TCDB is operated by the Saier Lab Bioinformatics Group
TCIDNameDomainKingdom/PhylumProtein(s)
*1.B.1.1.1









OmpF general porin. OmpF can deliver peptides of >6 KDa (epitopes) including protamine, through the pore lumen from the periplasm to the outside (Housden et al., 2010; Ghale et al. 2014).  For cephalosporin antibiotics, the interaction strength series is ceftriaxone > cefpirome > ceftazidime (Lovelle et al. 2011).  An unfolded protein such as colicin E9 can thread through OmpF from the outside to reach the periplasm (Housden et al. 2013).  Polynuceltides can pass through OmpF (Hadi-Alijanvand and Rouhani 2015). LPS influences the movement of bulk ions (K+ and Cl-), but the ion selectivity of OmpF is mainly affected by bulk ion concentrations (Ghale et al. 2014).  For cephalosporin antibiotics, the interaction strength series is ceftriaxone > cefpirome > ceftazidime (Lovelle et al. 2011).  An unfolded protein such as colicin E9 can thread through OmpF from the outside to reach the periplasm (Housden et al. 2013).  Polynuceltides can pass through OmpF (Hadi-Alijanvand and Rouhani 2015). LPS influences the movement of bulk ions (K+ and Cl-), but the ion selectivity of OmpF is mainly affected by bulk ion concentrations (Patel et al. 2016).

Bacteria
Proteobacteria
OmpF of E. coli (P02931)
*1.B.1.1.2









PhoE phosphoporin. The 3-d structure is available (PDB#1PHO)

Bacteria
Proteobacteria
PhoE of E. coli
*1.B.1.1.3









OmpC general porin.  Expression of OmpC and OmpF is reciprocally regulated by the EnvZ/OmpR sensor kinase/response regulator system (Egger et al. 1997).  Mutants isolated from patients with MDR E. coli, resistant to several antibiotics, showed decreased permeability to these antibiotics (Lou et al. 2011). 

Bacteria
Proteobacteria
OmpC of E. coli
*1.B.1.1.4









Weakly anion-selective NmpC (OmpD) porin (Prilipov et al. 1998).  Transports methyl benzyl viologen, ceftriaxone and hydrogen peroxide in Salmonella species (Hu et al. 2011; Calderón et al. 2010).

Bacteria
Proteobacteria
NmpC of E. coli
*1.B.1.1.5









LC (lysogenic conversion) porin.  Can replace OmpC and OmpF and is therefore probably non-selective (Fralick et al. 1990).  Synthesis is subject to catabolite repression mediated by the cyclicAMP receptor protein, CRP (Blasband and Schnaitman 1987).

 

Viruses
Caudovirales
LC porin of phage PA-2
*1.B.1.1.6









Major outer membrane porin, OpnP.  Probably orthologous to the E. coli OmpF.  Expression of the opnP gene is activated by EnvZ and regulated by temperatur (Forst et al. 1995; Forst and Tabatabai 1997Forst and Tabatabai 1997).

Bacteria
Proteobacteria
OpnP of Xenorhabdus nematophilus
*1.B.1.1.7









ComP porin.  A virulence factor essential for cytotoxicity and apoptosis by this enteric pathogen (Tsugawa et al., 2008)

Bacteria
Proteobacteria
ComP of Plesiomonas shigelloides (A0JCJ5)
*1.B.1.1.8









Trimeric 16 TMS non-specific porin, Omp-EA (Elazer et al., 2007)
Bacteria
Proteobacteria
Omp-EA of Erwinia amylovora (A0RZH5)
*1.B.1.1.9









OmpU porin (weakly cation-selective; expression is induced by bile salts; OmpU mediates bile salt resistance) (Wang et al., 2003).

Bacteria
Proteobacteria
OmpU of Listonella (Vibrio) anguillarum (Q8GD13)
*1.B.1.1.10









Putative porin

Bacteria
Proteobacteria
Putative porin of Dickeya dadantii
*1.B.1.1.11









Porin OmpPst1.  Transports carbapenem antibiotics imipenem will slow flux and meropenem with rapid flux in a reconsituted ion conductance system (Bajaj et al. 2012).

Bacteria
Proteobacteria
OmpPst1 of Providencia stuartii
*1.B.1.1.12









High conductance Omp35 (OmpK35; OmpF) porin.  Expression levels are important for beta-lactam/cephalosporin resistance (Bornet et al. 2004).  95% identical to the Klebsiella pneumoniae orthologue, OmpK35 (Taherpour and Hashemi 2013). In K. pneumoniae, colistin-based combination therapy with a carbapenem and/or tigecycline was associated with significantly decreased mortality rates due in part to synergistic induction of porins K35 and K36 (Stein et al. 2015). They influence imipenem susceptibility as well (Wassef et al. 2015).

