TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


2.A.49.5.1
Cl-:H+ (2:1) antiporter, EriC or ClcA (ClC-ecl) (Accardi and Miller, 2004). The x-ray structure has been determined (PDB 1OTS) Dutzler et al., 2002, 2003). The exchange mechanism involves a conformational cycle of alternating exposure of Cl- and H+ binding sites of both ClC pores to the two sides of the membrane (Miloshevsky et al., 2010). Specific aspects of these conformational changes have been proposed (Wang et al. 2018).  Although the protein is present as a homodimer, a single ClC subunit alone is the basic functional unit for transport, and cross-subunit interaction is not required for Cl-/H+ exchange in ClC transporters (Robertson et al., 2010).  Glu202 is essential for H+ symport and is on the H+ pathway (Lim et al. 2012).  CLC exchangers have two gates that are coupled through conformational rearrangements outside the ion pathway (Basilio et al. 2014).  The rotation of E148 plays a critical role in defining the Cl-/H+ coupling (Lee et al. 2016). The channel shows conserved re-entrant helix-coil-helix domains (Tsirigos et al. 2017).

Accession Number:P37019
Protein Name:H(+)/Cl(-) exchange transporter clcA aka EriC
Length:473
Molecular Weight:50349.00
Species:Escherichia coli [83333]
Number of TMSs:11
Location1 / Topology2 / Orientation3: Cell inner membrane1 / Multi-pass membrane protein2
Substrate Cl-

Cross database links:

Genevestigator: P37019
EchoBASE: EB2235
EcoGene: EG12331
eggNOG: COG0038
HEGENOM: HBG493510
DIP: DIP-9523N
RefSeq: AP_000816.1    NP_414697.1   
Entrez Gene ID: 946715   
Pfam: PF00654   
BioCyc: EcoCyc:YADQ-MONOMER    ECOL168927:B0155-MONOMER   
KEGG: ecj:JW5012    eco:b0155   

Gene Ontology

GO:0016021 C:integral to membrane
GO:0005886 C:plasma membrane
GO:0015297 F:antiporter activity
GO:0005247 F:voltage-gated chloride channel activity
GO:0006821 P:chloride transport
GO:0006950 P:response to stress
GO:0055085 P:transmembrane transport

References (15)

[1] “Systematic sequencing of the Escherichia coli genome: analysis of the 2.4-4.1 min (110,917-193,643 bp) region.”  Fujita N.et.al.   8202364
[2] “The complete genome sequence of Escherichia coli K-12.”  Blattner F.R.et.al.   9278503
[3] “Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110.”  Hayashi K.et.al.   16738553
[4] “High-level expression, functional reconstitution, and quaternary structure of a prokaryotic ClC-type chloride channel.”  Maduke M.et.al.   10539975
[5] “Expression, purification, and initial structural characterization of YadQ, a bacterial homolog of mammalian ClC chloride channel proteins.”  Purdy M.D.et.al.   10648805
[6] “A biological role for prokaryotic ClC chloride channels.”  Iyer R.et.al.   12384697
[7] “Secondary active transport mediated by a prokaryotic homologue of ClC Cl-channels.”  Accardi A.et.al.   14985752
[8] “Projection structure of a ClC-type chloride channel at 6.5 A resolution.”  Mindell J.A.et.al.   11196649
[9] “X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity.”  Dutzler R.et.al.   11796999
[10] “Gating the selectivity filter in ClC chloride channels.”  Dutzler R.et.al.   12649487
[11] “Ion-binding properties of the ClC chloride selectivity filter.”  Lobet S.et.al.   16341087
[12] “Uncoupling of a CLC Cl-/H+ exchange transporter by polyatomic anions.”  Nguitragool W.et.al.   16905147
[13] “Synergism between halide binding and proton transport in a CLC-type exchanger.”  Accardi A.et.al.   16949616
[14] “Ion permeation through a Cl--selective channel designed from a CLC Cl-/H+ exchanger.”  Jayaram H.et.al.   18678918
[15] “Intracellular proton-transfer mutants in a CLC Cl-/H+ exchanger.”  Lim H.-H.et.al.   19139174
Structure:
1KPK   1OTS   1OTT   1OTU   2EXW   2EXY   2EZ0   2FEC   2FED   2FEE   [...more]

External Searches:

  • Search: DB with
  • BLAST ExPASy (Swiss Institute of Bioinformatics (SIB) BLAST)
  • CDD Search (Conserved Domain Database)
  • Search COGs (Clusters of Orthologous Groups of proteins)
  • 2° Structure (Network Protein Sequence Analysis)

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
Window Size: Angle:  
FASTA formatted sequence
1:	MKTDTPSLET PQAARLRRRQ LIRQLLERDK TPLAILFMAA VVGTLVGLAA VAFDKGVAWL 
61:	QNQRMGALVH TADNYPLLLT VAFLCSAVLA MFGYFLVRKY APEAGGSGIP EIEGALEDQR 
121:	PVRWWRVLPV KFFGGLGTLG GGMVLGREGP TVQIGGNIGR MVLDIFRLKG DEARHTLLAT 
181:	GAAAGLAAAF NAPLAGILFI IEEMRPQFRY TLISIKAVFI GVIMSTIMYR IFNHEVALID 
241:	VGKLSDAPLN TLWLYLILGI IFGIFGPIFN KWVLGMQDLL HRVHGGNITK WVLMGGAIGG 
301:	LCGLLGFVAP ATSGGGFNLI PIATAGNFSM GMLVFIFVAR VITTLLCFSS GAPGGIFAPM 
361:	LALGTVLGTA FGMVAVELFP QYHLEAGTFA IAGMGALLAA SIRAPLTGII LVLEMTDNYQ 
421:	LILPMIITGL GATLLAQFTG GKPLYSAILA RTLAKQEAEQ LARSKAASAS ENT