TCDB is operated by the Saier Lab Bioinformatics Group
TCIDNameDomainKingdom/PhylumProtein(s)
*1.C.1.1.1









Colicin Ia.  Residues lining the channel have been identified (Kienker et al. 2008).

Bacteria
Proteobacteria
Colicin Ia of E. coli
*1.C.1.1.2









Colicin Ib
Bacteria
Proteobacteria
Colicin Ib of E. coli
*1.C.1.1.3









Bacteria
Proteobacteria
Alveicin A in Hafnia alvei
*1.C.1.1.4









Bacteria
Proteobacteria
Alveicin B in Hafnia alvei
*1.C.1.1.5









Pore-forming Colicin F(Y) or Colicin FY (Bosák et al. 2012)

Bacteria
Proteobacteria
Colicin FY of Yersinia frederiksinii
*1.C.1.1.6









Pore-forming pyocin S5 of 498 aas, PyoS5. Active against several P. aeruginosa clinical isolates where it causes membrane damage and leakage (Ling et al. 2010). Uses the ferripyochelin (FptA) receptor (Elfarash et al. 2014).  A PyoS5 immunity protein prevents cell damage (Rasouliha et al. 2013).

Bacteria
Proteobacteria
PyoS5 of Pseudomonas aeruginosa
*1.C.1.2.1









Colicin K. Similar to Colicin 5 (Pilsl and Braun 1995).

Bacteria
Proteobacteria
Colicin K of E. coli
*1.C.1.2.2









Colicin E1. Ho et al. (2011) suggested a membrane topological model with a circular arrangement of helices 1-7 in a clockwise direction from the extracellular side and membrane interfacial association of helices 1, 6, 7, and 10 around the central transmembrane hairpin formed by helices 8 and 9.  ColE1 induces lipid flipping, consistent with the toroidal (proteolipidic) pore model of channel formation (Sobko et al. 2010).  The mechanism of channel integration involving the transition of the soluble to membrane-bound form has been presented (Lugo et al. 2016).

Bacteria
Proteobacteria
Colicin E1 of E. coli
*1.C.1.2.3









Colicin 10.  Uses the Tsx receptor for uptake (Pilsl and Braun 1995).

Bacteria
Proteobacteria
Colicin 10 of E. coli
*1.C.1.3.1









Colicin A.  The role of the hydrophobic helical hairpin of the pore-forming domain has been elucidated (Bermejo et al. 2013).  Acidic conditions promote membrane insertion (Pulagam and Steinhoff 2013).

Bacteria
Proteobacteria
Colicin A of Citrobacter freundii
*1.C.1.3.2









Colicin B.  Its structural stability and interactions have been studied (Ortega et al. 2001).

Bacteria
Proteobacteria
Colicin B of E. coli
*1.C.1.3.3









Colicin N (OmpF is the receptor and translocator (Baboolal et al., 2008)).
Bacteria
Proteobacteria
Colicin N of E. coli
*1.C.1.3.4









Colicin S4 (crystal structure known (3FEW_X; Arnold et al., 2009))
Bacteria
Proteobacteria
Colicin S4 of E. coli (Q9XB47)
*1.C.1.3.5









Colicin R of 629 aas and 2 C-terminal TMSs (Rendueles et al. 2014).

Bacteria
Proteobacteria
Colicin R of E. coli
*1.C.1.3.6









Colicin-like pore-forming domain protein, PmnH, of 462 aas and 2 C-terminal TMSs.  This protein has a dual-toxin architecture, having both an N-terminal colicin M-like domain, potentially interfering with peptidoglycan synthesis, and a colicin N-type domain, a pore-forming module distinct from the colicin Ia-type domain in Pseudomonas aeruginosa pyocin S5 (Ghequire et al. 2017).  Enhanced killing activity of PmnH under iron-limited growth conditions is due to parasitism of the ferrichrome-type transporter for entry into target cells, a strategy shown here to be used as well by monodomain colicin M-like bacteriocins from pseudomonads (Ghequire et al. 2017).

Bacteria
Proteobacteria
PmnH of Pseudomonas synxantha
*1.C.1.4.1









Colicin E2 or E9 (Mosbahi et al., 2002). Colicin E2 is still in contact with its receptor and import machinery when its nuclease domain enters the cytoplasm (Duche, 2007).
Bacteria
Proteobacteria
Colicin E9 of E. coli (P09883)
Colicin E2 of E. coli (P04419)
*1.C.1.4.2









Pyocin-S2, Pys2 of 689 aas.  Causes breakdown of chromosomal DNA as well as complete inhibition of lipid synthesis in sensitive cells. prevents biofilm formation in vitro and in vivo (Smith et al. 2012). Binds the FpvA receptor (Elfarash et al. 2012).

Bacteria
Proteobacteria
Pvs2 of Pseudomonas aeruginosa