Bacteria
Proteobacteria
Omp35 of Enterobacter (Aerobacter) aerogenes
*1.B.1.1.13









Omp36 (OmpC) porin of 375 aas (et al. 2001; Bornet et al. 2004). Mutations affect beta-lactam and carbapenem (imipenem) sensitivity (et al. 2001; Bornet et al. 2004). Mutations affect beta-lactam and carbapenem (imipenem) sensitivity (Pavez et al. 2016).

Bacteria
Proteobacteria
Omp36 of Enterobacter (Aerobacter) aerogenes
*1.B.1.1.14









Major voltage-independent outer membrane porin, OmpH (Chevalier et al. 1993).  A 3D model was obtained using in silico modeling.  OmpH is probably a homotrimeric, 16 stranded, β-barrel porin involved in the non-specific transport of small, hydrophilic molecules, serving osmoregulatory functions (Ganguly et al. 2015).

Bacteria
Proteobacteria
OmpH of Pasteurella multocida
*1.B.1.1.15









OmpU porin (cation-selective; PK/PCl = 14; bile salt inducible) (low permeability to bile) (Simonet et al., 2003). OmpU influences sensitivities to β-lactam antibiotics and sodium deoxycholate induction of biofilm formation and growth on large sugars (Pagel et al., 2007).   The effective pore radus is 0.55 nm which increases with acidic pH but decreases with increasing ionic strength (Duret and Delcour 2010). OmpU induces target animal cell death after it inserts into host mitochondrial membranes (Gupta et al. 2015).

Bacteria
Proteobacteria
OmpU of Vibrio cholerae
*1.B.1.1.16









OmpC of 367 aas (Vostrikova et al. 2013).

Bacteria
Proteobacteria
OmpC of Yersinia enterocolitica
*1.B.1.1.17









OmpF of 243 aas (Vostrikova et al. 2013).

Bacteria
Proteobacteria
OmpF of Yersinia enterocolitica
*1.B.1.1.18









Putative porin of 381 aas

Bacteria
Proteobacteria
PP of Klebsiella pneumoniae
*1.B.1.1.19









Outer membrane porin, KpnO; OmpCKP or OmpK36 of 367 aas.  Loss causes increased drug (e.g., carbapenem and imipenem) resistance (Wassef et al. 2015), decreased virulence and increased susceptibility to gastrointestinal stress (García-Sureda et al. 2011; García-Sureda et al. 2011; Srinivasan et al. 2012).  Under PhoBR control.

Bacteria
Proteobacteria
KpnO of Klebsiella pneumoniae
*1.B.1.1.20









Outer membrane porin 1, OmpPst1 or Omp-Pst1.  Transports beta lactams with decreased efficiency in the order of ertapenem > cefepime > cefoxitin (Tran et al. 2010).  93% identical in sequence to 1.B.1.1.11. Voltage-gating of this porin and porin 2 (TC# 1.B.1.1.24) from the same organism have been analyzed (Song et al. 2015).

Bacteria
Proteobacteria
OmpPst1 of Providencia stuartii
*1.B.1.1.21









Outer membrane non-specific porin, OmpN or OmpS2, under the control of SoxS, and coregulated with the ydbK gene encoding pyruvate:flavodoxin oxidoreductase which plays a role in protection against oxidative stress (Prilipov et al. 1998; Fàbrega et al. 2012).

Bacteria
Proteobacteria
OmpN of E. coli
*1.B.1.1.22









Outer membrane porin of 383 aas, OmpS2.  Activated by OmpR and LeuO (Fernández-Mora et al. 2004).

Bacteria
Proteobacteria
OmpS2 of Salmonella typhi
*1.B.1.1.23









Outer membrane trimeric porin, OmpY (also called OmpN or OmpC2) of 360 aas.

Bacteria
Proteobacteria
OmpY of Yersinia pseudotuberculosis
*1.B.1.1.24









Porin 2 (Omp-Pst2 or OmpPst2) of 365 aas.  Voltage gating is observed for Omp-Pst2, where the binding of cations in-between L3 and the barrel wall results in exposing a conserved aromatic residue in the channel lumen, thereby halting ion permeation. Comparison of Omp-Pst1 (TC# 1.B.1.1.20) with Omp-Pst2 suggested that their differing sensitivities to voltage is encoded in the hydrogen-bonding network anchoring L3 onto the barrel wall. The strength of this network governs the probability of cations binding behind L3. That Omp-Pst2 gating is observed only when ions flow against the electrostatic potential gradient of the channel suggests a possible role for this porin in the regulation of charge distribution across the outer membrane and bacterial homeostasis (Song et al. 2015).

Bacteria
Proteobacteria
OmpPst2 of Providenica stuartii
*1.B.1.1.25









Anion-selective, voltage-sensitive porin, VCA_1008, of 331 aas with a pore exclusion limit of 6.9 nm (Goulart et al. 2015).

