TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


3.A.18.1.1
The nuclear mRNA Export Complex (mRNA-E also called TREX) (including the exon junction complex) [TAP+p15 interact as a complex with the nuclear pore to facilitate mRNA transport to the cytoplasm] (Nojimma et al. 2007; Cheng et al., 2006)

Accession Number:Q8IYB3
Protein Name:Serine/arginine repetitive matrix protein 1 aka Srm160 aka Srrm1
Length:904
Molecular Weight:102335.00
Species:Homo sapiens (Human) [9606]
Number of TMSs:1
Location1 / Topology2 / Orientation3: Nucleus matrix1
Substrate mRNA

Cross database links:

Genevestigator: Q8IYB3
eggNOG: prNOG08109
RefSeq: NP_005830.2   
Entrez Gene ID: 10250   
Pfam: PF01480   
OMIM: 605975  gene
KEGG: hsa:10250   

Gene Ontology

GO:0016363 C:nuclear matrix
GO:0016607 C:nuclear speck
GO:0005681 C:spliceosomal complex
GO:0003677 F:DNA binding
GO:0005515 F:protein binding
GO:0003723 F:RNA binding
GO:0006397 P:mRNA processing
GO:0000375 P:RNA splicing, via transesterification react...

References (31)

[1] “A coactivator of pre-mRNA splicing.”  Blencowe B.J.et.al.   9531537
[2] “The DNA sequence and biological annotation of human chromosome 1.”  Gregory S.G.et.al.   16710414
[3] “The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).”  The MGC Project Teamet.al.   15489334
[4] “The SRm160/300 splicing coactivator is required for exon-enhancer function.”  Eldridge A.G.et.al.   10339552
[5] “The spliceosome deposits multiple proteins 20-24 nucleotides upstream of mRNA exon-exon junctions.”  Le Hir H.et.al.   11118221
[6] “Pre-mRNA splicing alters mRNP composition: evidence for stable association of proteins at exon-exon junctions.”  Le Hir H.et.al.   10809668
[7] “The SRm160/300 splicing coactivator subunits.”  Blencowe B.J.et.al.   10668804
[8] “Communication of the position of exon-exon junctions to the mRNA surveillance machinery by the protein RNPS1.”  Lykke-Andersen J.et.al.   11546874
[9] “The exon junction complex is detected on CBP80-bound but not eIF4E-bound mRNA in mammalian cells: dynamics of mRNP remodeling.”  Lejeune F.et.al.   12093754
[10] “SRm160 splicing coactivator promotes transcript 3'-end cleavage.”  McCracken S.et.al.   11739730
[11] “Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis.”  Jurica M.S.et.al.   11991638
[12] “An evolutionarily conserved role for SRm160 in 3'-end processing that functions independently of exon junction complex formation.”  McCracken S.et.al.   12944400
[13] “The spatial targeting and nuclear matrix binding domains of SRm160.”  Wagner S.et.al.   12624182
[14] “Robust phosphoproteomic profiling of tyrosine phosphorylation sites from human T cells using immobilized metal affinity chromatography and tandem mass spectrometry.”  Brill L.M.et.al.   15144186
[15] “In vitro FRAP reveals the ATP-dependent nuclear mobilization of the exon junction complex protein SRm160.”  Wagner S.et.al.   15024032
[16] “Large-scale characterization of HeLa cell nuclear phosphoproteins.”  Beausoleil S.A.et.al.   15302935
[17] “Global phosphoproteome of HT-29 human colon adenocarcinoma cells.”  Kim J.-E.et.al.   16083285
[18] “Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.”  Olsen J.V.et.al.   17081983
[19] “A probability-based approach for high-throughput protein phosphorylation analysis and site localization.”  Beausoleil S.A.et.al.   16964243
[20] “Improved titanium dioxide enrichment of phosphopeptides from HeLa cells and high confident phosphopeptide identification by cross-validation of MS/MS and MS/MS/MS spectra.”  Yu L.-R.et.al.   17924679
[21] “Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry.”  Molina H.et.al.   17287340
[22] “Evaluation of the low-specificity protease elastase for large-scale phosphoproteome analysis.”  Wang B.et.al.   19007248
[23] “Automated phosphoproteome analysis for cultured cancer cells by two-dimensional nanoLC-MS using a calcined titania/C18 biphasic column.”  Imami K.et.al.   18187866
[24] “Phosphorylation analysis of primary human T lymphocytes using sequential IMAC and titanium oxide enrichment.”  Carrascal M.et.al.   19367720
[25] “Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle.”  Daub H.et.al.   18691976
[26] “A quantitative atlas of mitotic phosphorylation.”  Dephoure N.et.al.   18669648
[27] “Large-scale phosphoproteome analysis of human liver tissue by enrichment and fractionation of phosphopeptides with strong anion exchange chromatography.”  Han G.et.al.   18318008
[28] “Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach.”  Gauci S.et.al.   19413330
[29] “Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions.”  Mayya V.et.al.   19690332
[30] “Lysine acetylation targets protein complexes and co-regulates major cellular functions.”  Choudhary C.et.al.   19608861
[31] “Structure and function of the PWI motif: a novel nucleic acid-binding domain that facilitates pre-mRNA processing.”  Szymczyna B.R.et.al.   12600940
Structure:
1MP1     

