NCC27) assembles in lipid bilayers via a pH-dependent two-state process to form chloride ion channels with identical characteristics to those observed in Chinese hamster ovary cells expressing CLIC1. J. Biol. Chem. 277: 26003-26011. 11978800
Wu, X., R. Altman, M.A. Eiteman, and E. Altman. (2014). Adaptation of Escherichia coli to elevated sodium concentrations increases cation tolerance and enables greater lactic acid production. Appl. Environ. Microbiol. 80: 2880-2888. 24584246


Agnel, M., T. Vermat, and J. Culouscou. (1999). Identification of three novel members of the calcium-dependent chloride channel (CaCC) family predominantly expressed in the digestive tract and trachea. FEBS Lett. 455: 295-301. 10437792
Antonets, K.S., K.V. Volkov, A.L. Maltseva, L.M. Arshakian, A.P. Galkin, and A.A. Nizhnikov. (2016). Proteomic Analysis of Escherichia coli Protein Fractions Resistant to Solubilization by Ionic Detergents. Biochemistry (Mosc) 81: 34-46. 26885581
Barrett, K.E. and S.J. Keely. (2000). Chloride secretion by the intestinal epithelium: molecular basis and regulatory aspects. Annu. Rev. Physiol. 62: 535-572. 10845102
Elble, R.C., G. Ji, K. Nehrke, J. DeBiasio, P.D. Kingsley, M.I. Kotlikoff, and B.U. Pauli. (2002). Molecular and functional characterization of a murine calcium-activated chloride channel expressed in smooth muscle. J. Biol. Chem. 277: 18586-18591. 11896056
Evans, S.R., W.B. Thoreson, and C.L. Beck. (2004). Molecular and functional analyses of two new calcium-activated chloride channel family members from mouse eye and intestine. J. Biol. Chem. 279: 41792-41800. 15284223
Fuller, C.M., I.I. Ismailov, D.A. Keeton, and D.J. Benos. (1994). Phosphorylation and activation of a bovine tracheal anion channel by Ca2+/calmodulin-dependent protein kinase II. J. Biol. Chem. 269: 26642-26650. 7929397
Gibson, A., A.P. Lewis, K. Affleck, A.J. Aitken, E. Meldrum, and N. Thompson. (2005). hCLCA1 and mCLCA3 are secreted non-integral membrane proteins and therefore are not ion channels. J. Biol. Chem. 280: 27205-27212. 15919655
Lee, R.M. and S.M. Jeong. (2016). [Identification of a Novel Calcium (Ca^(2+))-Activated Chloride Channel Accessory Gene in Xenopus laevis]. Mol Biol (Mosk) 50: 106-114. 27028816
Lee, R.M., R.H. Ryu, S.W. Jeong, S.J. Oh, H. Huang, J.S. Han, C.H. Lee, C.J. Lee, L.Y. Jan, and S.M. Jeong. (2011). Isolation and Expression Profile of the Ca-Activated Chloride Channel-like Membrane Protein 6 Gene in Xenopus laevis. Lab Anim Res 27: 109-116. 21826170
Ran, S. and D.J. Benos. (1992). Immunopurification and structural analysis of a putative epithelial Cl- channel protein isolated from bovine trachea. J. Biol. Chem. 267: 3618-3625. 1371273
Ran, S., C.M. Fuller, M. Pia Arrate, R. Latorre, and D.J. Benos. (1992). Functional reconstitution of a chloride channel protein from bovine trachea. J. Biol. Chem. 267: 20630-20637. 1383206
Sala-Rabanal, M., Z. Yurtsever, K.N. Berry, and T.J. Brett. (2015). Novel Roles for Chloride Channels, Exchangers, and Regulators in Chronic Inflammatory Airway Diseases. Mediators Inflamm 2015: 497387. 26612971
Yoon, I.S., S.M. Jeong, S.N. Lee, J.H. Lee, J.H. Kim, M.K. Pyo, J.H. Lee, B.H. Lee, S.H. Choi, H. Rhim, H. Choe, and S.Y. Nah. (2006). Cloning and heterologous expression of a Ca2+-activated chloride channel isoform from rat brain. Biol Pharm Bull 29: 2168-2173. 17077509


Bultynck G., Kiviluoto S., Henke N., Ivanova H., Schneider L., Rybalchenko V., Luyten T., Nuyts K., De Borggraeve W., Bezprozvanny I., Parys JB., De Smedt H., Missiaen L. and Methner A. (2012). The C terminus of Bax inhibitor-1 forms a Ca2+-permeable channel pore. J Biol Chem. 287(4):2544-57. 22128171
Büttner, S., D. Ruli, F.N. Vögtle, L. Galluzzi, B. Moitzi, T. Eisenberg, O. Kepp, L. Habernig, D. Carmona-Gutierrez, P. Rockenfeller, P. Laun, M. Breitenbach, C. Khoury, K.U. Fröhlich, G. Rechberger, C. Meisinger, G. Kroemer, and F. Madeo. (2011). A yeast BH3-only protein mediates the mitochondrial pathway of apoptosis. EMBO. J. 30: 2779-2792. 21673659
Carrara G., Saraiva N., Parsons M., Byrne B., Prole DL., Taylor CW. and Smith GL. (2015). Golgi anti-apoptotic proteins are highly conserved ion channels that affect apoptosis and cell migration. J Biol Chem. 290(18):11785-801. 25713081
Carrara, G., M. Parsons, N. Saraiva, and G.L. Smith. (2017). Golgi anti-apoptotic protein: a tale of camels, calcium, channels and cancer. Open Biol 7:. 28469007
Chang, Y., R. Bruni, B. Kloss, Z. Assur, E. Kloppmann, B. Rost, W.A. Hendrickson, and Q. Liu. (2014). Structural basis for a pH-sensitive calcium leak across membranes. Science 344: 1131-1135. 24904158
Chen, K., X. Li, G. Song, T. Zhou, Y. Long, Q. Li, S. Zhong, and Z. Cui. (2019). Deficiency in the membrane protein Tmbim3a/Grinaa initiates cold-induced ER stress and cell death by activating an intrinsic apoptotic pathway in zebrafish. J. Biol. Chem. 294: 11445-11457. 31171717
Deng, K.Q., G.N. Zhao, Z. Wang, J. Fang, Z. Jiang, J. Gong, F.J. Yan, X.Y. Zhu, P. Zhang, Z.G. She, and H. Li. (2018). Targeting Transmembrane BAX Inhibitor Motif Containing 1 Alleviates Pathological Cardiac Hypertrophy. Circulation 137: 1486-1504. 29229612
Fernández, M., M.F. Segura, C. Solé, A. Colino, J.X. Comella, and V. Ceña. (2007). Lifeguard/neuronal membrane protein 35 regulates Fas ligand-mediated apoptosis in neurons via microdomain recruitment. J Neurochem 103: 190-203. 17635665
Gamboa-Tuz, S.D., A. Pereira-Santana, T. Zhao, M.E. Schranz, E. Castano, and L.C. Rodriguez-Zapata. (2018). New insights into the phylogeny of the TMBIM superfamily across the tree of life: Comparative genomics and synteny networks reveal independent evolution of the BI and LFG families in plants. Mol Phylogenet Evol 126: 266-278. 29702215
Guo, G., M. Xu, Y. Chang, T. Luyten, B. Seitaj, W. Liu, P. Zhu, G. Bultynck, L. Shi, M. Quick, and Q. Liu. (2019). Ion and pH Sensitivity of a TMBIM Ca Channel. Structure. [Epub: Ahead of Print] 30930064
Hong, C.J., J. Yeon, B.K. Yeo, H. Woo, H.K. An, W. Heo, K. Kim, and S.W. Yu. (2020). Fas-apoptotic inhibitory molecule 2 localizes to the lysosome and facilitates autophagosome-lysosome fusion through the LC3 interaction region motif-dependent interaction with LC3. FASEB J. 34: 161-179. 31914609
Jin, L., M. Miyazaki, S. Mizuno, M. Takigawa, T. Hirose, K. Nishimura, T. Toida, K. Williams, K. Kashiwagi, and K. Igarashi. (2008). The pore region of N-methyl-D-aspartate receptors differentially influences stimulation and block by spermine. J Pharmacol Exp Ther 327: 68-77. 18632991
Kim, H.K., G.H. Lee, K.R. Bhattarai, M.S. Lee, S.H. Back, H.R. Kim, and H.J. Chae. (2020). TMBIM6 (transmembrane BAX inhibitor motif containing 6) enhances autophagy through regulation of lysosomal calcium. Autophagy 1-18. [Epub: Ahead of Print] 32167007
Kota K., Kuzhikandathil EV., Afrasiabi M., Lacy B., Kontoyianni M., Crider AM. and Song D. (2015). Identification of key residues involved in the activation and signaling properties of dopamine D3 receptor. Pharmacol Res. 99:174-184. 26116441
Liu, Q. (2017). TMBIM-mediated Ca2+ homeostasis and cell death. Biochim. Biophys. Acta. [Epub: Ahead of Print] 28064000
Luganini, A., G. Di Nardo, L. Munaron, G. Gilardi, A. Fiorio Pla, and G. Gribaudo. (2018). Human cytomegalovirus US21 protein is a viroporin that modulates calcium homeostasis and protects cells against apoptosis. Proc. Natl. Acad. Sci. USA 115: E12370-E12377. 30530673
M''Angale, P.G. and B.E. Staveley. (2016). Knockdown of the putative Lifeguard homologue CG3814 in neurons of Drosophila melanogaster. Genet Mol Res 15:. 28002605
Mallmann, R.T., L. Moravcikova, K. Ondacova, L. Lacinova, and N. Klugbauer. (2019). Grina/TMBIM3 modulates voltage-gated Ca2.2 Ca channels in a G-protein-like manner. Cell Calcium 80: 71-78. [Epub: Ahead of Print] 30991297
Philippaert, K., M. Roden, D. Lisak, D. Bueno, T. Jelenik, K. Radyushkin, T. Schacht, M. Mesuere, V. Wüllner, A.K. Herrmann, J. Baumgart, R. Vennekens, and A. Methner. (2020). Bax inhibitor-1 deficiency leads to obesity by increasing Ca-dependent insulin secretion. J Mol Med (Berl). [Epub: Ahead of Print] 32394396
Rice, S.J., M. Tselepi, A.K. Sorial, G. Aubourg, C. Shepherd, D. Almarza, A.J. Skelton, I. Pangou, D. Deehan, L.N. Reynard, and J. Loughlin. (2019). Prioritization of PLEC and GRINA as Osteoarthritis Risk Genes Through the Identification and Characterization of Novel Methylation Quantitative Trait Loci. Arthritis Rheumatol 71: 1285-1296. 30730609
Somia, N.V., M.J. Schmitt, D.E. Vetter, D. Van Antwerp, S.F. Heinemann, and I.M. Verma. (1999). LFG: an anti-apoptotic gene that provides protection from Fas-mediated cell death. Proc. Natl. Acad. Sci. USA 96: 12667-12672. 10535980
Swain, L.L., C. Mishra, S.S. Sahoo, G. Nayak, S.K. Pradhan, S.R. Mishra, and M. Dige. (2020). An in vivo and in silico analysis of novel variation in TMBIM6 gene affecting cardiopulmonary traits of Indian goats. J Therm Biol 88: 102491. 32125979
van Stelten, J., F. Silva, D. Belin, and T.J. Silhavy. (2009). Effects of antibiotics and a proto-oncogene homolog on destruction of protein translocator SecY. Science 325: 753-756. 19661432
Xu, D.H., Q. Li, H. Hu, B. Ni, X. Liu, C. Huang, Z.Z. Zhang, and G. Zhao. (2018). Transmembrane protein GRINA modulates aerobic glycolysis and promotes tumor progression in gastric cancer. J Exp Clin Cancer Res 37: 308. 30541591
Yamagami, A., C. Saito, M. Nakazawa, S. Fujioka, T. Uemura, M. Matsui, M. Sakuta, K. Shinozaki, H. Osada, A. Nakano, T. Asami, and T. Nakano. (2017). Evolutionarily conserved BIL4 suppresses the degradation of brassinosteroid receptor BRI1 and regulates cell elongation. Sci Rep 7: 5739. 28720789
Zhao, G.N., P. Zhang, J. Gong, X.J. Zhang, P.X. Wang, M. Yin, Z. Jiang, L.J. Shen, Y.X. Ji, J. Tong, Y. Wang, Q.F. Wei, Y. Wang, X.Y. Zhu, X. Zhang, J. Fang, Q. Xie, Z.G. She, Z. Wang, Z. Huang, and H. Li. (2017). Tmbim1 is a multivesicular body regulator that protects against non-alcoholic fatty liver disease in mice and monkeys by targeting the lysosomal degradation of Tlr4. Nat. Med. 23: 742-752. 28481357


Egido, W., V. Castrejón, B. Antón, and M. Martínez. (2008). Maitotoxin induces two dose-dependent conductances in Xenopus oocytes. Comparison with nystatin effects as a pore inductor. Toxicon. 51: 797-812. 18255116 18255116 18255116
Bihler, H., C.L. Slayman, and A. Bertl. (1998). NSC1: a novel high-current inward rectifier for cations in the plasma membrane of Saccharomyces cerevisiae. FEBS Lett. 432: 59-64. 9710251 9710251
Estacion, M., H. B. Nguyen and J.J. Gargus (1996). Calcium is permeable through a maitotoxin-activated nonselective cation channel in mouse L cells. Am. J. Physiol. 270: C1145-C1152. 8928742
Fantino, E., D. Church, U. Bengtsson and J.J. Gargus (1997). Mammalian gene encoding growth factor-activated cation channel is homologue to yeast microsomal protein SEC62 and maps to human chromosome 3. J. Gen. Physiol. 110: 44a.
