TCID | Name | Domain | Kingdom/Phylum | Protein(s) |
---|---|---|---|---|
*1.B.14.1.1 | FhuE ferric-coprogen | Bacteria |
Proteobacteria | FhuE of E. coli |
*1.B.14.1.2 | FhuA ferrichrome (also albomycin and rifamycin; Colicin M; Microcin J25; Phage T5) receptor (transports phage T1, T5 and φ80 DNA across the outer membrane, dependent on DcrA (SdaC; TC #2.A.42.2.1) and DcrB) (Forms a complex with and acts with TonB and FhuD (the periplasmic binding receptor (3.A.1.14.3) to deliver siderophore to FhuD (Carter et al., 2006; Braun et al., 2009)). Deletion of the 160-residue cork domain and five large extracellular loops converted this non-conductive, monomeric, 22-stranded beta-barrel protein into a large-conductance protein pore (Wolfe et al. 2015). | Bacteria |
Proteobacteria | FhuA of E. coli |
*1.B.14.1.3 | Ferric enterobactin (also ferricorynebactin) receptor, IroN | Bacteria |
Proteobacteria | IroN of Salmonella typhimurium |
*1.B.14.1.4 | CirA Fe3+-catecholate receptor. Serves as the receptor for the TonB- and proton-dependent uptake of the E. coli bacteriocin, Microcin L (MccL) (Morin et al., 2011). CirA is also the translocator for colicin Ia (Jakes and Finkelstein, 2010). | Bacteria |
Proteobacteria | CirA of E. coli |
*1.B.14.1.5 | PfeA ferric enterobactin receptor | Bacteria |
Proteobacteria | PfeA of Pseudomonas aeruginosa |
*1.B.14.1.6 | Ferripyoverdine/pyocin S3 receptor, FpvA (Adams et al., 2006; Nader et al., 2007; Schalk et al., 2009; Nader et al., 2011) | Bacteria |
Proteobacteria | FpvA of Pseudomonas aeruginosa |
*1.B.14.1.7 | Iron malleobactin receptor, FmtA (Alice et al., 2006) | Bacteria |
Proteobacteria | FmtA of Burkholderia pseudomallei (EBA51007) |
*1.B.14.1.8 | The Ferripyochelin receptor, FptA (Michel et al., 2007). In addition to Fe3+, FptA takes up Co2+, Ga3+, and Ni2+ at low rates (Braud et al., 2009). | Bacteria |
Proteobacteria | FptA of Pseudomonas aeruginosa (P42512) |
*1.B.14.1.9 | Ferric-catecholate siderophore (dihydroxybenzoylserine, dihydroxybenzoate) uptake receptor, Flu or YbiL (Hantke, 1990; Curtis et al., 1988). | Bacteria |
Proteobacteria | Fiu of E. coli (P75780) |
*1.B.14.1.10 | The outer membrane ferrioxamine/desferrioxamine receptor, FoxA(1) (most like TC# 1.B.14.1.4 and 9) (Wei et al., 2007) | Bacteria |
Proteobacteria | FoxA(1) of Nitrosomonas europaea (Q82VI7) |
*1.B.14.1.11 | The outer membrane ferric-anguibactin receptor/transporter, FatA (Lopez and Crosa, 2007) | Bacteria |
Proteobacteria | FatA of Vibrio anguillarum (P11461) |
*1.B.14.1.12 | FecA ferric-citrate receptor (PA3901) (Marshall et al., 2009) (62% identical to the E. coli FecA). | Bacteria |
Proteobacteria | FecA of Pseudomonas aeruginosa (Q9HXB2) |
*1.B.14.1.13 | CfrA ferric receptor (Carswell et al., 2008). | Bacteria |
Proteobacteria | CfrA of Campylobacter jejuni (A3ZKG8) |
*1.B.14.1.14 | Ferric-pseudobactin 358 receptor | Bacteria |
Proteobacteria | PupA of Pseudomonas putida |
*1.B.14.1.15 | Ferrichrome receptor FcuA | Bacteria |
Proteobacteria | FcuA of Yersinia enterocolitica |
*1.B.14.1.16 | Probable TonB-dependent receptor BfrD (Virulence-associated outer membrane protein Vir-90) | Bacteria |
Proteobacteria | BfrD of Bordetella pertussis |
*1.B.14.1.17 | Ferrioxamine receptor, FoxA. Transports a variety of Ferrioxamine B analogues (Kornreich-Leshem et al. 2005). | Bacteria |
