TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


1.C.4.1.1
Aerolysin (β-hemolysin; cytolytic enterotoxin) precursor (Parker et al., 1994).  Upon transition  from the prepore to pore, the aerolysin heptamer shows a unique concerted swirling movement, accompanied by a vertical collapse of the complex, ultimately leading to the insertion of a transmembrane beta-barrel (Degiacomi et al. 2013).  Multiple conformational states lead to rotation of the core lysin to unleash the membrane spanning regions (Whisstock and Dunstone 2013).  Monomer activation, dependent on proteolysis, is the rate-limiting step for pore formation (Bischofberger et al. 2016). Cryo-electron microscopy structures of three conformational intermediates and the final aerolysin pore provide insight into the conformational changes that allow pore formation. The structures reveal a protein fold consisting of two concentric beta-barrels, tightly kept together by hydrophobic interactions. This fold suggests a basis for the prion-like ultrastability of aerolysin pore and its stoichiometry (Iacovache et al. 2016).

Accession Number:P09167
Protein Name:AERA
Length:493
Molecular Weight:54342.00
Species:Aeromonas hydrophila [644]
Number of TMSs:1
Location1 / Topology2 / Orientation3: Secreted1
Substrate small molecules

Cross database links:

Pfam: PF01117    PF03440   

Gene Ontology

GO:0020002 C:host cell plasma membrane
GO:0016020 C:membrane
GO:0005488 F:binding
GO:0009405 P:pathogenesis

References (6)

[1] “Nucleotide sequence of the gene for the hole-forming toxin aerolysin of Aeromonas hydrophila.”  Howard S.P.et.al.   3584074
[2] “Molecular cloning and expression in Escherichia coli of the structural gene for the hemolytic toxin aerolysin from Aeromonas hydrophila.”  Howard S.P.et.al.   3020368
[3] “Spectroscopic study of the activation and oligomerization of the channel-forming toxin aerolysin: identification of the site of proteolytic activation.”  van der Goot F.G.et.al.   1382579
[4] “Protonation of histidine-132 promotes oligomerization of the channel-forming toxin aerolysin.”  Buckley J.T.et.al.   8845373
[5] “Conversion of a transmembrane to a water-soluble protein complex by a single point mutation.”  Tsitrin Y.et.al.   12219082
[6] “Structure of the Aeromonas toxin proaerolysin in its water-soluble and membrane-channel states.”  Parker M.W.et.al.   7510043
Structure:
1PRE   1Z52   3C0M   3C0N   3C0O   3G4N   3G4O   5jzh     

External Searches:

  • Search: DB with
  • BLAST ExPASy (Swiss Institute of Bioinformatics (SIB) BLAST)
  • CDD Search (Conserved Domain Database)
  • Search COGs (Clusters of Orthologous Groups of proteins)
  • 2° Structure (Network Protein Sequence Analysis)

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
Window Size: Angle:  
FASTA formatted sequence
1:	MQKIKLTGLS LIISGLLMAQ AQAAEPVYPD QLRLFSLGQG VCGDKYRPVN REEAQSVKSN 
61:	IVGMMGQWQI SGLANGWVIM GPGYNGEIKP GTASNTWCYP TNPVTGEIPT LSALDIPDGD 
121:	EVDVQWRLVH DSANFIKPTS YLAHYLGYAW VGGNHSQYVG EDMDVTRDGD GWVIRGNNDG 
181:	GCDGYRCGDK TAIKVSNFAY NLDPDSFKHG DVTQSDRQLV KTVVGWAVND SDTPQSGYDV 
241:	TLRYDTATNW SKTNTYGLSE KVTTKNKFKW PLVGETELSI EIAANQSWAS QNGGSTTTSL 
301:	SQSVRPTVPA RSKIPVKIEL YKADISYPYE FKADVSYDLT LSGFLRWGGN AWYTHPDNRP 
361:	NWNHTFVIGP YKDKASSIRY QWDKRYIPGE VKWWDWNWTI QQNGLSTMQN NLARVLRPVR 
421:	AGITGDFSAE SQFAGNIEIG APVPLAADSK VRRARSVDGA GQGLRLEIPL DAQELSGLGF 
481:	NNVSLSVTPA ANQ