Frace, A.M. and J.J. Gargus (1989). Activation of single-channel currents in mouse fibroblasts by platelet-derived growth factor. Proc. Natl. Acad. Sci. USA 86: 2511-2515. 2467305
Gargus, J.J., A.M. Frace and F. Jung (1993). The role of a PDGF-activated nonselective cation channel in the proliferative response. In "Nonselective cation channels: pharmacology, physiology and biophysics" (D. Siemen and J. Hescheler, eds.), Birkhäuser Verlag, Basel, Switzerland, pp. 289-295. 7505659
Jung, F., S. Selvaraj and J.J. Gargus (1992). Blockers of platelet-derived growth factor-activated nonselective cation channel inhibit cell proliferation. Am. J. Physiol. 262: C1464-C1470. 1377445
Lakkaraju, A.K., R. Thankappan, C. Mary, J.L. Garrison, J. Taunton, and K. Strub. (2012). Efficient secretion of small proteins in mammalian cells relies on Sec62-dependent posttranslational translocation. Mol. Biol. Cell 23: 2712-2722. 22648169
Lyman, S.K. and R. Schekman. (1997). Binding of secretory precursor polypeptides to a translocon subcomplex is regulated by BiP. Cell 88: 85-96. 9019409


Andrews, S.C., B.C. Berks, J. McClay, A. Ambler, M.A. Quail, P. Golby, and J.R. Guest. (1997). A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system. Microbiology 143(Pt11): 3633-3647. 9387241
Atkovska, K. and J.S. Hub. (2017). Energetics and mechanism of anion permeation across formate-nitrite transporters. Sci Rep 7: 12027. 28931899
Bader, A. and E. Beitz. (2020). Transmembrane Facilitation of Lactate/H Instead of Lactic Acid Is Not a Question of Semantics but of Cell Viability. Membranes (Basel) 10:. 32942665
Czyzewski, B.K. and D.N. Wang. (2012). Identification and characterization of a bacterial hydrosulphide ion channel. Nature 483: 494-497. 22407320
Doberenz, C., M. Zorn, D. Falke, D. Nannemann, D. Hunger, L. Beyer, C.H. Ihling, J. Meiler, A. Sinz, and R.G. Sawers. (2014). Pyruvate formate-lyase interacts directly with the formate channel FocA to regulate formate translocation. J. Mol. Biol. 426: 2827-2839. 24887098
Falke, D., C. Doberenz, D. Hunger, and R.G. Sawers. (2016). The glycyl-radical enzyme 2-ketobutyrate formate-lyase, TdcE, interacts specifically with the formate-translocating FNT-channel protein FocA. Biochem Biophys Rep 6: 185-189. 28955877
Falke, D., K. Schulz, C. Doberenz, L. Beyer, H. Lilie, B. Thiemer, and R.G. Sawers. (2010). Unexpected oligomeric structure of the FocA formate channel of Escherichia coli : a paradigm for the formate-nitrite transporter family of integral membrane proteins. FEMS Microbiol. Lett. 303: 69-75. 20041954
Golldack, A., B. Henke, B. Bergmann, M. Wiechert, H. Erler, A. Blancke Soares, T. Spielmann, and E. Beitz. (2017). Substrate-analogous inhibitors exert antimalarial action by targeting the Plasmodium lactate transporter PfFNT at nanomolar scale. PLoS Pathog 13: e1006172. 28178358
Hapuarachchi, S.V., S.A. Cobbold, S.H. Shafik, A.S. Dennis, M.J. McConville, R.E. Martin, K. Kirk, and A.M. Lehane. (2017). The Malaria Parasite''s Lactate Transporter PfFNT Is the Target of Antiplasmodial Compounds Identified in Whole Cell Phenotypic Screens. PLoS Pathog 13: e1006180. 28178359
Helmstetter, F., P. Arnold, B. Höger, L.M. Petersen, and E. Beitz. (2019). Formate-nitrite transporters carrying nonprotonatable amide amino acids instead of a central histidine maintain pH-dependent transport. J. Biol. Chem. 294: 623-631. 30455351
Hunger, D., M. Röcker, D. Falke, H. Lilie, and R.G. Sawers. (2017). The C-terminal Six Amino Acids of the FNT Channel FocA Are Required for Formate Translocation But Not Homopentamer Integrity. Front Microbiol 8: 1616. 28878762
Jia, W., N. Tovell, S. Clegg, M. Trimmer, and J. Cole. (2009). A single channel for nitrate uptake, nitrite export and nitrite uptake by Escherichia coli NarU and a role for NirC in nitrite export and uptake. Biochem. J. 417: 297-304. 18691156
Kuzminov, A. and F.W. Stahl. (1997). Stability of linear DNA in recA mutant Escherichia coli cells reflects ongoing chromosomal DNA degradation. J. Bacteriol. 179: 880-888. 9006046
Lü, W., J. Du, T. Wacker, E. Gerbig-Smentek, S.L. Andrade, and O. Einsle. (2011). pH-dependent gating in a FocA formate channel. Science 332: 352-354. 21493860
Moraes, T.F. and R.A. Reithmeier. (2012). Membrane transport metabolons. Biochim. Biophys. Acta. 1818: 2687-2706. 22705263
Mukherjee, M., M. Vajpai, and R. Sankararamakrishnan. (2017). Anion-selective Formate/nitrite transporters: taxonomic distribution, phylogenetic analysis and subfamily-specific conservation pattern in prokaryotes. BMC Genomics 18: 560. 28738779
Nakata, K., M.M. Koh, T. Tsuchido, and Y. Matsumura. (2010). All genomic mutations in the antimicrobial surfactant-resistant mutant, Escherichia coli OW66, are involved in cell resistance to surfactant. Appl. Microbiol. Biotechnol. 87: 1895-1905. 20480162
Nölling, J. and J.N. Reeve. (1997). Growth- and substrate-dependent transcription of the formate dehydrogenase (fdhCAB) operon in Methanobacterium thermoformicicum Z-245. J. Bacteriol. 179: 899-908. 9006048
Park, J.S., S.J. Lee, H.G. Rhie, and H.S. Lee. (2008). Characterization of a chromosomal nickel resistance determinant from Klebsiella oxytoca CCUG 15788. J Microbiol Biotechnol 18: 1040-1043. 18600044
Pinske, C. and R.G. Sawers. (2016). Anaerobic Formate and Hydrogen Metabolism. EcoSal Plus 7:. 27735784
Pui, C.H., W.M. Crist, and A.T. Look. (1990). Biology and clinical significance of cytogenetic abnormalities in childhood acute lymphoblastic leukemia. Blood 76: 1449-1463. 2207320
Rycovska-Blume, A., W. Lü, S. Andrade, K. Fendler, and O. Einsle. (2015). Structural and Functional Studies of NirC from Salmonella typhimurium. Methods Enzymol 556: 475-497. 25857796
Unkles, S.E., K.L. Hawker, C. Grieve, E.I. Campbell, P. Montague, and J.R. Kinghorn. (1991). crnA encodes a nitrate transporter in Aspergillus nidulans. Proc. Natl. Acad. Sci. USA 88: 204-208. 1986367
Unkles, S.E., V.F. Symington, Z. Kotur, Y. Wang, M.Y. Siddiqi, J.R. Kinghorn, and A.D. Glass. (2011). Physiological and biochemical characterization of AnNitA, the Aspergillus nidulans high-affinity nitrite transporter. Eukaryot. Cell. 10: 1724-1732. 22021238
Waight, A.B., J. Love, and D.N. Wang. (2010). Structure and mechanism of a pentameric formate channel. Nat Struct Mol Biol 17: 31-37. 20010838
Wang, Y., Y. Huang, J. Wang, C. Cheng, W. Huang, P. Lu, Y.N. Xu, P. Wang, N. Yan, and Y. Shi. (2009). Structure of the formate transporter FocA reveals a pentameric aquaporin-like channel. Nature 462: 467-472. 19940917
Wiechert, M., H. Erler, A. Golldack, and E. Beitz. (2017). A widened substrate selectivity filter of eukaryotic formate-nitrite transporters enables high-level lactate conductance. FEBS J. 284: 2663-2673. 28544379
Wood, G.E., A.K. Haydock, and J.A. Leigh. (2003). Function and regulation of the formate dehydrogenase genes of the methanogenic archaeon Methanococcus maripaludis. J. Bacteriol. 185: 2548-2554. 12670979


Adomaviciene A., Smith KJ., Garnett H. and Tammaro P. (2013). Putative pore-loops of TMEM16/anoctamin channels affect channel density in cell membranes. J Physiol. 591(Pt 14):3487-505. 23613533
Almaça, J., Y. Tian, F. Aldehni, J. Ousingsawat, P. Kongsuphol, J.R. Rock, B.D. Harfe, R. Schreiber, and K. Kunzelmann. (2009). TMEM16 proteins produce volume-regulated chloride currents that are reduced in mice lacking TMEM16A. J. Biol. Chem. 284: 28571-28578. 19654323
Andra, K.K., S. Dorsey, C. Royer, and A.K. Menon. (2018). Structural mapping of fluorescently-tagged, functional nhTMEM16 scramblase in a lipid bilayer. J. Biol. Chem. [Epub: Ahead of Print] 29903908
Asai, Y., B. Pan, C. Nist-Lund, A. Galvin, A.N. Lukashkin, V.A. Lukashkina, T. Chen, W. Zhou, H. Zhu, I.J. Russell, J.R. Holt, and G.S.G. Géléoc. (2018). Transgenic Tmc2 expression preserves inner ear hair cells and vestibular function in mice lacking Tmc1. Sci Rep 8: 12124. 30108254
Ballesteros, A., C. Fenollar-Ferrer, and K.J. Swartz. (2018). Structural relationship between the putative hair cell mechanotransduction channel TMC1 and TMEM16 proteins. Elife 7:. 30063209
Bethel, N.P. and M. Grabe. (2016). Atomistic insight into lipid translocation by a TMEM16 scramblase. Proc. Natl. Acad. Sci. USA. [Epub: Ahead of Print] 27872308
Beurg, M., A. Barlow, D.N. Furness, and R. Fettiplace. (2019). A mutation reduces calcium permeability and expression of mechanoelectrical transduction channels in cochlear hair cells. Proc. Natl. Acad. Sci. USA 116: 20743-20749. 31548403
Beurg, M., K.X. Kim, and R. Fettiplace. (2014). Conductance and block of hair-cell mechanotransducer channels in transmembrane channel-like protein mutants. J Gen Physiol 144: 55-69. 24981230
Beurg, M., R. Cui, A.C. Goldring, S. Ebrahim, R. Fettiplace, and B. Kachar. (2018). Variable number of TMC1-dependent mechanotransducer channels underlie tonotopic conductance gradients in the cochlea. Nat Commun 9: 2185. 29872055
Boedtkjer DM., Kim S., Jensen AB., Matchkov VM. and Andersson KE. (2015). New selective inhibitors of calcium-activated chloride channels - T16Ainh -A01, CaCCinh -A01 and MONNA - what do they inhibit? Br J Pharmacol. 172(16):4158-72. 26013995
Bricogne, C., M. Fine, P.M. Pereira, J. Sung, M. Tijani, Y. Wang, R. Henriques, M.K. Collins, and D. Hilgemann. (2019). TMEM16F activation by Ca triggers plasma membrane expansion and directs PD-1 trafficking. Sci Rep 9: 619. 30679690
Brunner, J.D., N.K. Lim, S. Schenck, A. Duerst, and R. Dutzler. (2014). X-ray structure of a calcium-activated TMEM16 lipid scramblase. Nature 516: 207-212. 25383531
Bulley, S., Z.P. Neeb, S.K. Burris, J.P. Bannister, C.M. Thomas-Gatewood, W. Jangsangthong, and J.H. Jaggar. (2012). TMEM16A/ANO1 Channels Contribute to the Myogenic Response in Cerebral Arteries. Circ Res 111: 1027-1036. 22872152
Caputo, A., E. Caci, L. Ferrera, N. Pedemonte, C. Barsanti, E. Sondo, U. Pfeffer, R. Ravazzolo, O. Zegarra-Moran, and L.J. Galietta. (2008). TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322: 590-594. 18772398