Proteobacteria | FoxA of Yersinia enterocolitica |
*1.B.14.1.18 | TonB-dependent receptor (Bhat et al. 2011). | Bacteria |
Proteobacteria | TonB-dependent receptor of Myxococcus xanthus |
*1.B.14.1.19 | TonB-dependent receptor | Bacteria |
Proteobacteria | TonB-dependent receptor of Myxococcus xanthus |
*1.B.14.1.20 | The iron-citrate receptor/transporter, FecA. TonB mediates both signaling and transport by unfolding portions of the transporter (Mokdad et al. 2012). | Bacteria |
Proteobacteria | FecA of E. coli |
*1.B.14.1.21 | Ferrioxamine receptor | Bacteria |
Proteobacteria | Ferrioxamine receptor of Pseudovibrio sp. JE062 |
*1.B.14.1.22 | FepA ferri-enterobactin (also Colicins B and D) receptor for the 37 aas disulfide-containing K+ channel toxin, BgK (Braud et al., 2004). Functions by a "ball and chain" mechanism; The transport process involves expulsion of the N-terminal globular domain from the C-terminal beta-barrel (Ma et al. 2007). | Bacteria |
Proteobacteria | FepA of E. coli |
*1.B.14.1.23 | OMR of 938 aas | Bacteria |
Proteobacteria | OMR of Myxococcus xanthus |
*1.B.14.1.24 | Putative TonB-dependent siderophore receptor, Sde_3611 | Bacteria |
Proteobacteria | Sde3611 of Saccharophagus degradans |
*1.B.14.1.25 | Nickel uptake receptor/channel of 724 aas (Benoit et al. 2013). | Bacteria |
Proteobacteria | HH0418 of Helicobacter hepaticus |
*1.B.14.1.26 | Iron siderophore (ferripyoverdine) receptor, FpvA of 808 aas (Ye et al. 2014). | Bacteria |
Proteobacteria | FpvA of Pseudomonas aeruginosa |
*1.B.14.1.27 | Iron(III) dicitrate transport protein, FecA1: iron dicitrate uptake receptor of 767 aas. Regulated by the ferric uptake regulator transcription factor, Fur (van Vliet et al. 2002) in response to iron availability (Danielli et al. 2009). Involved in iron deficiency anemia in children (Kato et al. 2017). | Bacteria |
Proteobacteria | FecA1 of Helicobacter pylori |
*1.B.14.1.28 | FecA3 of 843 aas. Probable receptor for nickel. Shows 50% identiy with TC# 1.B.14.1.27. Repressed by nickel in the medium, mediated by NikR (Danielli et al. 2009). NikR seems to interact in an asymmetric mode with the fecA3 target to repress its transcription (Romagnoli et al. 2011). | Bacteria |
Proteobacteria | FecA3 of Helicobacter pylori |
*1.B.14.2.1 | HmbR Hemoglobin receptor | Bacteria |
Proteobacteria | HmbR of Neisseria meningitidis |
*1.B.14.2.2 | HemR Heme (Hemin) receptor | Bacteria |
Proteobacteria | HemR of Yersinia enterocolitica |
*1.B.14.2.3 | HpuAB hemoglobin-haptoglobin receptor; porphyrin transporter (HpuA=lipoprotein; HpuB=OMR porin) | Bacteria |
Proteobacteria | HpuAB of Neisseria meningitidis |
*1.B.14.2.4 | Lactoferrin receptor (A=OMR porin; B=lipoprotein), LbpAB or IroAB. This two-component system extracts iron from the host glycoproteins lactoferrin and transferrin. Homologous iron-transport systems consist of a membrane-bound transporter and an accessory lipoprotein. The crystal structure of the N-terminal domain (N-lobe) of the accessory lipoprotein, lactoferrin-binding protein B (LbpB) is homologous to the structures of the accessory lipoproteins, transferrin-binding protein B (TbpB) and LbpB from the bovine pathogen Moraxella bovis. Docking the LbpB with lactoferrin reveals extensive binding interactions with