External Searches:

  • Search: DB with
  • BLAST ExPASy (Swiss Institute of Bioinformatics (SIB) BLAST)
  • CDD Search (Conserved Domain Database)
  • Search COGs (Clusters of Orthologous Groups of proteins)
  • 2° Structure (Network Protein Sequence Analysis)

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
Window Size: Angle:  
FASTA formatted sequence
1:	MDAGFFRGTS AEQDNRFSNK QKKLLKQLKF AECLEKKVDM SKVNLEVIKP WITKRVTEIL 
61:	GFEDDVVIEF IFNQLEVKNP DSKMMQINLT GFLNGKNARE FMGELWPLLL SAQENIAGIP 
121:	SAFLELKKEE IKQRQIEQEK LASMKKQDED KDKRDKEEKE SSREKRERSR SPRRRKSRSP 
181:	SPRRRSSPVR RERKRSHSRS PRHRTKSRSP SPAPEKKEKT PELPEPSVKV KEPSVQEATS 
241:	TSDILKVPKP EPIPEPKEPS PEKNSKKEKE KEKTRPRSRS RSKSRSRTRS RSPSHTRPRR 
301:	RHRSRSRSYS PRRRPSPRRR PSPRRRTPPR RMPPPPRHRR SRSPVRRRRR SSASLSGSSS 
361:	SSSSSRSRSP PKKPPKRTSS PPRKTRRLSP SASPPRRRHR PSPPATPPPK TRHSPTPQQS 
421:	NRTRKSRVSV SPGRTSGKVT KHKGTEKRES PSPAPKPRKV ELSESEEDKG GKMAAADSVQ 
481:	QRRQYRRQNQ QSSSDSGSSS SSEDERPKRS HVKNGEVGRR RRHSPSRSAS PSPRKRQKET 
541:	SPRGRRRRSP SPPPTRRRRS PSPAPPPRRR RTPTPPPRRR TPSPPPRRRS PSPRRYSPPI 
601:	QRRYSPSPPP KRRTASPPPP PKRRASPSPP PKRRVSHSPP PKQRSSPVTK RRSPSLSSKH 
661:	RKGSSPSRST REARSPQPNK RHSPSPRPRA PQTSSSPPPV RRGASSSPQR RQSPSPSTRP 
721:	IRRVSRTPEP KKIKKAASPS PQSVRRVSSS RSVSGSPEPA AKKPPAPPSP VQSQSPSTNW 
781:	SPAVPVKKAK SPTPSPSPPR NSDQEGGGKK KKKKKDKKHK KDKKHKKHKK HKKEKAVAAA 
841:	AAAAVTPAAI AAATTTLAQE EPVAAPEPKK ETESEAEDNL DDLEKHLREK ALRSMRKAQV 
901:	SPQS