Bacteria
Proteobacteria
VCA_1008 of Vibrio cholerae
*1.B.1.1.26









The mature outer membrane protein, OmpC of 342 aas.  Elicits an immune response (Yadav et al. 2016).

Bacteria
Proteobacteria
OmpC of Aeromonas hydrophila
*1.B.1.1.27









Outer membrane porin, OmpS1 of 394 aas.  mutants defective for OmpS1 are attenuated for virulence in mice (Rodríguez-Morales et al. 2006).

Bacteria
Proteobacteria
OmpS1 in Salmonella enterica serovar Typhi
*1.B.1.2.1









Omp25 of 255 aas.  Associates with CarO (Siroy et al. 2005).

Bacteria
Proteobacteria
Omp25 of Acidetobacter baumannii
*1.B.1.2.2









Putative porin of 251 aas

Bacteria
Proteobacteria
PP of Shewanella piezotolerans
*1.B.1.2.3









Putative porin of 306 aas

Bacteria
Proteobacteria
PP of Colwellia psychrerythraea (Vibrio psychroerythus)
*1.B.1.2.4









Outer membrane porin, Omp33 or Omp33-36.  This protein is a virulence factor and induces apoptosis in the host (Rumbo et al. 2014; Smani et al. 2013; Smani et al. 2013).

Bacteria
Proteobacteria
Omp33-36 of Acinetobacter baumannii
*1.B.1.3.1









Omp2 porin
Bacteria
Proteobacteria
Omp2 of Haemophilus influenzae
*1.B.1.3.2









OmpP2 porin (transports NAD and NMN; transport Km=5 mM; may also serve as a general diffusion porin) (Andersen et al., 2003).  Its solute transport activity with size exclusion limit has been described (Kattner et al. 2015).

Bacteria
Proteobacteria
OmpP2 of Haemophilus influenzae (Q48217)
*1.B.1.3.3









Putative porin

Bacteria
Proteobacteria
Putative porin of Haemophilus parainfluenzae
*1.B.1.3.4









Putative porin

Bacteria
Proteobacteria
Putaive porin of Neisseria sp.
*1.B.1.4.1









Omp porin
Bacteria
Proteobacteria
Omp porin of Bordetella pertussis
*1.B.1.4.2









Phthalate porin, OphP (Chang et al. 2009).
Bacteria
Proteobacteria
OphP of Burkholderia capacia (C0LZS0)
*1.B.1.4.3









Porin of 38 KDa,Omp38 in Burkholderia pseudomallei, the causative agent of melioidosis, an infectious disease of animals and humans. MDR can be due to mutations in Omp38.  Ion current blockages of reconstituted Omp38 by seven antimicrobial agents occurred in a concentration-dependent manner with the translocation on-rate following the order: norfloxacin>ertapenem>ceftazidime>cefepime>imipenem>meropenem>penicillin G (Suginta et al. 2011).  Also allows transport of neutral sugars and numerous antimicrobial agents including cephalosporin and carbapenem (Aunkham et al. 2014).

Bacteria
Proteobacteria
Omp38 of Burkholderia pseudomallei
*1.B.1.4.4









Outer membrane porin of 353 aas (Brunen et al. 1991).

Bacteria
Proteobacteria
OMP of Acidovorax delafieldii
*1.B.1.4.5









Porin-like protein

Bacteria
Bacteroidetes/Chlorobi group
Porin of Chlorobium phaeobacteroides
*1.B.1.4.6









Putative porin of 248 aas

Bacteria
Proteobacteria
PP of Burkholderia cepacia (T0ET67)
*1.B.1.4.7









Outer membrane porin, OMPNK8 of 380 aas. Probably involved in transport of and chemotaxis toward β-ketoadipate; encoded by a gene (orf1) on a megaplasmid (pNK8) that carries the gene cluster (orf1-tfdT-CDEF), encoding chlorocatechol-degrading enzymes. orf1 is induced by the presence of 3-chlorobenzoate as is the tfd operon (Yamamoto-Tamura et al. 2015).

Bacteria
Proteobacteria
OMPNK8 of Burkholderia sp. NK8
*1.B.1.4.8









Outer membrane porin of 394 aas and 16 predicted beta strands, isolated from an endosymbiont of a  trypanosomatid protozoan (Andrade et al. 2011).

