TCDB is operated by the Saier Lab Bioinformatics Group

2.A.55 The Metal Ion (Mn2+-iron) Transporter (Nramp) Family

Homologues of this family are found in various yeasts, plants, animals, archaea, and Gram-negative and Gram-positive bacteria termed ''natural resistance-associated'' macrophage protein (NRAMP) proteins because one of the animal homologues plays a role in resistance to intracellular bacterial pathogens such as Salmonella enterica serovar Typhimurium, Leishmania donovani and Mycobacterium bovis. The natural history of SLC11 genes in vertebrates has been discussed by Neves et al. (2011). Proposed to be a distant member of the DMT Superfamily (TC# 2.A.7), several human pathologies may result from defects in Nramp-dependent Fe2+ or Mn2+ transport, including iron overload, neurodegenerative diseases and innate susceptibility to infectious diseases (Cellier 2012).

Humans and rodents possess two distinct NRAMPs. The broad specificity NRAMP2 (DMT1), which transports a range of divalent metal cations, transports Fe2+  and H+ with a 1:1 stoichiometry and apparent affinities of 6 μm and about 1 μm, respectively. Variable H+:Fe2+  stoichiometry has also been reported. The order of substrate preference for NRAMP2 is Fe2+> Zn2+> Mn2+> Co2+> Ca2+> Cu2+> Ni2+> Pb2+. Many of these ions can inhibit iron absorption. Mutation of Nramp2 in rodents leads to defective endosomal iron export within the ferritin cycle, impaired intestinal iron absorption and microcytic anemia. Symptoms of Mn2+ deficiency are also seen. It is found in apical membranes of intestinal epithelial cells but also in late endosomes and lysosomes.

In contrast to the widely expressed NRAMP2, NRAMP1 is expressed primarily in macrophages and monocytes and appears to have a preference for Mn2+ rather than Fe2+. NRAMP1 (TC# 2.A.55.2.3) has been reported to function by metal:H+ antiport (Techau et al., 2007). It is hypothesized that a deficiency for Mn2+ or some other metal prevents the generation of reactive oxygenic and nitrogenic compounds that are used by macrophage to combat pathogens. This hypothesis is supported by studies on the bacterial NRAMP homologues which exhibit extremely high selectivity for Mn2+ over Fe2+, Zn2+ and other divalent cations. Regulation of these transporters in bacteria can occur through Fur, OxyR, and most commonly a DtxR homolog, MntR.

The Smf1 protein of Saccharomyces cerevisiae appears to catalyze high-affinity (Km = 0.3 μm) Mn2+ uptake while the closely related Smf2 protein may catalyze low affinity (Km = 60 μm) Mn2+ uptake in the same organism. Both proteins also mediate H+-dependent Fe2+ uptake. These proteins are of 575 and 549 amino acyl residues in length and are predicted to have 8-12 transmembrane α-helical spanners. The E. coli homologue of 412 aas exhibits 11 putative and confirmed TMSs with the N-terminus in and the C-terminus out. The yeast proteins may be localized to the vacuole and/or the plasma membrane of the yeast cell. Indirect and some direct experiments suggest that they may be able to transport several heavy metals including Mn2+, Cu2+, Cd2+ and Co2+. A third yeast protein, Smf3p, appears to be exclusively intracellular, possibly in the Golgi. Nramp2 (Slc11A2) of Homo sapiens (TC #2.A.55.2.1) has a 12 TMS topology with intracellular N- and C-termini. Two-fold structural symmetry in the arrangement of membrane helices for TM1-5 and TM6-10 (conserved Slc2 hydrophobic core) is suggested (Czachorowski et al., 2009). 

The Nramp family of divalent metal transporters enables manganese import in bacteria and dietary iron uptake in mammals. Bozzi et al. 2016 determined the crystal structure of the Deinococcus radiodurans Nramp homolog (DraNramp) in an inward-facing apo state, including the complete transmembrane (TM) segment 1a (absent from a previous Nramp structure). Cysteine accessibility scanning results Allowed identification of the metal-permeation pathway in the alternate outward-open conformation. Two natural anemia-causing glycine-to-arginine mutations impaired transition metal transport in both human Nramp2 and DraNramp. The TM4 G153R mutation perturbs the closing of the outward metal-permeation pathway and alters the selectivity of the conserved metal-binding site. In contrast, the TM1a G45R mutation prevents conformational change by sterically blocking the essential movement of that helix, thus locking the transporter in an inward-facing state (Bozzi et al. 2016).

The generalized transport reaction catalyzed by Nramp family proteins is:

Me2+ (out) H+ (out) ⇌ Me2+ (in) H+ (in)

This family belongs to the: APC Superfamily.