the N1 subdomain of lactoferrin. The nature of the interaction precludes apolactoferrin from binding LbpB, ensuring the specificity for iron-loaded lactoferrin, safeguarding proper delivery of iron-bound lactoferrin to the transporter LbpA. The structure also reveals a possible secondary role for LbpB in protecting the bacteria from host defences. Following proteolytic digestion of lactoferrin, a cationic peptide derived from the N-terminus is released. This peptide, called lactoferricin, exhibits potent antimicrobial effects. The docked model of LbpB with lactoferrin reveals that LbpB interacts extensively with the N-terminal lactoferricin region (Brooks et al. 2014). | Bacteria |
Proteobacteria | LbpAB of Neisseria meningitidis |
*1.B.14.2.5 | TbpA single component transferrin receptor | Bacteria |
Proteobacteria | TbpA of Pasteurella multocida |
*1.B.14.2.6 | HugA heme receptor/porin | Bacteria |
Proteobacteria | HugA of Plesiomonas shigelloides (Q93SS7) |
*1.B.14.2.7 | Hemin (Heme)-binding receptor, ShmR (also transports the toxic heme analog, gallium protoporphyrin) (Amarelle et al., 2008). | Bacteria |
Proteobacteria | ShmR of Sinorhizobium meliloti (Q92N43) |
*1.B.14.2.8 | The heme-iron (from hemin and hemoglobin) utilization receptor, BhuR (Brickman et al., 2006; Vanderpool and Armstrong, 2004). | Bacteria |
Proteobacteria | BhuR of Bordetella pertussis (Q7VSQ4) |
*1.B.14.2.9 | Probable TonB-dependent receptor NMB0964 | Bacteria |
Proteobacteria | Y964 of Neisseria meningitidis MC58 |
*1.B.14.2.10 | Heme transporter BhuA (Brucella heme uptake protein A) | Bacteria |
Proteobacteria | BhuA of Brucella abortus |
*1.B.14.2.11 | Heme/hemopexin utilization protein C | Bacteria |
Proteobacteria | HxuC of Haemophilus influenzae |
*1.B.14.2.12 | Bacteria |
Proteobacteria | TbpAB of Haemophilus influenzae TbpA (P44970) TbpB (P44971) | |
*1.B.14.2.13 | Hemoglobin receptor, HgbA. Residues for hemoglobin binding and utilization differ (Fusco et al. 2013). | Bacteria |
Proteobacteria | HgbA of Haemophilus ducreyi |
*1.B.14.2.14 | Heme/hemoglobin receptor of 660 aas and 22 C-terminal β-strands with an N-terminal "plug" domain, ShuA. The 3-d structure is known to 2.6 Å resolution, revealing the histidyl residues in the barrel and plug that can interact with heme (Cobessi et al. 2010). | Bacteria |
Proteobacteria | ShuA of Shigella dysenteriae |
*1.B.14.2.15 | Uncharacterized outer membrane receptor, probably for iron transport. | Bacteria |
Proteobacteria | OMR of Xanthomonas oryzae |
*1.B.14.3.1 | BtuB cobalamin receptor (also transports phage C1 DNA across the outer membrane). Two Ca2+ binding sites in BtuB mediate cobalamine binding (Cadieux et al., 2007). Cobalamine uptake into the periplasm is reversible, but efflux is pmf-independent (Cadieux et al., 2007). The 3-d structure is available (PDB#1NQE). The Ton box and the extracellular substrate binding site are allosterically coupled (bidirectional), and TonB binding may initiate a partial round of transport (Sikora et al. 2016). Substrate binding to the extracellular surface of the protein triggers the unfolding of an energy coupling motif at the periplasmic surface. Thus, substrate binding reduces the interaction free energy between certain residues, thereby triggering the unfolding of the energy coupling motif (Lukasik et al. 2007). | Bacteria |