Bacteria
Proteobacteria
Porin of an endosymbiont of Crithidia deanei
*1.B.1.4.9









OmpQ porin of 364 aas

Bacteria
Proteobacteria
OmpQ of Bordetella parapertussis
*1.B.1.5.1









Oma1 porin (Class 1) (Tanabe et al., 2010)

Bacteria
Proteobacteria
Oma1 of Neisseria gonorrhoeae
*1.B.1.5.2









PorA porin, cation selective at pH > 6; anion selective at pH < 4 (a continuum electrodiffusion model accounts for the results) (Cervera et al., 2008)

Bacteria
Proteobacteria
PorA of Neisseria meningitidis
*1.B.1.5.3









Major outer membrane protein IB (OMB) (slightly cation-selective porin)
Bacteria
Proteobacteria
OMB of Neisseria sicca
*1.B.1.5.4









PorB porin (Song et al. 1998; Tanabe et al., 2010). The 2.3 Å structure has been determined by x-ray crystallography. There are three putative solute translocation pathways through the channel pore: One pathway transports anions nonselectively, one tranports cations nonselectively, and one facilitates the specific uptake of sugars (Kattner et al. 2012). Regulated by ATP binding (Tanabe et al., 2010).  Exhibits voltage-dependent closure (Jadhav et al. 2013). Its unique solute transport activity with size exclusion limit has been described (Kattner et al. 2015).

Bacteria
Proteobacteria
PorB porin of Neisseria meningitidis
*1.B.1.5.5









PorB (Class 2). The 2.3 Å structure has been determined by x-ray crystallography. There are three putative solute translocation pathways through the channel pore: One pathway transports anions nonselectively, one tranports cations nonselectively, and one facilitates the specific uptake of sugars. Regulated by ATP binding (Tanabe et al., 2010).  Exhibits voltage-dependent closure (Jadhav et al. 2013).

Bacteria
Proteobacteria
PorB porin of Neisseria meningitidis (Q51271)
*1.B.1.5.6









Porin

Bacteria
Fibrobacteres/Acidobacteria group
Porin of Holophaga foetida
*1.B.1.6.1









Anion-selective porin protein 32, Omp32.  The structure is known to 1.5 Å resolution (Zachariae et al. 2006).

Bacteria
Proteobacteria
Porin protein 32 of Comamonas (Delftia) acidovorans
*1.B.1.6.2









Outer membrane porin of 304 aas (Brunen et al. 1991).

Bacteria
Proteobacteria
OMP of Acidovorax delafieldii
*1.B.1.6.3









Outer membrane porin of 319 aas (Brunen et al. 1991).

Bacteria
Proteobacteria
OMP of Acidovorax delafieldii
*1.B.1.6.4









Outer membrane porin of 313 aas

Bacteria
Chrysiogenetes
Porin of Desulfurispirillum indicum
*1.B.1.7.1









Chitoporin, ChiP (Keyhani et al., 2000).

Bacteria
Proteobacteria
ChiP of Vibrio furnissii
*1.B.1.7.2









Sugar-specific chitoporin of 375 aas, ChiP.  The best substrate is chitohexose, but ChiP  transports a variety of chitooligosaccharides.  Trp136 is important for the binding affinity for chitohexaose (Chumjan et al. 2015).

Bacteria
Proteobacteria
ChiP of Vibrio harveyi
*1.B.1.8.1









Low ion selective porin (PK/PCl = 4), OmpT (high permeability to bile) (Simonet et al., 2003). OmpT has an effective radius of 0.43nm, and acidic pH, high ionic strength, or exposure to polyethyleneglycol stabilizes a less conductive state (Duret & Delcour, 2010).  It binds the biofilm matrix protein, Bap1, which influences antimicrobial peptide (polymyxin B and LL-37) resistance (Duperthuy et al. 2013).

Bacteria
Proteobacteria
OmpT of Vibrio cholerae (AAC28105)
*1.B.1.8.2









Putative uncharacterized protein
Bacteria
Spirochaetes
Tresu_2327 of Treponema succinifaciens
*1.B.1.8.3









Porin-like protein H (37 kDa outer membrane protein)
Bacteria
Proteobacteria
ompH of Photobacterium profundum )
*1.B.1.9.1









The outer membrane porin, M35 (Easton et al., 2005)
Bacteria
Proteobacteria
M35 of Moraxella catarrhalis (AAX99225)
*1.B.1.9.2









Major porin of 369 aas, involved in anaerobic respiration, positively regulated by both CRP and FNR, OmpS38 or Omp35 (Gao et al. 2015). 

Bacteria
Proteobacteria
OmpS38 of Shewanella oneidensis
*1.B.1.10.1









Legiobactin receptor, LbtU of 361 aas with one N-terminal TMS and 16 predicted beta-strands (Chatfield et al., 2011).

Bacteria
Proteobacteria
LbtU of Legionella pneumoniae (E2JEY3)
*1.B.1.11.1









Putative porin (based on homology) of 375 aas

Bacteria
Proteobacteria
Putative porin of Helicobacter hepaticus
*1.B.1.12.1









Porin of 194 aas and 10 transmembrane β-strands, Omp1X (Park et al. 2014).

Bacteria
Proteobacteria
Porin of Xanthomonas oryzae