Chandra, G., A. Defour, K. Mamchoui, K. Pandey, S. Mishra, V. Mouly, S. Sreetama, M. Mahad Ahmad, I. Mahjneh, H. Morizono, N. Pattabiraman, A.K. Menon, and J.K. Jaiswal. (2019). Dysregulated calcium homeostasis prevents plasma membrane repair in Anoctamin 5/TMEM16E-deficient patient muscle cells. Cell Death Discov 5: 118. 31341644
Chatzigeorgiou, M., S. Bang, S.W. Hwang, and W.R. Schafer. (2013). tmc-1 encodes a sodium-sensitive channel required for salt chemosensation in C. elegans. Nature 494: 95-99. 23364694
Chauhan, N., L. Farine, K. Pandey, A.K. Menon, and P. Bütikofer. (2016). Lipid topogenesis - 35years on. Biochim. Biophys. Acta. [Epub: Ahead of Print] 26946259
Chen, Y., H. An, T. Li, Y. Liu, C. Gao, P. Guo, H. Zhang, and Y. Zhan. (2011). Direct or indirect regulation of calcium-activated chloride channel by calcium. J. Membr. Biol. 240: 121-129. 21424226
Chen, Z., S. Zhu, K. Kindig, S. Wang, S.W. Chou, R.W. Davis, M.R. Dercoli, H. Weaver, R. Stepanyan, and B.M. McDermott. (2020). Tmc proteins are essential for zebrafish hearing where Tmc1 is not obligatory. Hum Mol Genet. [Epub: Ahead of Print] 32167554
Choi, J., Y. Jang, H. Kim, J. Wee, S. Cho, W.S. Son, S.M. Kim, and Y.D. Yang. (2018). Functional roles of glutamic acid E143 and E705 residues in the N-terminus and transmembrane domain 7 of Anoctamin 1 in calcium and noxious heat sensing. BMB Rep. [Epub: Ahead of Print] 29335069
Chou, S.W., Z. Chen, S. Zhu, R.W. Davis, J. Hu, L. Liu, C.A. Fernando, K. Kindig, W.C. Brown, R. Stepanyan, and B.M. McDermott, Jr. (2017). A molecular basis for water motion detection by the mechanosensory lateral line of zebrafish. Nat Commun 8: 2234. 29269857
Cil, O., M.O. Anderson, R. Yen, B. Kelleher, T.L. Huynh, Y. Seo, S.P. Nilsen, J.R. Turner, and A.S. Verkman. (2019). Slowed gastric emptying and improved oral glucose tolerance produced by a nanomolar-potency inhibitor of calcium-activated chloride channel TMEM16A. FASEB J. fj201900858R. [Epub: Ahead of Print] 31299174
Corey, D.P. and J.R. Holt. (2016). Are TMCs the Mechanotransduction Channels of Vertebrate Hair Cells? J. Neurosci. 36: 10921-10926. 27798174
Corns, L.F., J.Y. Jeng, G.P. Richardson, C.J. Kros, and W. Marcotti. (2017). TMC2 Modifies Permeation Properties of the Mechanoelectrical Transducer Channel in Early Postnatal Mouse Cochlear Outer Hair Cells. Front Mol Neurosci 10: 326. 29093662
Corns, L.F., S.L. Johnson, C.J. Kros, and W. Marcotti. (2016). Tmc1 Point Mutation Affects Ca2+ Sensitivity and Block by Dihydrostreptomycin of the Mechanoelectrical Transducer Current of Mouse Outer Hair Cells. J. Neurosci. 36: 336-349. 26758827
Cunningham, C.L. and U. Müller. (2018). Molecular Structure of the Hair Cell Mechanoelectrical Transduction Complex. Cold Spring Harb Perspect Med. [Epub: Ahead of Print] 30082452
Dang, S., S. Feng, J. Tien, C.J. Peters, D. Bulkley, M. Lolicato, J. Zhao, K. Zuberbühler, W. Ye, L. Qi, T. Chen, C.S. Craik, Y. Nung Jan, D.L. Minor, Jr, Y. Cheng, and L. Yeh Jan. (2017). Cryo-EM structures of the TMEM16A calcium-activated chloride channel. Nature. [Epub: Ahead of Print] 29236684
Dao, J., A. Lee, D.K. Drecksel, N.M. Bittlingmaier, and T.M. Nelson. (2020). Characterization of TMC-1 in C. elegans sodium chemotaxis and sodium conditioned aversion. BMC Genet 21: 37. 32228447
Das, S., Y. Hahn, D.A. Walker, S. Nagata, M.C. Willingham, D.M. Peehl, T.K. Bera, B. Lee, and I. Pastan. (2008). Topology of NGEP, a prostate-specific cell:cell junction protein widely expressed in many cancers of different grade level. Cancer Res 68: 6306-6312. 18676855
Duran, C. and H.C. Hartzell. (2011). Physiological roles and diseases of Tmem16/Anoctamin proteins: are they all chloride channels? Acta Pharmacol Sin 32: 685-692. 21642943
Duran, C., Z. Qu, A.O. Osunkoya, Y. Cui, and H.C. Hartzell. (2012). ANOs 3-7 in the anoctamin/Tmem16 Cl- channel family are intracellular proteins. Am. J. Physiol. Cell Physiol. 302: C482-493. 22075693
Dutta, A.K., K. Boggs, A.K. Khimji, Y. Getachew, Y. Wang, C. Kresge, D.C. Rockey, and A.P. Feranchak. (2020). Signaling through the interleukin-4 and interleukin-13 receptor complexes regulates cholangiocyte TMEM16A expression and biliary secretion. Am. J. Physiol. Gastrointest Liver Physiol 318: G763-G771. 32090602
Eisenreich, A., M. Orphal, K. Böhme, and R. Kreutz. (2020). Tmem63c is a potential pro-survival factor in angiotensin II-treated human podocytes. Life Sci 258: 118175. 32750436
Erickson, T., C.P. Morgan, J. Olt, K. Hardy, E. Busch-Nentwich, R. Maeda, R. Clemens, J.F. Krey, A. Nechiporuk, P.G. Barr-Gillespie, W. Marcotti, and T. Nicolson. (2017). Integration of Tmc1/2 into the mechanotransduction complex in zebrafish hair cells is regulated by Transmembrane O-methyltransferase (Tomt). Elife 6:. 28534737
Erives, A. and B. Fritzsch. (2019). A Screen for Gene Paralogies Delineating Evolutionary Branching Order of Early Metazoa. G3 (Bethesda). [Epub: Ahead of Print] 31879283
Falzone, M.E., J. Rheinberger, B.C. Lee, T. Peyear, L. Sasset, A.M. Raczkowski, E.T. Eng, A. Di Lorenzo, O.S. Andersen, C.M. Nimigean, and A. Accardi. (2019). Structural basis of Ca-dependent activation and lipid transport by a TMEM16 scramblase. Elife 8:. 30648972
Farooq, R., K. Hussain, M. Tariq, A. Farooq, and M. Mustafa. (2020). CRISPR/Cas9: targeted genome editing for the treatment of hereditary hearing loss. J Appl Genet 61: 51-65. 31912450
Ferrera, L., A. Caputo, I. Ubby, E. Bussani, O. Zegarra-Moran, R. Ravazzolo, F. Pagani, and L.J. Galietta. (2009). Regulation of TMEM16A chloride channel properties by alternative splicing. J. Biol. Chem. 284: 33360-33368. 19819874
Fettiplace, R. (2016). Is TMC1 the Hair Cell Mechanotransducer Channel? Biophys. J. 111: 3-9. 27410728
Fujii, T., A. Sakata, S. Nishimura, K. Eto, and S. Nagata. (2015). TMEM16F is required for phosphatidylserine exposure and microparticle release in activated mouse platelets. Proc. Natl. Acad. Sci. USA 112: 12800-12805. 26417084
Galietta, L.J. (2009). The TMEM16 protein family: a new class of chloride channels? Biophys. J. 97: 3047-3053. 20006941
Gao X., Huang SS., Yuan YY., Wang GJ., Xu JC., Ji YB., Han MY., Yu F., Kang DY., Lin X. and Dai P. (2015). Targeted gene capture and massively parallel sequencing identify TMC1 as the causative gene in a six-generation Chinese family with autosomal dominant hearing loss. Am J Med Genet A. 167A(10):2357-65. 26079994
Goldring, A.C., M. Beurg, and R. Fettiplace. (2019). The contribution of TMC1 to adaptation of mechanoelectrical transduction channels in cochlear outer hair cells. J. Physiol. [Epub: Ahead of Print] 31633194
Gui D., Li Y. and Chen X. (2015). Alterations of TMEM16a allostery in human retinal microarterioles in long-standing hypertension. IUBMB Life. 67(5):348-54. 25914185
Guo, J.W., X. Liu, T.T. Zhang, X.C. Lin, Y. Hong, J. Yu, Q.Y. Wu, F.R. Zhang, Q.Q. Wu, J.Y. Shang, X.F. Lv, J.S. Ou, J.G. Zhou, R.P. Pang, B.D. Tang, and S.J. Liang. (2020). Hepatocyte TMEM16A Deletion Retards NAFLD Progression by Ameliorating Hepatic Glucose Metabolic Disorder. Adv Sci (Weinh) 7: 1903657. 32440483
Guo, Y., Y. Wang, W. Zhang, S. Meltzer, D. Zanini, Y. Yu, J. Li, T. Cheng, Z. Guo, Q. Wang, J.S. Jacobs, Y. Sharma, D.F. Eberl, M.C. Göpfert, L.Y. Jan, Y.N. Jan, and Z. Wang. (2016). Transmembrane channel-like (tmc) gene regulates Drosophila larval locomotion. Proc. Natl. Acad. Sci. USA. [Epub: Ahead of Print] 27298354
Gyobu, S., H. Miyata, M. Ikawa, D. Yamazaki, H. Takeshima, J. Suzuki, and S. Nagata. (2016). A Role of TMEM16E Carrying a Scrambling Domain in Sperm Motility. Mol. Cell Biol. 36: 645-659. 26667038
Gyobu, S., K. Ishihara, J. Suzuki, K. Segawa, and S. Nagata. (2017). Characterization of the scrambling domain of the TMEM16 family. Proc. Natl. Acad. Sci. USA 114: 6274-6279. 28559311
Han, Y., A.M. Shewan, and P. Thorn. (2016). HCO3- transport through anoctamin/transmembrane protein ANO1/TMEM16A, in pancreatic acinar cells, regulates luminal pH. J. Biol. Chem. [Epub: Ahead of Print] 27510033
Hara, K., M. Kondo, M. Tsuji, K. Takeyama, and J. Tamaoki. (2019). Clarithromycin suppresses IL-13-induced goblet cell metaplasia via the TMEM16A-dependent pathway in guinea pig airway epithelial cells. Respir Investig 57: 79-88. 30393041
Harkcom, W.T., M. Papanikolaou, V. Kanda, S.M. Crump, and G.W. Abbott. (2019). KCNQ1 rescues TMC1 plasma membrane expression but not mechanosensitive channel activity. J Cell Physiol. [Epub: Ahead of Print] 30613966
He, L., S. Gulyanon, M. Mihovilovic Skanata, D. Karagyozov, E.S. Heckscher, M. Krieg, G. Tsechpenakis, M. Gershow, and W.D. Tracey, Jr. (2019). Direction Selectivity in Drosophila Proprioceptors Requires the Mechanosensory Channel Tmc. Curr. Biol. 29: 945-956.e3. 30853433
Horton, J.S. and A.J. Stokes. (2014). The transmembrane channel-like protein family and human papillomaviruses: Insights into epidermodysplasia verruciformis and progression to squamous cell carcinoma. Oncoimmunology 3: e28288. 24800179
Hou, C., W. Tian, T. Kleist, K. He, V. Garcia, F. Bai, Y. Hao, S. Luan, and L. Li. (2014). DUF221 proteins are a family of osmosensitive calcium-permeable cation channels conserved across eukaryotes. Cell Res 24: 632-635. 24503647
Hu, C., R. Zhang, and D. Jiang. (2019). TMEM16A as a Potential Biomarker in the Diagnosis and Prognosis of Lung Cancer. Arch Iran Med 22: 32-38. 30821158
Huang, F., J.R. Rock, B.D. Harfe, T. Cheng, X. Huang, Y.N. Jan, and L.Y. Jan. (2009). Studies on expression and function of the TMEM16A calcium-activated chloride channel. Proc. Natl. Acad. Sci. USA 106: 21413-21418. 19965375
Huang, F., X. Wong, and L.Y. Jan. (2012). International Union of Basic and Clinical Pharmacology. LXXXV: calcium-activated chloride channels. Pharmacol Rev 64: 1-15. 22090471
Hwang, S.J., P.J. Blair, F.C. Britton, K.E. O'Driscoll, G. Hennig, Y.R. Bayguinov, J.R. Rock, B.D. Harfe, K.M. Sanders, and S.M. Ward. (2009). Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles. J. Physiol. 587: 4887-4904. 19687122
Ishihara, K., J. Suzuki, and S. Nagata. (2016). Role of Ca2+ in the Stability and Function of TMEM16F and 16K. Biochemistry 55: 3180-3188. 27227820