Proteobacteria | BtuB of E. coli |
*1.B.14.3.2 | TonB-dependent receptor (Bhat et al. 2011). | Bacteria |
Proteobacteria | TonB-dependent receptor of Myxococcus xanthus |
*1.B.14.3.3 | TonB-dependent receptor (Bhat et al. 2011). | Bacteria |
Proteobacteria | TonB receptor of Myxococcus xanthus |
*1.B.14.3.4 | TonB-dependent receptor (Bhat et al. 2011). | Bacteria |
Proteobacteria | TonB-dependent receptor of Myxococcus xanthus |
*1.B.14.3.5 | TonB-dependent receptor (Bhat et al. 2011). | Bacteria |
Proteobacteria | TonB-dependent receptor of Myxococcus xanthus |
*1.B.14.3.6 | Probable siderophore-specific outer membrane receptor of 869 aas, MxcH | Bacteria |
Proteobacteria | MxcH of Stigmatella aurantiaca |
*1.B.14.3.7 | TonB-dependent receptor | Bacteria |
Proteobacteria | OMR of Shewanella oneidensis |
*1.B.14.4.1 | Cu2+-transporting, Cu2+-regulated outer membrane protein C, OprC (Yoneyama and Nakae 1996). | Bacteria |
Proteobacteria | OprC of Pseudomonas aeruginosa |
*1.B.14.4.2 | Cu2+-transporting, outer membrane protein, NosA | Bacteria |
Proteobacteria | NosA of Pseudomonas stutzeri |
*1.B.14.4.3 | TonB-dependent receptor/channel for substrate uptake across the outer membrane of 656 aas | Bacteria |
Proteobacteria | Receptor of E. coli |
*1.B.14.5.1 | HasR receptor-HasA haemophore heme receptor complex (HasA, an extracellular heme binding protein, binds one heme and transfers it directly to HasR, which uses HasB (2.C.1.1.2) (a TonB homologue) instead of TonB (2.C.1.1.1) for energization) (Benevides-Matos et al., 2008; Izadi-Pruneyre et al., 2006; Lefèvre et al., 2008; Benevides-Matos and Biville, 2010). A signaling domain in HasR interacts with a partially unfolded periplasmic domain of an antisigma factor, HasS, to control transcription by an ECF sigma factor (Malki et al. 2014). The HasR domain responsible for signal transfer is highly flexible in two stages of signaling, extends into the periplasm at about 70 to 90 A from the HasR beta-barrel and exhibits local conformational changes in response to the arrival of signaling activators (Wojtowicz et al. 2016). | Bacteria |
Proteobacteria | HasR-HasA of Serratia marcescens |
*1.B.14.6.1 | SusC receptor/porin for maltooligosaccharides (up to maltoheptaose). Forms a complex with and functions with SusD (TC# 8.A.46.1.1). Involved in starch utilization (Shipman et al. 2000; Reeves et al. 1997; Cho and Salyers 2001). | Bacteria |
Bacteroidetes/Chlorobi group | SusC of Bacteroides thetaiotaomicron |
*1.B.14.6.2 | The Omp200 porin complex (consists of Omp121 [an OMR family member] and Omp71 [a protein nonhomologous to other proteins in the databases]) | Bacteria |
Bacteroidetes/Chlorobi group | Omp121/Omp71 complex of Bacteroides fragilis |
*1.B.14.6.3 | Outer membrane porin required for intercellular signalling via C-signal (CsgA), Oar (Bhat et al. 2011). | Bacteria |
Proteobacteria | Oar of Myxococcus xanthus |
*1.B.14.6.4 | TonB-dependent outer membrane porin/receptor, Oar | Bacteria |
Proteobacteria | |
*1.B.14.6.5 | TonB-dependent outer membrane receptor of 792 aas. | Bacteria |
Bacteroidetes/Chlorobi group | TonB receptor of Bacteroides caccae |
*1.B.14.6.6 | TonB-dependent receptor of 970 aas | Bacteria |
Spirochaetes | TonB receptor of Leptospira interrogans |