References associated with 2.A.55 family:

Au, C., A. Benedetto, J. Anderson, A. Labrousse, K. Erikson, J.J. Ewbank, and M. Aschner. (2009). SMF-1, SMF-2 and SMF-3 DMT1 orthologues regulate and are regulated differentially by manganese levels in C. elegans. PLoS One 4: e7792. 19924247
Bai, S.P., L. Lu, X.G. Luo, and B. Liu. (2008). Cloning, sequencing, characterization, and expressions of divalent metal transporter one in the small intestine of broilers. Poult Sci 87: 768-776. 18339999
Bardou-Jacquet, E., M.L. Island, A.M. Jouanolle, L. Détivaud, N. Fatih, M. Ropert, E. Brissot, A. Mosser, H. Maisonneuve, P. Brissot, and O. Loréal. (2011). A novel N491S mutation in the human SLC11A2 gene impairs protein trafficking and in association with the G212V mutation leads to microcytic anemia and liver iron overload. Blood Cells Mol Dis 47: 243-248. 21871825
Bozzi, A.T., L.B. Bane, W.A. Weihofen, A. Singharoy, E.R. Guillen, H.L. Ploegh, K. Schulten, and R. Gaudet. (2016). Crystal Structure and Conformational Change Mechanism of a Bacterial Nramp-Family Divalent Metal Transporter. Structure. [Epub: Ahead of Print] 27839948
Cailliatte R., Schikora A., Briat JF., Mari S. and Curie C. (2010). High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions. Plant Cell. 22(3):904-17. 20228245
Cellier, M.F. (2012). Nramp: from sequence to structure and mechanism of divalent metal import. Curr Top Membr 69: 249-293. 23046654
Chen, S.L., Y.X. Zhang, J.Y. Xu, L. Meng, Z.X. Sha, and G.C. Ren. (2007). Molecular cloning, characterization and expression analysis of natural resistance associated macrophage protein (Nramp) cDNA from turbot (Scophthalmus maximus). Comp Biochem Physiol B Biochem Mol Biol 147: 29-37. 17317252
Chen, X.-Z., J.-B. Peng, A. Cohen, H. Nelson, N. Nelson, and M.A. Hediger. (1999). Yeast SMF1 mediates H+-coupled iron uptake with concomitant uncoupled cation currents. J. Biol. Chem. 274: 35089-35094. 10574989
Cheng, X. and H. Wang. (2012). Multiple targeting motifs direct NRAMP1 into lysosomes. Biochem. Biophys. Res. Commun. 419: 578-583. 22382021
Chua, A.C. and E.H. Morgan. (1997). Manganese metabolism is impaired in the Belgrade laboratory rat. J Comp Physiol [B] 167: 361-369. 9265748
Cohen, A., H. Nelson, and N. Nelson. (2000). The family of SMF metal ion transporters in yeast cells. J. Biol. Chem. 275: 33388-33394. 10930410
Courville, P., R. Chaloupka, F. Veyrier, and M.F.M. Cellier. (2004). Determination of transmembrane topology of the Escherichia coli natural resistance-associated macrophage protein (Nramp) ortholog. J. Biol. Chem. 279: 3318-3326. 14607838
Culotta, V.C., M. Yang, and M.D. Hall. (2005). Manganese transport and trafficking: lessons learned from Saccharomyces cerevisiae. Eukaryot. Cell 4: 1159-1165. 16002642
Czachorowski M., Lam-Yuk-Tseung S., Cellier M. and Gros P. (2009). Transmembrane topology of the mammalian Slc11a2 iron transporter. Biochemistry. 48(35):8422-34. 19621945
Ding D., Salvi R. and Roth JA. (2014). Cellular localization and developmental changes of the different isoforms of divalent metal transporter 1 (DMT1) in the inner ear of rats. Biometals. 27(1):125-34. 24318355
Eide, D. and M.L. Guerinot. (1997). Metal ion uptake in eukaryotes. ASM News 63: 199-205. 0
Fleming, M.D., C.C.I. Trenor, M.A. Su, D. Foernzler, D.R. Beier, W.F. Dietrich, and N.C. Andrews. (1997). Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat. Genet. 16: 383-386. 9241278
Fleming, M.D., M.A. Romano, M.A. Su, L.M. Garrick, M.D. Garrick, and N.C. Andrews. (1998). Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. Proc. Natl. Acad. Sci. USA 95: 1148-1153. 9448300
Garrick, M.D., K.G. Dolan, C. Horbinski, A.J. Ghio, D. Higgins, M. Porubcin, E.G. Moore, L.N. Hainsworth, J.N. Umbreit, M.E. Conrad, L. Feng, A. Lis, J.A. Roth, S. Singleton, and L.M. Garrick. (2003). DMT1: a mammalian transporter for multiple metals. Biometals 16: 41-54. 12572663