Jang, W., J.Y. Kim, S. Cui, J. Jo, B.C. Lee, Y. Lee, K.S. Kwon, C.S. Park, and C. Kim. (2015). The anoctamin family channel subdued mediates thermal nociception in Drosophila. J. Biol. Chem. 290: 2521-2528. 25505177
Jeon, J.H., S.S. Paik, M.H. Chun, U. Oh, and I.B. Kim. (2013). Presynaptic Localization and Possible Function of Calcium-Activated Chloride Channel Anoctamin 1 in the Mammalian Retina. PLoS One 8: e67989. 23840801
Jha, A., W.Y. Chung, L. Vachel, J. Maleth, S. Lake, G. Zhang, M. Ahuja, and S. Muallem. (2019). Anoctamin 8 tethers endoplasmic reticulum and plasma membrane for assembly of Ca signaling complexes at the ER/PM compartment. EMBO. J. 38:. 31061173
Jia, Y., Y. Zhao, T. Kusakizako, Y. Wang, C. Pan, Y. Zhang, O. Nureki, M. Hattori, and Z. Yan. (2019). TMC1 and TMC2 Proteins Are Pore-Forming Subunits of Mechanosensitive Ion Channels. Neuron. [Epub: Ahead of Print] 31761710
Jiang, L. and Y. Yang. (2018). The putative transient receptor potential (TRP) channel protein encoded by the orf19.4805 is involved in cation sensitivity, antifungal tolerance and filamentation in Candida albicans. Can. J. Microbiol. [Epub: Ahead of Print] 29791811
Jin, L., Y. Liu, F. Sun, M.T. Collins, K. Blackwell, A.S. Woo, E.J. Reichenberger, and Y. Hu. (2017). Three novel ANO5 missense mutations in Caucasian and Chinese families and sporadic cases with gnathodiaphyseal dysplasia. Sci Rep 7: 40935. 28176803
Jojoa Cruz, S., K. Saotome, S.E. Murthy, C.C.A. Tsui, M.S. Sansom, A. Patapoutian, and A.B. Ward. (2018). Cryo-EM structure of the mechanically activated ion channel OSCA1.2. Elife 7:. [Epub: Ahead of Print] 30382939
Jun, I., H.S. Park, H. Piao, J.W. Han, M.J. An, B.G. Yun, X. Zhang, Y.H. Cha, Y.K. Shin, J.I. Yook, J. Jung, H.Y. Gee, J.S. Park, D.S. Yoon, H.C. Jeung, and M.G. Lee. (2017). ANO9/TMEM16J promotes tumourigenesis via EGFR and is a novel therapeutic target for pancreatic cancer. Br J Cancer 117: 1798-1809. 29024940
Jung J., Nam JH., Park HW., Oh U., Yoon JH. and Lee MG. (2013). Dynamic modulation of ANO1/TMEM16A HCO3(-) permeability by Ca2+/calmodulin. Proc Natl Acad Sci U S A. 110(1):360-5. 23248295
Kaikkonen, E., T. Rantapero, Q. Zhang, P. Taimen, V. Laitinen, M. Kallajoki, D. Jambulingam, O. Ettala, J. Knaapila, P.J. Boström, G. Wahlström, C. Sipeky, J.P. Pursiheimo, T. Tammela, P.L. Kellokumpu-Lehtinen, , V. Fey, L. Maehle, F. Wiklund, G.H. Wei, and J. Schleutker. (2018). ANO7 is associated with aggressive prostate cancer. Int J Cancer 143: 2479-2487. 30157291
Kamikawa, A., J. Sakazaki, and O. Ichii. (2018). Tissue-specific variation in 5''-terminal exons of mouse Anoctamin 1 transcript induces N-terminal variation of its protein via alternative translational start sites. Biochem. Biophys. Res. Commun. 503: 1710-1715. 30078682
Kanazawa, T. and S. Matsumoto. (2014). Expression of transient receptor potential vanilloid 1 and anoctamin 1 in rat trigeminal ganglion neurons innervating the tongue. Brain Res Bull 106: 17-20. 24792786
Kawashima Y., Kurima K., Pan B., Griffith AJ. and Holt JR. (2015). Transmembrane channel-like (TMC) genes are required for auditory and vestibular mechanosensation. Pflugers Arch. 467(1):85-94. 25074487
Kawashima, Y., G.S. Géléoc, K. Kurima, V. Labay, A. Lelli, Y. Asai, T. Makishima, D.K. Wu, C.C. Della Santina, J.R. Holt, and A.J. Griffith. (2011). Mechanotransduction in mouse inner ear hair cells requires transmembrane channel-like genes. J Clin Invest 121: 4796-4809. 22105175
Keramidas A. and Lynch JW. (2013). An outline of desensitization in pentameric ligand-gated ion channel receptors. Cell Mol Life Sci. 70(7):1241-53. 22936353
Khelashvili, G., M.E. Falzone, X. Cheng, B.C. Lee, A. Accardi, and H. Weinstein. (2019). Dynamic modulation of the lipid translocation groove generates a conductive ion channel in Ca-bound nhTMEM16. Nat Commun 10: 4972. 31672969
Khelashvili, G., X. Cheng, M.E. Falzone, M. Doktorova, A. Accardi, and H. Weinstein. (2019). Membrane lipids are both the substrates and a mechanistically responsive environment of TMEM16 scramblase proteins. J Comput Chem. [Epub: Ahead of Print] 31750558
Kim, K.X. and R. Fettiplace. (2013). Developmental changes in the cochlear hair cell mechanotransducer channel and their regulation by transmembrane channel-like proteins. J Gen Physiol 141: 141-148. 23277480
Kim, K.X., M. Beurg, C.M. Hackney, D.N. Furness, S. Mahendrasingam, and R. Fettiplace. (2013). The role of transmembrane channel-like proteins in the operation of hair cell mechanotransducer channels. J Gen Physiol 142: 493-505. 24127526
Kiyosue, T., K. Yamaguchi-Shinozaki, and K. Shinozaki. (1994). ERD15, a cDNA for a dehydration-induced gene from Arabidopsis thaliana. Plant Physiol. 106: 1707. 7846179
Kralt, A., M. Carretta, M. Mari, F. Reggiori, A. Steen, B. Poolman, and L.M. Veenhoff. (2015). Intrinsically disordered linker and plasma membrane-binding motif sort Ist2 and Ssy1 to junctions. Traffic 16: 135-147. 25409870
Kumar, S., W. Namkung, A.S. Verkman, and P.K. Sharma. (2012). Novel 5-substituted benzyloxy-2-arylbenzofuran-3-carboxylic acids as calcium activated chloride channel inhibitors. Bioorg Med Chem 20: 4237-4244. 22739085
Kunzelmann, K., I. Cabrita, P. Wanitchakool, J. Ousingsawat, L. Sirianant, R. Benedetto, and R. Schreiber. (2015). Modulating Ca2+ signals: a common theme for TMEM16, Ist2, and TMC. Pflugers Arch. [Epub: Ahead of Print] 26700940
Kurima, K., S. Ebrahim, B. Pan, M. Sedlacek, P. Sengupta, B.A. Millis, R. Cui, H. Nakanishi, T. Fujikawa, Y. Kawashima, B.Y. Choi, K. Monahan, J.R. Holt, A.J. Griffith, and B. Kachar. (2015). TMC1 and TMC2 Localize at the Site of Mechanotransduction in Mammalian Inner Ear Hair Cell Stereocilia. Cell Rep 12: 1606-1617. 26321635
Kurima, K., Y. Yang, K. Sorber, and A.J. Griffith. (2003). Characterization of the transmembrane channel-like (TMC) gene family: functional clues from hearing loss and epidermodysplasia verruciformis. Genomics 82: 300-308. 12906855
Labay, V., R.M. Weichert, T. Makishima, and A.J. Griffith. (2010). Topology of transmembrane channel-like gene 1 protein. Biochemistry 49: 8592-8598. 20672865
Le, S.C., Z. Jia, J. Chen, and H. Yang. (2019). Molecular basis of PIP-dependent regulation of the Ca-activated chloride channel TMEM16A. Nat Commun 10: 3769. 31434906
Le, T., S.C. Le, and H. Yang. (2019). Subdued is a moonlighting transmembrane protein 16 (TMEM16) that transports ions and phospholipids. J. Biol. Chem. [Epub: Ahead of Print] 30700552
Le, T., S.C. Le, Y. Zhang, P. Liang, and H. Yang. (2020). Evidence that polyphenols do not inhibit the phospholipid scramblase TMEM16F. J. Biol. Chem. 295: 12537-12544. 32709749
Le, T., Z. Jia, S.C. Le, Y. Zhang, J. Chen, and H. Yang. (2019). An inner activation gate controls TMEM16F phospholipid scrambling. Nat Commun 10: 1846. 31015464
Li, Q., A. Dutta, C. Kresge, A. Bugde, and A.P. Feranchak. (2018). Bile acids stimulate cholangiocyte fluid secretion by activation of transmembrane member 16A Cl channels. Hepatology. [Epub: Ahead of Print] 29360145
Li, R.S., Y. Wang, H.S. Chen, F.Y. Jiang, Q. Tu, W.J. Li, and R.X. Yin. (2016). TMEM16A contributes to angiotensin II-induced cerebral vasoconstriction via the RhoA/ROCK signaling pathway. Mol Med Rep 13: 3691-3699. 26955761
Li, X., X. Yu, X. Chen, Z. Liu, G. Wang, C. Li, E.Y.M. Wong, M.H. Sham, J. Tang, J. He, W. Xiong, Z. Liu, and P. Huang. (2019). Localization of TMC1 and LHFPL5 in auditory hair cells in neonatal and adult mice. FASEB J. fj201802155RR. [Epub: Ahead of Print] 30808210
Lim, N.K., A.K. Lam, and R. Dutzler. (2016). Independent activation of ion conduction pores in the double-barreled calcium-activated chloride channel TMEM16A. J Gen Physiol 148: 375-392. 27799318
Lin J., Jiang Y., Li L., Liu Y., Tang H. and Jiang D. (2015). TMEM16A mediates the hypersecretion of mucus induced by Interleukin-13. Exp Cell Res. 334(2):260-9. 25770012
Liu J., Liu Y., Ren Y., Kang L. and Zhang L. (2014). Transmembrane protein with unknown function 16A overexpression promotes glioma formation through the nuclear factor-kappaB signaling pathway. Mol Med Rep. 9(3):1068-74. 24401903
Liu, S., S. Wang, L. Zou, J. Li, C. Song, J. Chen, Q. Hu, L. Liu, P. Huang, and W. Xiong. (2019). TMC1 is an essential component of a leak channel that modulates tonotopy and excitability of auditory hair cells in mice. Elife 8:. 31661074
Liu, X., J. Wang, and L. Sun. (2018). Structure of the hyperosmolality-gated calcium-permeable channel OSCA1.2. Nat Commun 9: 5060. 30498218
Loewen, M.E. and G.W. Forsyth. (2005). Structure and function of CLCA proteins. Physiol. Rev. 85: 1061-1092. 15987802
Lu, P., Q. Ding, S. Ding, Y. Fan, X. Li, D. Tian, and M. Liu. (2017). Transmembrane channel-like protein 8 as a potential biomarker for poor prognosis of hepatocellular carcinoma. Mol Clin Oncol 7: 244-248. 28781795
Lv, M., G. You, J. Wang, Q. Fu, A. Gupta, J. Li, and J. Sun. (2019). Identification of a novel ANO5 missense mutation in a Chinese family with familial florid osseous dysplasia. J Hum Genet 64: 599-607. 30996299
Maeda, R., K.S. Kindt, W. Mo, C.P. Morgan, T. Erickson, H. Zhao, R. Clemens-Grisham, P.G. Barr-Gillespie, and T. Nicolson. (2014). Tip-link protein protocadherin 15 interacts with transmembrane channel-like proteins TMC1 and TMC2. Proc. Natl. Acad. Sci. USA 111: 12907-12912. 25114259
Makabe, A., Y. Kawashima, Y. Sakamaki, A. Maruyama, T. Fujikawa, T. Ito, K. Kurima, A.J. Griffith, and T. Tsutsumi. (2020). Systemic Fluorescent Gentamicin Enters Neonatal Mouse Hair Cells Predominantly Through Sensory Mechanoelectrical Transduction Channels. J Assoc Res Otolaryngol. [Epub: Ahead of Print] 32152768
Mancina, R.M., P. Dongiovanni, S. Petta, P. Pingitore, M. Meroni, R. Rametta, J. Borén, T. Montalcini, A. Pujia, O. Wiklund, G. Hindy, R. Spagnuolo, B.M. Motta, R.M. Pipitone, A. Craxì, S. Fargion, V. Nobili, P. Käkelä, V. Kärjä, V. Männistö, J. Pihlajamäki, D.F. Reilly, J. Castro-Perez, J. Kozlitina, L. Valenti, and S. Romeo. (2016). The MBOAT7-TMC4 Variant rs641738 Increases Risk of Nonalcoholic Fatty Liver Disease in Individuals of European Descent. Gastroenterology. [Epub: Ahead of Print] 26850495