*1.B.14.6.7 | TonB-dependent receptor | Bacteria |
Bacteroidetes/Chlorobi group | TonB receptor of Pedobacter heparinus |
*1.B.14.6.8 | Putative OMR (DUF4480) of 709 aas and one N-terminal TMS. The first 120 residues show sequence similarity with TC#1.B.14.6.2. | Bacteria |
Bacteroidetes/Chlorobi group | Putative OMR of Bacteroides fragilis |
*1.B.14.6.9 | Putative OMR (DUF4480) of 828 aas, and N-terminal TMS and 32 predicted TM β-strands. | Bacteria |
Bacteroidetes/Chlorobi group | Putative OMR of Croceibacter atlanticus |
*1.B.14.6.10 | DUF4480 putative OMR of 835 aas. | Bacteria |
Bacteroidetes/Chlorobi group | OMR of Capnocytophaga canimorsus |
*1.B.14.6.11 | OMR (DUF4480) of 976 aas | Bacteria |
Bacteroidetes/Chlorobi group | OMR of Zobellia galactanivorans |
*1.B.14.6.12 | OMR (DUF4480) of 775 aas | Bacteria |
Bacteroidetes/Chlorobi group | OMR of Saprospira grandis |
*1.B.14.6.13 | SusC homologue of 940 aas. Functions with SusD homolgoue TC# 8.A.46.1.2. | Bacteria |
Bacteroidetes/Chlorobi group | SusC homologue of Bacteroides thetaiotaomicron |
*1.B.14.6.14 | Putative porin of 830 aas and 16 predicted TMSs. The β-barrel domain is the N-terminal ~250 aas which corresponds to the DUF4480 or Peptidase M14NE family in Pfam. The large hydrophilic C-terminal domain is of unknown function. | Bacteria |
Bacteroidetes/Chlorobi group | Putative porin of Aequorivita sublithincola |
*1.B.14.7.1 | CjrC outer membrane receptor of 753 aas. It is iron and temperature regulated, and functions with CjrB, a distant TonB homologue (TC# 2.C.1.1.3). Together these two proteins are required for uptake of colicin J in Shigella and enteroinvasive E. coli strains (Smajs and Weinstock 2001). | Bacteria |
Proteobacteria | CjrC of E. coli |
*1.B.14.7.2 | Probable TonB-dependent receptor NMB1497 | Bacteria |
Proteobacteria | NMB1497 of Neisseria meningitidis |
*1.B.14.7.3 | Probable TonB-dependent receptor HI_1217 | Bacteria |
Proteobacteria | HI_1217 of Haemophilus influenzae |
*1.B.14.8.1 | Putative salicin/arbutin (aromatic β-glucoside) receptor, SalC | Bacteria |
Proteobacteria | SalC of Azospirillum irakense |
*1.B.14.8.2 | The iron (Fe3+) · pyridine-2,6-bis(thiocarboxylic acid) (PDTC) receptor, PdtK. Functions with the MFS carrier, PdtE (TC #2.A.1.55.1) (Leach and Lewis, 2006). | Bacteria |
Proteobacteria | PdtK of Pseudomonas putida (ABC68350) |
*1.B.14.8.3 | Vibriobactin receptor | Bacteria |
Proteobacteria | ViuA of Vibrio cholerae serotype O1 |
*1.B.14.8.4 | The thiamine receptor (SO2715) (energized by TonB/ExbBD) (Rodionov et al. 2002) | Bacteria |
Proteobacteria | SO2715 of Shewanella oneidensis (Q8EDM8) |
*1.B.14.8.5 | TonB-dependent receptor of 726 aas. | Bacteria |
Proteobacteria | Receptor of Colwellia psychrerythraea |
*1.B.14.8.6 | The (thio)quinolobactin receptor, QbsI, of 669 aa | Bacteria |
Proteobacteria | QbsI of Pseudomonas fluorescens |
*1.B.14.8.7 | FyuA Fe3+-yersiniabactin and pesticin (bacteriocin) receptor contributes to biofilm formation and infection (Hancock et al., 2008). | Bacteria |
Proteobacteria | FyuA of Yersinia enterocolitica (P0C2M9) |
*1.B.14.9.1 | RhtA Rhizobactin 1021 (siderophore) receptor/porin | Bacteria |
Proteobacteria | RhtA of Sinorhizobium meliloti |
*1.B.14.9.2 | Acr ferric achromobactin (hydroxycarboxylate siderophore) receptor/porin (Franza et al., 2005) | Bacteria |
