TCDB is operated by the Saier Lab Bioinformatics Group
TCIDNameDomainKingdom/PhylumProtein(s)
*1.B.40.1.1









YadA consists of 3 domains: an adhesion head, a stalk involved in serum resistance, and an anchor that forms a pore for auto-transport (Grosskinsky et al., 2007).
Bacteria
Proteobacteria
YadA of Yersinia enterocolitica (P0C2W0)
*1.B.40.1.2









Membrane anchored cell surface haemagglutinin (4726aas)

Bacteria
Proteobacteria
Haemagglutinin of Burkholderia xenovorans (Q13U92)
*1.B.40.1.3









The YadB adhesin (364 aas) (Forman et al., 2008)

Bacteria
Proteobacteria
YadB of Yersinia pestis (Q7CHJ4)
*1.B.40.1.4









The YadC adhesin (622 aas) (Forman et al., 2008)

Bacteria
Proteobacteria
YadC of Yersinia pestis (Q7CHJ5)
*1.B.40.1.5









The cryptic trimeric Haemophilus adhesin, Cha (Sheets et al., 2008).
Bacteria
Proteobacteria
Cha of Haemophilus sp. (B3FNS7)
*1.B.40.1.6









Aegerolysin domain-containing protein of 314 aas

Bacteria
Actinobacteria
UP of Streptomyces griseus
*1.B.40.2.1









The NhhA bacteria adhesin (Scarselli et al., 2006).
Bacteria
Proteobacteria
NhhA of Neisseria meningitidis
(Q9JR18)
*1.B.40.2.2









The EmaA autotransporter collagen-binding adhesin (1965 aas) (Tang et al., 2007). The extended signal peptide of the trimeric autotransporter EmaA modulates secretion (Jiang et al., 2011).

Bacteria
Proteobacteria
EmaA of Aggregatibacter (Actinobacillus) actinomycetemcomitans (Q6VBQ2)
*1.B.40.2.3









The trimeric AT adhesin, essential for virulence, UpaG (1674aas) (Valle et al., 2008).  The high resolution structure has been solved using the "dictionary" approach (Hartmann et al. 2012).

Bacteria
Proteobacteria
UpaG of EPEC E. coli (A8A667)
*1.B.40.2.4









Adhesin (Hia) The 3-d structure is available (PDB#2GR7). Mediates bacterial adhesion to the respiratory epithelium. The crystal structure of the C-terminal end of Hia, corresponding to the entire Hia translocator domain and part of the passenger domain (residues 992-1098) shows that this domain forms a beta-barrel with 12 transmembrane beta-strands, including four strands from each subunit. The beta-barrel has a central channel of 1.8 nm in diameter that is traversed by three N-terminal alpha-helices, one from each subunit. Mutagenesis studies demonstrated that the transmembrane portion of the three alpha-helices and the loop region between the alpha-helices and the neighboring beta-strands are essential for stability, and that trimerization of the translocator domain is a prerequisite for translocator activity (Meng et al. 2006).  Electrostatic repulsion between the positive charges of Arg1077 is important to prevent the formation of misassembled oligomers by the Hia transmembrane domain in vitro (Aoki et al. 2017).

Bacteria
Proteobacteria
Hia Adhesin of Haemophilus influenzae (Q8GM76)
*1.B.40.2.5









The trimeric AT adhesin, essential for virulence, SadA (1461 aas).  The high resolution structure has been solved using the "dictionary" approach (Hartmann et al. 2012).  It's insertion into the outer membrane may be dependent on the BAM complex (TC# 1.B.33) as well as a small inner membrane lipoprotein, SadB (Grin et al. 2013).

Bacteria
Proteobacteria
SadA of Salmonella enterica
*1.B.40.2.6









Adhesin Aha (Acinetobacter trimeric autotransporter) of 1873 aas. Ata contains all of the typical features of trimeric autotransporters, including a long signal peptide followed by an N-terminal, surface-exposed passenger domain and a C-terminal domain encoding 4 β-strands. Ata plays a role in biofilm formation and binds to various extracellular matrix/basal membrane (ECM/BM) components, including collagen types I, III, IV, and V and laminin (Bentancor et al. 2012).

Bacteria
Proteobacteria
Aha of Acinetobacter baumannii
*1.B.40.3.1









Putataive cell surface membrane anchored adhesin; haemagglutinin

Bacteria
Chlamydiae/Verrucomicrobia group
Adhesin of Parachlamydia acanthamoebae (F8KWP8)
*1.B.40.3.2









Hypothetical protein

Bacteria
Tenericutes
HP of Mycoplasma penetrans (Q8EWJ7)
*1.B.40.4.1









Autotransporter of 516 aas, BimA. A polarly localized iron binding protein, BimC, determines the polar targeting as well as polar actin tail formation for motility (Lu et al. 2015).

Eukaryota
Metazoa
BimA of Burkholderia pseudomallei (Pseudomonas pseudomallei)