Manji, S.S., K.A. Miller, L.H. Williams, and H.H. Dahl. (2012). Identification of three novel hearing loss mouse strains with mutations in the Tmc1 gene. Am J Pathol 180: 1560-1569. 22330676
Martins, J.R., D. Faria, P. Kongsuphol, B. Reisch, R. Schreiber, and K. Kunzelmann. (2011). Anoctamin 6 is an essential component of the outwardly rectifying chloride channel. Proc. Natl. Acad. Sci. USA 108: 18168-18172. 22006324
Maurya, D.K. and A. Menini. (2014). Developmental expression of the calcium-activated chloride channels TMEM16A and TMEM16B in the mouse olfactory epithelium. Dev Neurobiol 74: 657-675. 24318978
Mazzone, A., S.J. Gibbons, S.T. Eisenman, P.R. Strege, T. Zheng, M. D''Amato, T. Ordog, M.E. Fernandez-Zapico, and G. Farrugia. (2019). Direct repression of anoctamin 1 ( ANO1) gene transcription by Gli proteins. FASEB J. fj201802373R. [Epub: Ahead of Print] 30802137
Medrano-Soto, A., G. Moreno-Hagelsieb, D. McLaughlin, Z.S. Ye, K.J. Hendargo, and M.H. Saier, Jr. (2018). Bioinformatic characterization of the Anoctamin Superfamily of Ca2+-activated ion channels and lipid scramblases. PLoS One 13: e0192851. 29579047
Meyer, C.G., N.M. Gasmelseed, A. Mergani, M.M. Magzoub, B. Muntau, T. Thye, and R.D. Horstmann. (2005). Novel TMC1 structural and splice variants associated with congenital nonsyndromic deafness in a Sudanese pedigree. Hum Mutat 25: 100. 15605408
Milenkovic, V.M., M. Brockmann, H. Stöhr, B.H. Weber, and O. Strauss. (2010). Evolution and functional divergence of the anoctamin family of membrane proteins. BMC Evol Biol 10: 319. 20964844
Miyauchi, T., T. Nomura, S. Suzuki, M. Takeda, S. Shinkuma, K. Arita, Y. Fujita, and H. Shimizu. (2016). Genetic analysis of a novel splice-site mutation in TMC8 reveals the in vivo importance of the transmembrane channel-like domain of TMC8. Br J Dermatol. [Epub: Ahead of Print] 26997147
Mohanakumar, S., J. Majgaard, N. Telinius, N. Katballe, E. Pahle, V.E. Hjortdal, and D.M.B. Boedtkjer. (2018). Spontaneous and α-adrenoceptor-induced contractility in human collecting lymphatic vessels require chloride. Am. J. Physiol. Heart Circ Physiol. [Epub: Ahead of Print] 29631375
Mroz, M.S. and S.J. Keely. (2012). Epidermal growth factor chronically upregulates Ca2+-dependent Cl- conductance and TMEM16A expression in intestinal epithelial cells. J. Physiol. 590: 1907-1920. 22351639
Nakanishi H., Kurima K., Kawashima Y. and Griffith AJ. (2014). Mutations of TMC1 cause deafness by disrupting mechanoelectrical transduction. Auris Nasus Larynx. 41(5):399-408. 24933710
Ni, Y.L., A.S. Kuan, and T.Y. Chen. (2014). Activation and inhibition of TMEM16A calcium-activated chloride channels. PLoS One 9: e86734. 24489780
Nist-Lund, C.A., B. Pan, A. Patterson, Y. Asai, T. Chen, W. Zhou, H. Zhu, S. Romero, J. Resnik, D.B. Polley, G.S. Géléoc, and J.R. Holt. (2019). Improved TMC1 gene therapy restores hearing and balance in mice with genetic inner ear disorders. Nat Commun 10: 236. 30670701
Oh, U. and J. Jung. (2016). Cellular functions of TMEM16/anoctamin. Pflugers Arch 468: 443-453. 26811235
Ohba, C., M. Kato, N. Takahashi, H. Osaka, T. Shiihara, J. Tohyama, S. Nabatame, J. Azuma, Y. Fujii, M. Hara, R. Tsurusawa, T. Inoue, R. Ogata, Y. Watanabe, N. Togashi, H. Kodera, M. Nakashima, Y. Tsurusaki, N. Miyake, F. Tanaka, H. Saitsu, and N. Matsumoto. (2015). De novo KCNT1 mutations in early-onset epileptic encephalopathy. Epilepsia 56: e121-128. 26140313
Ousingsawat, J., J.R. Martins, R. Schreiber, J.R. Rock, B.D. Harfe, and K. Kunzelmann. (2009). Loss of TMEM16A causes a defect in epithelial Ca2+-dependent chloride transport. J. Biol. Chem. 284: 28698-28703. 19679661
Pacentine, I.V. and T. Nicolson. (2019). Subunits of the mechano-electrical transduction channel, Tmc1/2b, require Tmie to localize in zebrafish sensory hair cells. PLoS Genet 15: e1007635. 30726219
Pan, B., G.S. Géléoc, Y. Asai, G.C. Horwitz, K. Kurima, K. Ishikawa, Y. Kawashima, A.J. Griffith, and J.R. Holt. (2013). TMC1 and TMC2 Are Components of the Mechanotransduction Channel in Hair Cells of the Mammalian Inner Ear. Neuron. 79: 504-515. 23871232
Pan, B., N. Akyuz, X.P. Liu, Y. Asai, C. Nist-Lund, K. Kurima, B.H. Derfler, B. György, W. Limapichat, S. Walujkar, L.N. Wimalasena, M. Sotomayor, D.P. Corey, and J.R. Holt. (2018). TMC1 Forms the Pore of Mechanosensory Transduction Channels in Vertebrate Inner Ear Hair Cells. Neuron. 99: 736-753.e6. 30138589
Pang C., Yuan H., Ren S., Chen Y., An H. and Zhan Y. (201). TMEM16A/B associated CaCC: structural and functional insights. Protein Pept Lett. 21(1):94-9. 24151904
Pang, C.L., H.B. Yuan, T.G. Cao, J.G. Su, Y.F. Chen, H. Liu, H. Yu, H.L. Zhang, Y. Zhan, H.L. An, and Y.B. Han. (2015). Molecular simulation assisted identification of Ca2+ binding residues in TMEM16A. J Comput Aided Mol Des. [Epub: Ahead of Print] 26481648
Paulino, C., V. Kalienkova, A.K.M. Lam, Y. Neldner, and R. Dutzler. (2017). Activation mechanism of the calcium-activated chloride channel TMEM16A revealed by cryo-EM. Nature. [Epub: Ahead of Print] 29236691
Paulino, C., Y. Neldner, A.K. Lam, V. Kalienkova, J.D. Brunner, S. Schenck, and R. Dutzler. (2017). Structural basis for anion conduction in the calcium-activated chloride channel TMEM16A. Elife 6:. 28561733
Peters CJ., Yu H., Tien J., Jan YN., Li M. and Jan LY. (2015). Four basic residues critical for the ion selectivity and pore blocker sensitivity of TMEM16A calcium-activated chloride channels. Proc Natl Acad Sci U S A. 112(11):3547-52. 25733897
Peters, C.J., J.M. Gilchrist, J. Tien, N.P. Bethel, L. Qi, T. Chen, L. Wang, Y.N. Jan, M. Grabe, and L.Y. Jan. (2018). The Sixth Transmembrane Segment Is a Major Gating Component of the TMEM16A Calcium-Activated Chloride Channel. Neuron. [Epub: Ahead of Print] 29478917
Piechowicz, K.A., E.C. Truong, K.M. Javed, R.R. Chaney, J.Y. Wu, P.W. Phuan, A.S. Verkman, and M.O. Anderson. (2016). Synthesis and evaluation of 5,6-disubstituted thiopyrimidine aryl aminothiazoles as inhibitors of the calcium-activated chloride channel TMEM16A/Ano1. J Enzyme Inhib Med Chem 1-7. [Epub: Ahead of Print] 26796863
Planells-Cases, R. and T.J. Jentsch. (2009). Chloride channelopathies. Biochim. Biophys. Acta. [Epub: Ahead of Print] 19419694
Qin, Y., Y. Jiang, A.S. Sheikh, S. Shen, J. Liu, and D. Jiang. (2016). Interleukin-13 stimulates MUC5AC expression via a STAT6-TMEM16A-ERK1/2 pathway in human airway epithelial cells. Int Immunopharmacol 40: 106-114. 27588910
Qiu, X. and U. Müller. (2018). Mechanically Gated Ion Channels in Mammalian Hair Cells. Front Cell Neurosci 12: 100. 29755320
Reichhart, N., S. Schöberl, S. Keckeis, A.S. Alfaar, C. Roubeix, M. Cordes, S. Crespo-Garcia, A. Haeckel, N. Kociok, R. Föckler, G. Fels, A. Mataruga, R. Rauh, V.M. Milenkovic, K. Zühlke, E. Klussmann, E. Schellenberger, and O. Strauß. (2019). Anoctamin-4 is a bona fide Ca-dependent non-selective cation channel. Sci Rep 9: 2257. 30783137
Salzer, I. and S. Boehm. (2019). Calcium-activated chloride channels: Potential targets for antinociceptive therapy. Int J Biochem. Cell Biol. 111: 37-41. 31005634
Schenk, L.K., B. Buchholz, S.F. Henke, U. Michgehl, C. Daniel, K. Amann, K. Kunzelmann, and H.J. Pavenstädt. (2018). Nephron-specific knockout of TMEM16A leads to reduced number of glomeruli and albuminuria. Am. J. Physiol. Renal Physiol. [Epub: Ahead of Print] 30156115
Schenk, L.K., U. Schulze, S. Henke, T. Weide, and H. Pavenstädt. (2016). TMEM16F Regulates Baseline Phosphatidylserine Exposure and Cell Viability in Human Embryonic Kidney Cells. Cell Physiol Biochem 38: 2452-2463. 27287741
Schreiber, R., I. Uliyakina, P. Kongsuphol, R. Warth, M. Mirza, J.R. Martins, and K. Kunzelmann. (2010). Expression and function of epithelial anoctamins. J. Biol. Chem. 285: 7838-7845. 20056604
Scudieri, P., E. Sondo, L. Ferrera, and L.J. Galietta. (2012). The anoctamin family: TMEM16A and TMEM16B as calcium-activated chloride channels. Exp Physiol 97: 177-183. 21984732
Scudieri, P., I. Musante, A. Gianotti, O. Moran, and L.J. Galietta. (2016). Intermolecular Interactions in the TMEM16A Dimer Controlling Channel Activity. Sci Rep 6: 38788. 27929144
Segawa, K., J. Suzuki, and S. Nagata. (2011). Constitutive exposure of phosphatidylserine on viable cells. Proc. Natl. Acad. Sci. USA 108: 19246-19251. 22084121
Shimizu, T., T. Iehara, K. Sato, T. Fujii, H. Sakai, and Y. Okada. (2013). TMEM16F is a component of a Ca2+-activated Cl- channel but not a volume-sensitive outwardly rectifying Cl- channel. Am. J. Physiol. Cell Physiol. 304: C748-759. 23426967
Shin, D.H., M. Kim, Y. Kim, I. Jun, J. Jung, J.H. Nam, M.H. Cheng, and M.G. Lee. (2020). Bicarbonate permeation through anion channels: its role in health and disease. Pflugers Arch. [Epub: Ahead of Print] 32621085
Shiwarski, D.J., C. Shao, A. Bill, J. Kim, D. Xiao, C.A. Bertrand, R.S. Seethala, D. Sano, J.N. Myers, P. Ha, J. Grandis, L.A. Gaither, M.A. Puthenveedu, and U. Duvvuri. (2014). To "Grow" or "Go": TMEM16A Expression as a Switch between Tumor Growth and Metastasis in SCCHN. Clin Cancer Res 20: 4673-4688. 24919570
Sirianant L., Ousingsawat J., Tian Y., Schreiber R. and Kunzelmann K. (2014). TMC8 (EVER2) attenuates intracellular signaling by Zn2+ and Ca2+ and suppresses activation of Cl- currents. Cell Signal. 26(12):2826-33. 25220380
Smith, C.J., J.D. Watson, W.C. Spencer, T. O'Brien, B. Cha, A. Albeg, M. Treinin, and D.M. Miller, 3rd. (2010). Time-lapse imaging and cell-specific expression profiling reveal dynamic branching and molecular determinants of a multi-dendritic nociceptor in C. elegans. Dev Biol 345: 18-33. 20537990
Smith, E.T., I. Pacentine, A. Shipman, M. Hill, and T. Nicolson. (2020). Disruption of genes in zebrafish reveals subunit requirements in subtypes of inner ear hair cells. J. Neurosci. [Epub: Ahead of Print] 32371604