Proteobacteria | Acr of Erwinia chrysanthemi (AAL14566) |
*1.B.14.9.3 | The ferric ferrichrome/aerobactin receptor/porin, IutA (Forman et al., 2007) | Bacteria |
Proteobacteria | IutA of Yersinia pestis (Q7CGN6) |
*1.B.14.9.4 | Putative TonB-dependent heme receptor | Bacteria |
Proteobacteria | TonB-dependent heme receptor of Campylobacter jejuni |
*1.B.14.9.5 | TonB-dependent receptor of 700 aas, YncD, a probable iron transporter/receptor in the outer membrane. Deletion of the orthologous yncD genes in Salmonella strains leads to an attenuated strains, potentially useful for vaccine development (Xiong et al. 2012; Xiong et al. 2015). | Bacteria |
Proteobacteria | YncD of E. coli |
*1.B.14.10.1 | Heme/hemoglobin receptor, HmuR (also binds the Cu2+, Zn2+ and Fe2+ derivatives of protoporphyrin IX). Functions with the O.M. heme binding lipoprotein, HmuY (AAQ66587; Olczak et al., 2007). | Bacteria |
Bacteroidetes/Chlorobi group | HmuR of Porphyromonas gingivalis |
*1.B.14.10.2 | TonB-dependent receptor | Bacteria |
Proteobacteria | TonB receptor of Myxococcus xanthus |
*1.B.14.10.3 | TonB-dependent receptor | Bacteria |
Proteobacteria | TonB recpetor of Myxocuccus xanthus |
*1.B.14.10.4 | Putative TonB-dependent receptor | Bacteria |
Cyanobacteria | OMR of Gloeobacter violaceus |
*1.B.14.11.1 | The Nickel (Ni2+) receptor (FrpB4; Hp1512) of 877 aas. Energized by the TonB/ExbBD complex (Schauer et al., 2007). Capable of binding both haem and haemoglobin but shows greater affinity for haem. The mRNA levels of frpB1 were repressed by iron and lightly modulated by haem or haemoglobin. Overexpression of the frpB1 gene supported cellular growth when haem or haemoglobin were supplied as the only iron source (Carrizo-Chávez et al. 2012). | Bacteria |
Proteobacteria | FrpB4 of Helicobacter pylori (Q9ZJA8) |
*1.B.14.12.1 | The TonB-dependent maltooligosaccharide OM receptor/porin, MalA (Lohmiller et al., 2008). | Bacteria |
Proteobacteria | MalA of Caulobacter crescentus (Q9A608) |
*1.B.14.12.2 | The N-acetyl glucosamine/chitin oligosaccharide OM receptor porin, NagA (Eisenbeis et al., 2008). | Bacteria |
Proteobacteria | NagA of Caulobacter crescentus (Q9AAZ6) |
*1.B.14.12.3 | TonB-dependent receptor | Bacteria |
Proteobacteria | TonB-dependent receptor of Myxococcus xanthus |
*1.B.14.13.1 | TonB-dependent receptor of 763 aas | Bacteria |
Proteobacteria | Receptor of Xanthomonas campestris |
*1.B.14.14.1 | The thiamine receptor (BT2390) (energized by TonB/ExbBD) (Rodionov et al. 2002). | Bacteria |
Bacteroidetes/Chlorobi group | BT2390 of Bacteroides thetaiotaomicron (Q8A552) |
*1.B.14.15.1 | Putative porin of the DUF4289 family; 655 aas and 32 putative transmembrane beta strands. | Bacteria |
Bacteroidetes/Chlorobi group | PP of Psychroflexus torquis |
*1.B.14.15.2 | Putative porin of 776 aas | Bacteria |
Bacteroidetes/Chlorobi group | PP of Provotella ruminicola |
*1.B.14.15.3 | Putative porin of 631 aas | Bacteria |
Bacteroidetes/Chlorobi group | PP of Amoebophilus asiaticus |
*1.B.14.15.4 | Putative DUF4289 family porin of 687 aas | Bacteria |
Bacteroidetes/Chlorobi group | PP of Niastella koreensis |
*1.B.14.15.5 | Putative porin of 627 aas | Bacteria |
Bacteroidetes/Chlorobi group | PP of Melioribacter roseus |
*1.B.14.15.6 | Putative porin of 650 aas | Bacteria |