Gunshin, H., B. Mackenzie, U.V. Berger, Y. Gunshin, M.F. Romero, W.F. Boron, S. Nussberger, J.L. Gollan, and M.A. Hediger. (1997). Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388: 482-488. 9242408
Haemig, H.A., P.J. Moen, and R.J. Brooker. (2010). Evidence that highly conserved residues of transmembrane segment 6 of Escherichia coli MntH are important for transport activity. Biochemistry 49: 4662-4671. 20441230
Hohle, T.H. and M.R. O'Brian. (2009). The mntH gene encodes the major Mn2+ transporter in Bradyrhizobium japonicum and is regulated by manganese via the Fur protein. Mol. Microbiol. 72: 399-409. 19298371
Hug, L.A., B.J. Baker, K. Anantharaman, C.T. Brown, A.J. Probst, C.J. Castelle, C.N. Butterfield, A.W. Hernsdorf, Y. Amano, K. Ise, Y. Suzuki, N. Dudek, D.A. Relman, K.M. Finstad, R. Amundson, B.C. Thomas, and J.F. Banfield. (2016). A new view of the tree of life. Nat Microbiol 1: 16048. 27572647
Karlinsey, J.E., M.E. Maguire, L.A. Becker, M.L. Crouch, and F.C. Fang. (2010). The phage shock protein PspA facilitates divalent metal transport and is required for virulence of Salmonella enterica sv. Typhimurium. Mol. Microbiol. 78: 669-685. 20807201
Kehres, D.G., A. Janakiraman, J.M. Slauch, and M.E. Maguire. (2002). Regulation of Salmonella enterica serovar Typhimurium mntH transcription by H2O2, Fe2+, and Mn2+. J. Bacteriol. 184: 3151-3158. 12029030
Kehres, D.G., M.L. Zaharik, B.B. Finlay, and M.E. Maguire. (2000). The NRAMP proteins of Salmonella typhimurium and Escherichia coli are selective manganese transporters involed in the response to reactive oxygen. Mol. Microbiol. 36: 1085-1100. 10844693
Kwong, R.W., J.A. Andrés, and S. Niyogi. (2010). Molecular evidence and physiological characterization of iron absorption in isolated enterocytes of rainbow trout (Oncorhynchus mykiss): implications for dietary cadmium and lead absorption. Aquat Toxicol 99: 343-350. 20541816
Lane, D.J. and D.R. Richardson. (2014). Chaperone turns gatekeeper: PCBP2 and DMT1 form an iron-transport pipeline. Biochem. J. 462: e1-3. 25057890
Li, J., L. Wang, L. Wang, and F. Li. (2012). Structure and transmembrane topology of slc11a1 TMD1-5 in lipid membranes. Biopolymers 98: 224-233. 22782564
Lin, Z., J.A. Fernández-Robledo, M.F. Cellier, and G.R. Vasta. (2011). The natural resistance-associated macrophage protein from the protozoan parasite Perkinsus marinus mediates iron uptake. Biochemistry 50: 6340-6355. 21661746
Makui, H., E. Roig, S.T. Cole, J.D. Helmann, P. Gros, and M.F.M. Cellier. (2000). Identification of the Escherichia coli K-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter. Mol. Microbiol. 35: 1065-1078. 10712688
Nam H., Wang CY., Zhang L., Zhang W., Hojyo S., Fukada T. and Knutson MD. (2013). ZIP14 and DMT1 in the liver, pancreas, and heart are differentially regulated by iron deficiency and overload: implications for tissue iron uptake in iron-related disorders. Haematologica. 98(7):1049-57. 23349308
Neves, J.V., J.M. Wilson, H. Kuhl, R. Reinhardt, L.F. Castro, and P.N. Rodrigues. (2011). Natural history of SLC11 genes in vertebrates: tales from the fish world. BMC Evol Biol 11: 106. 21501491
Nevo, Y. (2007). Site-directed mutagenesis investigation of coupling properties of metal ion transport by DCT1. Biochim. Biophys. Acta. 1778(1):334-341. 17980698
Patzer, S.I. and K. Hantke. (2001). Dua1 repression by Fe2+-Fur and Mn2+-MntR of the mntH gene, encoding an NRAMP-like Mn2+ transporter in Escherichia coli. J. Bacteriol. 183: 4806-4813. 11466284
Peracino, B., S. Buracco, and S. Bozzaro. (2013). The Nramp (Slc11) proteins regulate development, resistance to pathogenic bacteria and iron homeostasis in Dictyostelium discoideum. J Cell Sci 126: 301-311. 22992462