Soler, D.C., M. Manikandan, S.R. Gopal, A.E. Sloan, T.S. McCormick, and R. Stepanyan. (2019). An uncharacterized region within the N-terminus of mouse TMC1 precludes trafficking to plasma membrane in a heterologous cell line. Sci Rep 9: 15263. 31649296
Sookoian, S., D. Flichman, M.E. Garaycoechea, C. Gazzi, J.S. Martino, G.O. Castaño, and C.J. Pirola. (2018). Lack of evidence supporting a role of TMC4-rs641738 missense variant-MBOAT7- intergenic downstream variant-in the Susceptibility to Nonalcoholic Fatty Liver Disease. Sci Rep 8: 5097. 29572551
Spalthoff, C. and M.C. Göpfert. (2016). Sensing pH with TMCs. Neuron. 91: 6-8. 27387645
Sui, J., C. Zhang, X. Fang, J. Wang, Y. Li, J. Wang, L. Wang, J. Dong, Z. Zhou, C. Li, J. Chen, T. Ma, and D. Chen. (2020). Dual role of Ca-activated Cl channel transmembrane member 16A in lipopolysaccharide-induced intestinal epithelial barrier dysfunction in vitro. Cell Death Dis 11: 404. 32472021
Suzuki T., Suzuki J. and Nagata S. (2014). Functional swapping between transmembrane proteins TMEM16A and TMEM16F. J Biol Chem. 289(11):7438-47. 24478309
Suzuki, J., M. Umeda, P.J. Sims, and S. Nagata. (2010). Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468: 834-838. 21107324
Suzuki, J., T. Fujii, T. Imao, K. Ishihara, H. Kuba, and S. Nagata. (2013). Calcium-dependent Phospholipid Scramblase Activity of TMEM16 Protein Family Members. J. Biol. Chem. 288: 13305-13316. 23532839
Tien, J., H.Y. Lee, D.L. Minor, Jr, Y.N. Jan, and L.Y. Jan. (2013). Identification of a dimerization domain in the TMEM16A calcium-activated chloride channel (CaCC). Proc. Natl. Acad. Sci. USA 110: 6352-6357. 23576756
Truong, E.C., P.W. Phuan, A.L. Reggi, L. Ferrera, L.J.V. Galietta, S.E. Levy, A.C. Moises, O. Cil, E. Diez-Cecilia, S. Lee, A.S. Verkman, and M.O. Anderson. (2017). Substituted 2-acylamino-cycloalkylthiophene-3-carboxylic acid arylamides as inhibitors of the calcium-activated chloride channel transmembrane protein 16A (TMEM16A). J Med Chem. [Epub: Ahead of Print] 28493701
Tsuji, T., J. Cheng, T. Tatematsu, A. Ebata, H. Kamikawa, A. Fujita, S. Gyobu, K. Segawa, H. Arai, T. Taguchi, S. Nagata, and T. Fujimoto. (2019). Predominant localization of phosphatidylserine at the cytoplasmic leaflet of the ER, and its TMEM16K-dependent redistribution. Proc. Natl. Acad. Sci. USA 116: 13368-13373. 31217287
Wang Y., Alam T., Hill-Harfe K., Lopez AJ., Leung CK., Iribarne D., Bruggeman B., Miyamoto MM., Harfe BD. and Choe KP. (2013). Phylogenetic, expression, and functional analyses of anoctamin homologs in Caenorhabditis elegans. Am J Physiol Regul Integr Comp Physiol. 305(11):R1376-89. 24049119
Wang, H., K. Wu, J. Guan, J. Yang, L. Xie, F. Xiong, L. Lan, D. Wang, and Q. Wang. (2018). Identification of four TMC1 variations in different Chinese families with hereditary hearing loss. Mol Genet Genomic Med. [Epub: Ahead of Print] 29654653
Wang, L., Y. Iwasaki, K.K. Andra, K. Pandey, A.K. Menon, and P. Bütikofer. (2018). Scrambling of natural and fluorescently tagged phosphatidylinositol by reconstituted G protein-coupled receptor and TMEM16 scramblases. J. Biol. Chem. [Epub: Ahead of Print] 30287690
Wang, P., W. Zhao, J. Sun, T. Tao, X. Chen, Y.Y. Zheng, C.H. Zhang, Z. Chen, Y.Q. Gao, F. She, Y.Q. Li, L.S. Wei, P. Lu, C.P. Chen, J. Zhou, D.Q. Wang, L. Chen, X.H. Shi, L. Deng, R. ZhuGe, H.Q. Chen, and M.S. Zhu. (2017). Inflammatory mediators mediate airway smooth muscle contraction through a G protein-coupled receptor-transmembrane protein 16A-voltage-dependent Ca2+ channel axis and contribute to bronchial hyperresponsiveness in asthma. J Allergy Clin Immunol. [Epub: Ahead of Print] 28754608
Wang, Q., M.D. Leo, D. Narayanan, K.P. Kuruvilla, and J.H. Jaggar. (2016). Local coupling of TRPC6 to ANO1/TMEM16A channels in smooth muscle cells amplifies vasoconstriction in cerebral arteries. Am. J. Physiol. Cell Physiol. 310: C1001-1009. 27147559
Wang, X., G. Li, J. Liu, J. Liu, and X.Z. Xu. (2016). TMC-1 Mediates Alkaline Sensation in C. elegans through Nociceptive Neuron.s. Neuron. 91: 146-154. 27321925
Watanabe, R., T. Sakuragi, H. Noji, and S. Nagata. (2018). Single-molecule analysis of phospholipid scrambling by TMEM16F. Proc. Natl. Acad. Sci. USA 115: 3066-3071. 29507235
Winkler M., Kuhner P., Russ U., Ortiz D., Bryan J. and Quast U. (2012). Role of the amino-terminal transmembrane domain of sulfonylurea receptor SUR2B for coupling to K(IR)6.2, ligand binding, and oligomerization. Naunyn Schmiedebergs Arch Pharmacol. 385(3):287-98. 22089636
Winpenny, J.P., L.L. Marsey, and D.W. Sexton. (2009). The CLCA gene family: putative therapeutic target for respiratory diseases. Inflamm Allergy Drug Targets 8: 146-160. 19530997
Wozniak, K.L., W.A. Phelps, M. Tembo, M.T. Lee, and A.E. Carlson. (2018). The TMEM16A channel mediates the fast polyspermy block in. J Gen Physiol. [Epub: Ahead of Print] 30012842
Wu, C.J., X. Li, C.L. Sommers, K. Kurima, S. Huh, G. Bugos, L. Dong, W. Li, A.J. Griffith, and L.E. Samelson. (2020). Expression of a TMC6-TMC8-CIB1 heterotrimeric complex in lymphocytes is regulated by each of the components. J. Biol. Chem. [Epub: Ahead of Print] 32917726
Wu, Z., N. Grillet, B. Zhao, C. Cunningham, S. Harkins-Perry, B. Coste, S. Ranade, N. Zebarjadi, M. Beurg, R. Fettiplace, A. Patapoutian, and U. Müller. (2016). Mechanosensory hair cells express two molecularly distinct mechanotransduction channels. Nat Neurosci. [Epub: Ahead of Print] 27893727
Xu, J., M. El Refaey, L. Xu, L. Zhao, Y. Gao, K. Floyd, T. Karaze, P.M. Janssen, and R. Han. (2015). Genetic disruption of Ano5 in mice does not recapitulate human ANO5-deficient muscular dystrophy. Skelet Muscle 5: 43. 26693275
Yang, H., A. Kim, T. David, D. Palmer, T. Jin, J. Tien, F. Huang, T. Cheng, S.R. Coughlin, Y.N. Jan, and L.Y. Jan. (2012). TMEM16F forms a Ca2+-activated cation channel required for lipid scrambling in platelets during blood coagulation. Cell 151: 111-122. 23021219
Yang, T., W.A. Hendrickson, and H.M. Colecraft. (2014). Preassociated apocalmodulin mediates Ca2+-dependent sensitization of activation and inactivation of TMEM16A/16B Ca2+-gated Cl- channels. Proc. Natl. Acad. Sci. USA 111: 18213-18218. 25489088
Yang, Y.D., H. Cho, J.Y. Koo, M.H. Tak, Y. Cho, W.S. Shim, S.P. Park, J. Lee, B. Lee, B.M. Kim, R. Raouf, Y.K. Shin, and U. Oh. (2008). TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455: 1210-1215. 18724360
Ye, M., M. Xie, J. Zhu, C. Wang, R. Zhou, and X. Li. (2020). LPS-Inducible lncRNA TMC3-AS1 Negatively Regulates the Expression of IL-10. Front Immunol 11: 1418. 32774335
Yeh, W.H., O. Shubina-Oleinik, J.M. Levy, B. Pan, G.A. Newby, M. Wornow, R. Burt, J.C. Chen, J.R. Holt, and D.R. Liu. (2020). In vivo base editing restores sensory transduction and transiently improves auditory function in a mouse model of recessive deafness. Sci Transl Med 12:. 32493795
Yue, X., J. Zhao, X. Li, Y. Fan, D. Duan, X. Zhang, W. Zou, Y. Sheng, T. Zhang, Q. Yang, J. Luo, S. Duan, R. Xiao, and L. Kang. (2018). TMC Proteins Modulate Egg Laying and Membrane Excitability through a Background Leak Conductance in C. elegans. Neuron. 97: 571-585.e5. 29395910
Yue, X., Y. Sheng, L. Kang, and R. Xiao. (2019). Distinct functions of TMC channels: a comparative overview. Cell Mol Life Sci. [Epub: Ahead of Print] 31584127
Zeng, J.W., B.Y. Chen, X.F. Lv, L. Sun, X.L. Zeng, H.Q. Zheng, Y.H. Du, G.L. Wang, M.M. Ma, and Y.Y. Guan. (2018). TMEM16A Participates in Hydrogen Peroxide-Induced Apoptosis by Facilitating Mitochondria-Dependent Pathway in Vascular Smooth Muscle Cells. Br J Pharmacol. [Epub: Ahead of Print] 29968377
Zhang Y., Wang X., Wang H., Jiao J., Li Y., Fan E., Zhang L. and Bachert C. (2015). TMEM16A-Mediated Mucin Secretion in IL-13-Induced Nasal Epithelial Cells From Chronic Rhinosinusitis Patients. Allergy Asthma Immunol Res. 7(4):367-75. 25749771
Zhang, W., S. Wang, X. Zhang, K. Liu, J. Song, X. Leng, R. Luo, and L. Ran. (2019). Transmembrane Channel-Like 5 (TMC5) promotes prostate cancer cell proliferation through cell cycle regulation. Biochimie 165: 115-122. [Epub: Ahead of Print] 31356847
Zhang, X., H. Li, H. Zhang, Y. Liu, L. Huo, Z. Jia, Y. Xue, X. Sun, and W. Zhang. (2017). Inhibition of transmembrane member 16A calcium-activated chloride channels by natural flavonoids contributes to flavonoid anticancer effects. Br J Pharmacol 174: 2334-2345. 28452066
Zhang, X.D., J.H. Lee, P. Lv, W.C. Chen, H.J. Kim, D. Wei, W. Wang, C.R. Sihn, K.J. Doyle, J.R. Rock, N. Chiamvimonvat, and E.N. Yamoah. (2015). Etiology of distinct membrane excitability in pre- and posthearing auditory neurons relies on activity of Cl- channel TMEM16A. Proc. Natl. Acad. Sci. USA 112: 2575-2580. 25675481
Zhao, J. and Q.Y. Gao. (2019). TMEM16F inhibition limits pain-associated behavior and improves motor function by promoting microglia M2 polarization in mice. Biochem. Biophys. Res. Commun. 517: 603-610. 31409484
Zhao, P., A. Torcaso, A. Mariano, L. Xu, S. Mohsin, L. Zhao, and R. Han. (2014). Anoctamin 6 Regulates C2C12 Myoblast Proliferation. PLoS One 9: e92749. 24663380


Kessler, F. and G. Blobel (1996). Interaction of the protein import and folding machineries in the chloroplast. Proc. Natl. Acad. Sci. USA 93: 7684-7689. 8755536
Lübeck, J., J. Soll, M. Akita, E. Nielsen and K. Keegstra (1996). Topology of IEP110, a component of the chloroplastic protein import machinery present in the inner envelope membrane. J. EMBO 15: 4230-4238. 8861951
Tsai JY., Chu CC., Yeh YH., Chen LJ., Li HM. and Hsiao CD. (2013). Structural characterizations of the chloroplast translocon protein Tic110. Plant J. 75(5):847-57. 23711301
van den Wijngaard, P.W.J. and W.J. Vredenberg (1999). The envelope anion channel involved in chloroplast protein import is associated with Tic110. J. Biol. Chem. 274: 25201-25204. 10464239


Acharya, R., V. Carnevale, G. Fiorin, B.G. Levine, A.L. Polishchuk, V. Balannik, I. Samish, R.A. Lamb, L.H. Pinto, W.F. DeGrado, and M.L. Klein. (2010). Structure and mechanism of proton transport through the transmembrane tetrameric M2 protein bundle of the influenza A virus. Proc. Natl. Acad. Sci. USA 107: 15075-15080. 20689043