Bacteroidetes/Chlorobi group | PP of Ignavibacterium album |
*1.B.14.15.7 | Putative porin of 621 aas | Bacteria |
Bacteroidetes/Chlorobi group | PP of Cryptocercus punctulatus |
*1.B.14.16.1 | DUF940 homologue of 720 aas, one signal sequence and 30 putative β-strands. Homologous to proteins designated YmcA, WbfB and YjbH. | Bacteria |
Chlamydiae/Verrucomicrobia group | DUF940 homologue of Protochlamydia amoebophila |
*1.B.14.16.2 | DUF940 homologue of 953 aas, one N-terminal signal sequence and 30 putative beta strands. | Bacteria |
Proteobacteria | DUF940 homologue of Chromobacterium violaceum |
*1.B.14.16.3 | DUF940 homologue of 689 aas, one N-terminal signal sequence and 28 putative TM β-strands. | Bacteria |
Proteobacteria | DUF940 homologue of Psychromonas ingrahamii |
*1.B.14.16.4 | DUF940 homologue of 940 aas, one N-terminal signal sequence and 32 putative TM β-strands. | Bacteria |
Proteobacteria | DUF940 homologue of E. coli |
*1.B.14.16.5 | DUF940 homologue of 716 aas with one N-terminal signal sequence and 27 putative beta strands. | Bacteria |
Chlamydiae/Verrucomicrobia group | DUF940 homologue of Parachlamydia acanthamoebae |
*1.B.14.16.6 | DUF940 homologue of 718 aas, an N-terminal signal sequence and 33 putative beta strands. | Bacteria |
Proteobacteria | DUF940 homologue of Photobacterium angustum |
*1.B.14.16.7 | Putative polysaccharide exporter of 690 aas and 34 predicted TMSs, WbfB. Encoded in a gene cluster with polysaccharide biosynthetic enzymes and a putative periplasmic polysaccharide export protein. | Bacteria |
Proteobacteria | Putative OMR concerned with polysaccharide export of Syntrophus aciditrophicus |
*1.B.14.16.8 | Putative polysaccharide/glycolipid/glycoprotein export receptor of 736 aas and 30 predicted β-strands, WbfB. The gene encoding this protein is in a cluster with UDP-N-acetyl D-quinovosamine -4 epimerase. | Bacteria |
Proteobacteria | Putative exporter of Vibrio anguillarum |
*1.B.14.16.9 | Putative lipopolysaccharide export receptor, WbfB. It is encoded in a gene cluster with LPS biosynthetic genes. | Bacteria |
Proteobacteria | WbfB of Vibrio parahaemolyticus |
*1.B.14.16.10 | Putative LPS exporter receptor, OtuG. It's gene is in a cluster with several LPS biosynthetic enzymes. | Bacteria |
Proteobacteria | OtuG of Vibrio parahaemolyticus |
*1.B.14.16.11 | OMR of 698 aas and 1 N-terminal TMS, GlfD or YmcA. Probably involved in capsular polysaccharide export (Peleg et al. 2005). | Bacteria |
Proteobacteria | GlfD of E. coli |
*1.B.14.17.1 | Uncharacterized protein of 922 aas | Bacteria |
Bacteroidetes/Chlorobi group | UP of Dyadobacter fermentans |
*1.B.14.17.2 | Putative Planctomycetes OMR of 799 aas | Bacteria |
Planctomycetes | Putative OMR of Planctomyces brasiliensis |
*1.B.14.17.3 | Putative Planctomycetes OMR of 1101 aas | Bacteria |
Planctomycetes | Putative OMR of Isosphaera pallida |
*1.B.14.17.4 | Uncharacterized protein of 1055 aas | Bacteria |
Chlamydiae/Verrucomicrobia group | UP of Lentisphaera araneosa |
*1.B.14.18.1 | Putative Verucomicrobial OMP of 676 aas | Bacteria |
Chlamydiae/Verrucomicrobia group | Putative OMR of Optutus terrae |
*1.B.14.18.2 | Uncharacterized OM channel superfamily member of 791 aas | Bacteria |
Chlamydiae/Verrucomicrobia group | UP of Pedosphaera parvula |