Picard, V., G. Govoni, N. Jabado, and P. Gros. (2000). Nramp 2 (DCT1/DMT1) expressed at the plasma membrane transports iron and other divalent cations into a calcein-accessible cytoplasmic pool. J. Biol. Chem. 275: 35738-35745. 10942769
Pinner, E., S. Gruenheid, M. Raymond. and P. Gros. (1997). Functional complementation of the yeast divalent cation transporter family SMF by NRAMP2, a member of the mammalian natural resistance-associated macrophage protein family. J. Biol. Chem. 272: 28933-28938. 9360964
Portnoy, M.E., X.F. Liu, and V.C. Culotta. (2000). Saccharomyces cerevisiae expresses three functionally distinct homologues of the NRAMP family of metal transporters. Mol. Cell Biol. 20: 7893-7902. 11027260
Que, Q. and J.D. Helmann. (2000). Manganese homeostasis in Bacillus subtilis is regulated by MntR, a bifunctional regulator related to the diphtheria toxin repressor family of proteins. Mol. Microbiol. 35: 1454-1468. 10760146
Rose, P.P., S.L. Hanna, A. Spiridigliozzi, N. Wannissorn, D.P. Beiting, S.R. Ross, R.W. Hardy, S.A. Bambina, M.T. Heise, and S. Cherry. (2011). Natural resistance-associated macrophage protein is a cellular receptor for sindbis virus in both insect and mammalian hosts. Cell Host Microbe 10: 97-104. 21843867
Supek, F., L. Supekova, H. Nelson, and N. Nelson. (1996). A yeast manganese transporter related to the macrophage protein involved in conferring resistance to mycobacteria. Proc. Natl. Acad. Sci. USA 93: 5105-5110. 8643535
Tabuchi, M., T. Yoshimori, K. Yamaguchi, T. Yoshida, and F. Kishi. (2000). Human NRAMP2/DMT1, which mediates iron transport across endosomal membranes, is localized to late endosomes and lysosomes in Hep-2 cells. J. Biol. Chem. 29: 22220-22228. 10751401
Techau, M.E., J. Valdez-Taubas, J.F. Popoff, R. Francis, M. Seaman, and J.M. Blackwell. (2007). Evolution of differences in transport function in slc11a family members. J. Biol. Chem. 282: 35646-35656. 17932044
Ueki, T., N. Furuno, and H. Michibata. (2011). A novel vanadium transporter of the Nramp family expressed at the vacuole of vanadium-accumulating cells of the ascidian Ascidia sydneiensis samea. Biochim. Biophys. Acta. 1810: 457-464. 21236319
VanDuyn, N., R. Settivari, J. LeVora, S. Zhou, J. Unrine, and R. Nass. (2013). The metal transporter SMF-3/DMT-1 mediates aluminum-induced dopamine neuron degeneration. J Neurochem 124: 147-157. 23106139
Vatansever, R., E. Filiz, and I.I. Ozyigit. (2016). In silico analysis of Mn transporters (NRAMP1) in various plant species. Mol Biol Rep 43: 151-163. 26878855
Wang, D., Y. Song, J. Li, C. Wang, and F. Li. (2011). Structure and metal ion binding of the first transmembrane domain of DMT1. Biochim. Biophys. Acta. 1808: 1639-1644. 21074515
Wei YF., Li T., Li LF., Wang JL., Cao GH. and Zhao ZW. (2016). Functional and transcript analysis of a novel metal transporter gene EpNramp from a dark septate endophyte (Exophiala pisciphila). Ecotoxicol Environ Saf. 124:363-8. 26595509
Wei, W., T. Chai, Y. Zhang, L. Han, J. Xu, and Z. Guan. (2009). The Thlaspi caerulescens NRAMP homologue TcNRAMP3 is capable of divalent cation transport. Mol Biotechnol 41: 15-21. 18663607
Wessling-Resnick, M. (2000). Iron transport. Annu. Rev. Nutr. 20: 129-151. 10940329
West, A.H., D.J. Clark, J. Martin, W. Neupert, F.-U. Hartl, and A.L. Horwich. (1992). Two related genes encoding extremely hydrophobic proteins suppress a lethal mutation in the yeast mitochondrial processing enhancing protein. J. Biol. Chem. 267: 24625-24633. 1447206
Xia, J., N. Yamaji, and J.F. Ma. (2011). Further characterization of an aluminum influx transporter in rice. Plant Signal Behav 6: 160-163. 21248479
Xia, J., N. Yamaji, T. Kasai, and J.F. Ma. (2010). Plasma membrane-localized transporter for aluminum in rice. Proc. Natl. Acad. Sci. USA 107: 18381-18385. 20937890