Andreas, L.B., M. Reese, M.T. Eddy, V. Gelev, Q.Z. Ni, E.A. Miller, L. Emsley, G. Pintacuda, J.J. Chou, and R.G. Griffin. (2015). Structure and Mechanism of the Influenza A M218-60 Dimer of Dimers. J. Am. Chem. Soc. 137: 14877-14886. 26218479
Balannik, V., V. Carnevale, G. Fiorin, B.G. Levine, R.A. Lamb, M.L. Klein, W.F. Degrado, and L.H. Pinto. (2010). Functional studies and modeling of pore-lining residue mutants of the influenza a virus M2 ion channel. Biochemistry 49: 696-708. 20028125
Cady, S.D., C. Goodman, C.D. Tatko, W.F. DeGrado, and M. Hong. (2007). Determining the orientation of uniaxially rotating membrane proteins using unoriented samples: a 2H, 13C, and 15N solid-state NMR investigation of the dynamics and orientation of a transmembrane helical bundle. J. Am. Chem. Soc. 129: 5719-5729. 17417850
Duong-Ly, K.C., V. Nanda, W.F. Degrado, and K.P. Howard. (2005). The conformation of the pore region of the M2 proton channel depends on lipid bilayer environment. Protein Sci. 14: 856-861. 15741338
Elkins, M.R., J.K. Williams, M.D. Gelenter, P. Dai, B. Kwon, I.V. Sergeyev, B.L. Pentelute, and M. Hong. (2017). Cholesterol-binding site of the influenza M2 protein in lipid bilayers from solid-state NMR. Proc. Natl. Acad. Sci. USA 114: 12946-12951. 29158386
Fischer, W.B. and H.J. Hsu. (2011). Viral channel forming proteins - modeling the target. Biochim. Biophys. Acta. 1808: 561-571. 20546700
Fischer, W.B. and M.S. Sansom. (2002). Viral ion channels: structure and function. Biochim. Biophys. Acta 1561: 27-45. 11988179
Fischer, W.B., M. Pitkeathly, B.A. Wallace, L.R. Forrest, G.R. Smith, and M.S.P. Sansom. (2000). Transmembrane peptide NB of influenza B: a simulation, structure and conductance study. Biochemistry 41: 12708-12716. 11027151
Fischer, W.B., Y.T. Wang, C. Schindler, and C.P. Chen. (2012). Mechanism of function of viral channel proteins and implications for drug development. Int Rev Cell Mol Biol 294: 259-321. 22364876
Homeyer, N., H. Ioannidis, F. Kolarov, G. Gauglitz, C. Zikos, A. Kolocouris, and H. Gohlke. (2015). Interpreting thermodynamic profiles of aminoadamantane compounds inhibiting the M2 proton channel of influenza A by free energy calculations. J Chem Inf Model. [Epub: Ahead of Print] 26690735
Hong M. and DeGrado WF. (2012). Structural basis for proton conduction and inhibition by the influenza M2 protein. Protein Sci. 21(11):1620-33. 23001990
Ivanovic, T., R. Rozendaal, D.L. Floyd, M. Popovic, A.M. van Oijen, and S.C. Harrison. (2012). Kinetics of proton transport into influenza virions by the viral m2 channel. PLoS One 7: e31566. 22412838
Jing, X., C. Ma, Y. Ohigashi, F.A. Oliveira, T.S. Jardetzky, L.H. Pinto, and R.A. Lamb. (2008). Functional studies indicate amantadine binds to the pore of the influenza A virus M2 proton-selective ion channel. Proc. Natl. Acad. Sci. USA 105: 10967-10972. 18669647
Kalita, M.M. and W.B. Fischer. (2017). Decoupled side chain and backbone dynamics for proton translocation - M2 of influenza A. J Mol Model 23: 212. 28646429
Kim, G., H.E. Raymond, A.L. Herneisen, A. Wong-Rolle, and K.P. Howard. (2019). The distal cytoplasmic tail of the influenza A M2 protein dynamically extends from the membrane. Biochim. Biophys. Acta. Biomembr 1861: 1421-1427. 31153909
Kukol, A., P.D. Adams, L.M. Rice, A.T. Brunger, and I.T. Arkin. (1999). Experimentally based orientational refinement of membrane protein models: a structure for the influenza A M2 H+ channel. J. Mol. Biol. 286: 951-962. 10024461
Leiding, T., J. Wang, J. Martinsson, W.F. DeGrado, and S.P. Arsköld. (2010). Proton and cation transport activity of the M2 proton channel from influenza A virus. Proc. Natl. Acad. Sci. USA 107: 15409-15414. 20713739
Liang, R., J.M. Swanson, J.J. Madsen, M. Hong, W.F. DeGrado, and G.A. Voth. (2016). Acid activation mechanism of the influenza A M2 proton channel. Proc. Natl. Acad. Sci. USA. [Epub: Ahead of Print] 27791184
Liao, S.Y., Y. Yang, D. Tietze, and M. Hong. (2015). The influenza m2 cytoplasmic tail changes the proton-exchange equilibria and the backbone conformation of the transmembrane histidine residue to facilitate proton conduction. J. Am. Chem. Soc. 137: 6067-6077. 25892574
Ma, C., A.L. Polishchuk, Y. Ohigashi, A.L. Stouffer, A. Schön, E. Magavern, X. Jing, J.D. Lear, E. Freire, R.A. Lamb, W.F. DeGrado, and L.H. Pinto. (2009). Identification of the functional core of the influenza A virus A/M2 proton-selective ion channel. Proc. Natl. Acad. Sci. USA 106: 12283-12288. 19590009
Mandala, V.S., M.D. Gelenter, and M. Hong. (2018). Transport-Relevant Protein Conformational Dynamics and Water Dynamics on Multiple Time Scales in an Archetypal Proton Channel: Insights from Solid-State NMR. J. Am. Chem. Soc. 140: 1514-1524. 29303574
Moffat, J.C., V. Vijayvergiya, P.F. Gao, T.A. Cross, D.J. Woodbury, and D.D. Busath. (2008). Proton transport through influenza A virus M2 protein reconstituted in vesicles. Biophys. J. 94: 434-445. 17827230
Mould, J.A., H. Li, C.S. Dudlak, J.D. Lear, A. Pekosz, R.A. Lamb, and L.H. Pinto. (2000). Mechanism for proton conduction of the M2 ion channel of influenza A virus. J. Biol. Chem. 275: 8592-8599. 10722698
Mould, J.A., J.E. Drury, S.M. Frings, U.B. Kaupp, A. Pekosz, R.A. Lamb, and L.H. Pinto. (2000). Permeation and activation of the M2 ion channel of influenza A virus. J. Biol. Chem. 75: 31038-31050. 10913133
Musharrafieh, R., P. Lagarias, C. Ma, G. Tan, A. Kolocouris, and J. Wang. (2019). The L46P mutant confers a novel allosteric mechanism of resistance towards the influenza A virus M2 S31N proton channel blockers. Mol Pharmacol. [Epub: Ahead of Print] 31175183
Pielak, R.M. and J.J. Chou. (2010). Flu channel drug resistance: a tale of two sites. Protein Cell 1: 246-258. 21203971
Pinto, L.H., G.R. Dieckmann, C.S. Gandhi, C.G. Papworth, J. Braman, M.A. Shaughnessy. J.D. Lear, R.A. Lamb, and W.F. DeGrado. (1997). A functionally defined model for the M2 proton channel of influenza A virus suggests a mechanism for its ion selectivity. Proc. Natl. Acad. Sci. USA 94: 11301-11306. 9326604
Schnell, J.R., and J.J. Chou (2008). Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451: 591-5. 18235503
Schroeder, C., H. Heider, E. Möncke-Buchner, and T.I. Lin. (2005). The influenza virus ion channel and maturation cofactor M2 is a cholesterol-binding protein. Eur Biophys. J. 34: 52-66. 15221235
Stouffer, A.L., R. Acharya, D. Salom, A.S. Levine, L. Di Costanzo, C.S. Soto, V. Tereshko, V. Nanda, S. Stayrook, and W.F. DeGrado (2008). Structural basis for the function and inhibition of an influenza virus proton channel. Nature 451: 596-9. 18235504
Tang, Y., F. Zaitseva, R.A. Lamb, and L.H. Pinto. (2002). The gate of the influenza virus M2 proton channel is formed by a single tryptophan residue. J. Biol. Chem. 277: 39880-39886. 12183461
Thomaston, J.L., M. Alfonso-Prieto, R.A. Woldeyes, J.S. Fraser, M.L. Klein, G. Fiorin, and W.F. DeGrado. (2015). High-resolution structures of the M2 channel from influenza A virus reveal dynamic pathways for proton stabilization and transduction. Proc. Natl. Acad. Sci. USA 112: 14260-14265. 26578770
Thomaston, J.L., N.F. Polizzi, A. Konstantinidi, J. Wang, A. Kolocouris, and W.F. DeGrado. (2018). Inhibitors of the M2 Proton Channel Engage and Disrupt Transmembrane Networks of Hydrogen-Bonded Waters. J. Am. Chem. Soc. [Epub: Ahead of Print] 30165017
Tian, C. K. Tobler, R.A. Lamb, L.H. Pinto, and T.A. Cross. (2002). Expression and initial structural insights from solid-stage NMR of the M2 proton channel from influenza A virus. Biochemistry 41: 11294-11300. 12220196
Torabifard, H., A. Panahi, and C.L. Brooks, 3rd. (2020). M2 amphipathic helices facilitate pH-dependent conformational transition in influenza A virus. Proc. Natl. Acad. Sci. USA 117: 3583-3591. 32015120
Vorobjev, Y.N. (2020). [Design of an Efficient Inhibitor for the Influenza A Virus M2 Ion Channel]. Mol Biol (Mosk) 54: 321-332. 32392203
Wang, R., Y. Zhu, X. Lin, C. Ren, J. Zhao, F. Wang, X. Gao, R. Xiao, L. Zhao, H. Chen, M. Jin, W. Ma, and H. Zhou. (2019). Influenza M2 protein regulates MAVS-mediated signaling pathway through interacting with MAVS and increasing ROS production. Autophagy 1-19. [Epub: Ahead of Print] 30741586
Wang, T., S.D. Cady, and M. Hong. (2012). NMR determination of protein partitioning into membrane domains with different curvatures and application to the influenza m2 Peptide. Biophys. J. 102: 787-794. 22385849
Wang, Y., S.H. Park, Y. Tian, and S.J. Opella. (2013). Impact of histidine residues on the transmembrane helices of viroporins. Mol. Membr. Biol. 30: 360-369. 24102567
Witter, R., F. Nozirov, U. Sternberg, T.A. Cross, A.S. Ulrich, and R. Fu. (2008). Solid-state 19F NMR spectroscopy reveals that Trp41 participates in the gating mechanism of the M2 proton channel of influenza A virus. J. Am. Chem. Soc. 130: 918-924. 18163621


Bocharov, E.V., Y.E. Pustovalova, K.V. Pavlov, P.E. Volynsky, M.V. Goncharuk, Y.S. Ermolyuk, D.V. Karpunin, A.A. Schulga, M.P. Kirpichnikov, R.G. Efremov, I.V. Maslennikov, and A.S. Arseniev. (2007). Unique dimeric structure of BNip3 transmembrane domain suggests membrane permeabilization as a cell death trigger. J. Biol. Chem. 282: 16256-16266. 17412696


Adams, J.M. and S. Cory. (1998). The Bcl-2 protein family: arbiters of cell survival. Science 281: 1322-1326. 9735050
Andreu-Fernández, V., M. Sancho, A. Genovés, E. Lucendo, F. Todt, J. Lauterwasser, K. Funk, G. Jahreis, E. Pérez-Payá, I. Mingarro, F. Edlich, and M. Orzáez. (2017). Bax transmembrane domain interacts with prosurvival Bcl-2 proteins in biological membranes. Proc. Natl. Acad. Sci. USA 114: 310-315. 28028215
Annis, M.G., E.L. Soucie, P.J. Dlugosz, J.A. Cruz-Aguado, L.Z. Penn, B. Leber, and D.W. Andrews. (2005). Bax forms multispanning monomers that oligomerize to permeabilize membranes during apoptosis. EMBO. J. 24: 2096-2103. 15920484
Antonsson, B., S. Montessuit, S. Lauper, R. Eskes, and J. Martinou. (2000). Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem. J. 345: 271-278. 10620504
Arbel, N. and V. Shoshan-Barmatz. (2010). Voltage-dependent anion channel 1-based peptides interact with Bcl-2 to prevent antiapoptotic activity. J. Biol. Chem. 285: 6053-6062. 20037155
Bleicken, S., T.E. Assafa, C. Stegmueller, A. Wittig, A.J. Garcia-Saez, and E. Bordignon. (2018). Topology of active, membrane-embedded Bax in the context of a toroidal pore. Cell Death Differ. [Epub: Ahead of Print] 30185826
Boise, L., M. Gonzalez-Garcia, C. Postema, L. Ding, T. Lindsten, L. Turka, X. Mao, G. Nunez, and C. Thompson. (1993). bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74: 597-608. 8358789
Bruey, J.M., N. Bruey-Sedano, F. Luciano, D. Zhai, R. Balpai, C. Xu, C.L. Kress, B. Bailly-Maitre, X. Li, A. Osterman, S. Matsuzawa, A.V. Terskikh, B. Faustin, and J.C. Reed. (2007). Bcl-2 and Bcl-XL regulate proinflammatory caspase-1 activation by interaction with NALP1. Cell 129: 45-56. 17418785
Cosentino, K. and A.J. García-Sáez. (2016). Bax and Bak Pores: Are We Closing the Circle? Trends Cell Biol. [Epub: Ahead of Print] 27932064
Czabotar, P.E., D. Westphal, G. Dewson, S. Ma, C. Hockings, W.D. Fairlie, E.F. Lee, S. Yao, A.Y. Robin, B.J. Smith, D.C. Huang, R.M. Kluck, J.M. Adams, and P.M. Colman. (2013). Bax Crystal Structures Reveal How BH3 Domains Activate Bax and Nucleate Its Oligomerization to Induce Apoptosis. Cell 152: 519-531. 23374347
Czabotar, P.E., E.F. Lee, G.V. Thompson, A.Z. Wardak, W.D. Fairlie, and P.M. Colman. (2011). Mutation to Bax beyond the BH3 domain disrupts interactions with pro-survival proteins and promotes apoptosis. J. Biol. Chem. 286: 7123-7131. 21199865
Einsele-Scholz, S., S. Malmsheimer, K. Bertram, D. Stehle, J. Johänning, M. Manz, P.T. Daniel, B.F. Gillissen, K. Schulze-Osthoff, and F. Essmann. (2016). Bok is a genuine multi-BH-domain protein that triggers apoptosis in the absence of Bax and Bak. J Cell Sci 129: 2213-2223. 27076518
Faustin, B., Y. Chen, D. Zhai, G. Le Negrate, L. Lartigue, A. Satterthwait, and J.C. Reed. (2009). Mechanism of Bcl-2 and Bcl-X(L) inhibition of NLRP1 inflammasome: loop domain-dependent suppression of ATP binding and oligomerization. Proc. Natl. Acad. Sci. USA 106: 3935-3940. 19223583
Garg P., Nemec KN., Khaled AR. and Tatulian SA. (2013). Transmembrane pore formation by the carboxyl terminus of Bax protein. Biochim Biophys Acta. 1828(2):732-42. 22906710
Gomez-Crisostomo NP., Lopez-Marure R., Zapata E., Zazueta C. and Martinez-Abundis E. (2013). Bax induces cytochrome c release by multiple mechanisms in mitochondria from MCF7 cells. J Bioenerg Biomembr. 45(5):441-8. 23536162
Grinberg, M., M. Schwarz, Y. Zaltsman, T. Eini, H. Niv, S. Pietrokovski, and A. Gross. (2005). Mitochondrial carrier homolog 2 is a target of tBID in cells signaled to die by tumor necrosis factor alpha. Mol. Cell. Biol. 25(11):4579-4590. 15899861
Gross, A. (2005). Mitochondrial carrier homolog 2: a clue to cracking the BCL-2 family riddle? J. Bioenerg. Biomembr. 37(3):113-119.
Hosoi, K.I., N. Miyata, S. Mukai, S. Furuki, K. Okumoto, E.H. Cheng, and Y. Fujiki. (2017). The VDAC2-BAK axis regulates peroxisomal membrane permeability. J. Cell Biol. 216: 709-722. 28174205
Iyer S., Bell F., Westphal D., Anwari K., Gulbis J., Smith BJ., Dewson G. and Kluck RM. (2015). Bak apoptotic pores involve a flexible C-terminal region and juxtaposition of the C-terminal transmembrane domains. Cell Death Differ. 22(10):1665-75. 25744027
Jääskeläinen, M., A. Nieminen, R.M. Pökkylä, M. Kauppinen, A. Liakka, M. Heikinheimo, T.E. Vaskivuo, J. Klefström, and J.S. Tapanainen. (2010). Regulation of cell death in human fetal and adult ovaries--role of Bok and Bcl-X(L). Mol. Cell Endocrinol 330: 17-24. 20673843
Jiang, Z. and H. Zhang. (2019). Curvature effect and stabilize ruptured membrane of BAX derived peptide studied by molecular dynamics simulations. J Mol Graph Model 88: 152-159. [Epub: Ahead of Print] 30703689
Kuwana, T., M.R. Mackey, G. Perkins, M.H. Ellisman, M. Latterich, R. Schneiter, D.R. Green, and D.D. Newmeyer. (2002). Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111: 331-342. 12419244
McArthur, K., L.W. Whitehead, J.M. Heddleston, L. Li, B.S. Padman, V. Oorschot, N.D. Geoghegan, S. Chappaz, S. Davidson, H. San Chin, R.M. Lane, M. Dramicanin, T.L. Saunders, C. Sugiana, R. Lessene, L.D. Osellame, T.L. Chew, G. Dewson, M. Lazarou, G. Ramm, G. Lessene, M.T. Ryan, K.L. Rogers, M.F. van Delft, and B.T. Kile. (2018). BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 359:. 29472455
Monaco, G., E. Decrock, N. Arbel, A.R. van Vliet, R.M. La Rovere, H. De Smedt, J.B. Parys, P. Agostinis, L. Leybaert, V. Shoshan-Barmatz, and G. Bultynck. (2015). The BH4 domain of anti-apoptotic Bcl-XL, but not that of the related Bcl-2, limits the voltage-dependent anion channel 1 (VDAC1)-mediated transfer of pro-apoptotic Ca2+ signals to mitochondria. J. Biol. Chem. 290: 9150-9161. 25681439
Muchmore, S.W., M. Sattler, H. Liang, R.P. Meadows, J.E. Harlan, H.S. Yoon, D. Nettesheim, B.S. Chang, C.B. Thompson, S.L. Wong, S.L. Ng, and S.W. Fesik. (1996). X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381: 335-341. 8692274
Narita, M., S. Shimizu, T. Ito, T. Chittenden, R.J. Lutz, H. Matsuda and Y. Tsujimoto (1998). Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc. Natl. Acad. Sci. USA 95: 14681-14686. 9843949
Oh, K.J., S. Barbuto, N. Meyer, R.S. Kim, R.J. Collier, and S.J. Korsmeyer. (2005). Conformational changes in BID, a pro-apoptotic BCL-2 family member, upon membrane binding. A site-directed spin labeling study. J. Biol. Chem. 280: 753-767. 15501827
Pang, X., S.H. Moussa, N.M. Targy, J.L. Bose, N.M. George, C. Gries, H. Lopez, L. Zhang, K.W. Bayles, R. Young, and X. Luo. (2011). Active Bax and Bak are functional holins. Genes Dev. 25: 2278-2290. 22006182
Peng, J., S.M. Lapolla, Z. Zhang, and J. Lin. (2009). The cytosolic domain of Bcl-2 forms small pores in model mitochondrial outer membrane after acidic pH-induced membrane association. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 26: 130-137. 19334571
Qian, S., W. Wang, L. Yang, and H.W. Huang. (2008). Structure of transmembrane pore induced by Bax-derived peptide: evidence for lipidic pores. Proc. Natl. Acad. Sci. USA 105: 17379-17383. 18987313
Setoguchi, K., H. Otera, and K. Mihara. (2006). Cytosolic factor- and TOM-independent import of C-tail-anchored mitochondrial outer membrane proteins. EMBO. J. 25: 5635-5647. 17110923
Shimizu, S., M. Narita, and Y. Tsujimoto. (1999). Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399: 483-487. 10365962
Siskind, L.J., L. Feinstein, T. Yu, J.S. Davis, D. Jones, J. Choi, J.E. Zuckerman, W. Tan, R.B. Hill, J.M. Hardwick, and M. Colombini. (2008). Anti-apoptotic Bcl-2 Family proteins disassemble ceramide channels. J. Biol. Chem. 283: 6622-6630. 18171672
Siskind, L.J., R.N. Kolesnick, and M. Colombini. (2002). Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins. J. Biol. Chem. 277: 26796-26803. 12006562
Siskind, L.J., R.N. Kolesnick, and M. Colombini. (2006). Ceramide forms channels in mitochondrial outer membranes at physiologically relevant concentrations. Mitochondrion 6: 118-125. 16713754
Stehle, D., M. Grimm, S. Einsele-Scholz, F. Ladwig, J. Johänning, G. Fischer, B. Gillissen, K. Schulze-Osthoff, and F. Essmann. (2018). Contribution of BH3-domain and Transmembrane-domain to the Activity and Interaction of the Pore-forming Bcl-2 Proteins Bok, Bak, and Bax. Sci Rep 8: 12434. 30127460
Tsujimoto, T. and S. Shimizu. (2000). Bcl-2 family: life-or-death switch. FEBS Lett. 466: 6-10. 10648802
Uren, R.T., S. Iyer, and R.M. Kluck. (2017). Pore formation by dimeric Bak and Bax: an unusual pore? Philos Trans R Soc Lond B Biol Sci 372:. 28630157
Vargas-Uribe, M., M.V. Rodnin, and A.S. Ladokhin. (2013). Comparison of membrane insertion pathways of the apoptotic regulator Bcl-xL and the diphtheria toxin translocation domain. Biochemistry 52: 7901-7909. 24134052
Wei, M.C., W.-X. Zong, E.H.-Y. Cheng, T. Lindsten, V. Panoutsakopoulou, A.J. Ross, K.A. Roth, G.R. MacGregor, C.B. Thompson, and S.J. Korsmeyer. (2001). Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292: 727-730. 11326099
Williams, A., T. Hayashi, D. Wolozny, B. Yin, T.C. Su, M.J. Betenbaugh, and T.P. Su. (2016). The non-apoptotic action of Bcl-xL: regulating Ca2+ signaling and bioenergetics at the ER-mitochondrion interface. J. Bioenerg. Biomembr. 48: 211-225. 27155879
Willis, S.N., J.I. Fletcher, T. Kaufmann, M.F. van Delft, L. Chen, P.E. Czabotar, H. Ierino, E.F. Lee, W.D. Fairlie, P. Bouillet, A. Strasser, R.M. Kluck, J.M. Adams, and D.C. Huang. (2007). Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 315: 856-859. 17289999
Yakovlev, A.G., S. Di Giovanni, G. Wang, W. Liu, B. Stoica, and A.I. Faden. (2004). BOK and NOXA are essential mediators of p53-dependent apoptosis. J. Biol. Chem. 279: 28367-28374. 15102863
Zhang, X., C. Weng, Y. Li, X. Wang, C. Jiang, X. Li, Y. Xu, Q. Chen, L. Pan, and H. Tang. (2012). Human Bop is a novel BH3-only member of the Bcl-2 protein family. Protein Cell 3: 790-801. 23055042


Ajouz, B., C. Berrier, A. Garrigues, M. Besnard, and A. Ghazi. (1998). Release of thioredoxin via the mechanosensitive channel MscL during osmotic downshock of Escherichia coli cells. J. Biol. Chem. 273: 26670-26674. 9756908
Andersson, M., G. Okeyo, D. Wilson, H. Keizer, P. Moe, P. Blount, D. Fine, A. Dodabalapur, and R.S. Duran. (2008). Voltage-induced gating of the mechanosensitive MscL ion channel reconstituted in a tethered lipid bilayer membrane. Biosens Bioelectron 23: 919-923. 17996439
Ando C., Liu N. and Yoshimura K. (2015). A cytoplasmic helix is required for pentamer formation of the Escherichia coli MscL mechanosensitive channel. J Biochem. 158(2):109-14. 25697390
Balleza, D., F. Gómez-Lagunas, and C. Quinto. (2010). Cloning and functional expression of an MscL ortholog from Rhizobium etli: characterization of a mechanosensitive channel. J. Membr. Biol. 234: 13-27. 20177670
Bartlett, J.L., G. Levin, and P. Blount. (2004). An in vivo assay identifie