TCDB is operated by the Saier Lab Bioinformatics Group

2.A.60 The Organo Anion Transporter (OAT) Family

Proteins of the OAT family (solute carrier family 21 (previously called SLC21A; more recently designated SLCO by the HUGO Gene Nomenclature Committee (B. Hagenbuch, personal communication))) catalyze the Na+-independent facilitated transport of fairly large amphipathic organic anions (and less frequently neutral or cationic drugs) such as bromosulfobromophthalein, prostaglandins, conjugated and unconjugated bile acids (taurocholate and cholate, respectively), steroid conjugates such as estrone-sulfate and dehydroepiandrosterone-sulfate (Rižner et al. 2017), thyroid hormones, anionic oligopeptides, drugs, toxins and other xenobiotics (Hong 2013).  Among the well characterized substrates are numerous drugs including statins, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, antibiotics, antihistaminics, antihypertensives and anticancer drugs (Hagenbuch and Stieger 2013).  There are six mammalian OAT families (Hagenbuch and Stieger 2013).  Fluorescein is a general OAT family substrate (Patik et al. 2015), but Hagenbuch and Gui 2008 have summarized the general features and substrates of the eleven human OATPs.

The various paralogues in a mammal have differing but overlapping substrate specificities and tissue distributions as summarized by Hagenbuch and Meier (2003). These authors also provide a phylogenetic tree of the mammalian members of the family, showing that they fall into five recognizable subfamilies, four of which exhibit deep branching sub-subfamilies. However, all sequences within a subfamily are >60% identical while those between subfamilies are >40% identical (Hagenbuch and Meier, 2003). Therefore, these mammalian proteins are all included within a single subfamily of the TC system (TC #2.A.60.1). The detailed substrates transported and their affinities are presented by Hagenbuch and Meier (2003). As also shown by Hagenbuch and Meier, all but one (OatP4a1) of the mammalian homologues cluster together, separately from all other animal (insect and worm) homologues. OAT family homologues have been found in other animals but not outside of the animal kingdom.

These transporters have been characterized primarily in mammals, but characterized homologues are present in D. melanogaster (Eraly et al. 2004; Chahine et al. 2012), A. gambiae, and C. elegans. The mammalian OAT family proteins exhibit a high degree of tissue specificity. Mammalian homologues consist of 640-722 amino acyl residues and possess 12 putative α-helical transmembrane spanners. They may catalyze electrogenic anion uniport or more frequently, anion exchange. Conformational changes of the multispecific organic anion transporter 1 (OAT1/SLC22A6) has suggested a molecular mechanism for initial stages of drug and metabolite transport (Tsigelny et al., 2011). The OAT family is a distant family within the MFS (TC #2.A.1). Regulation of expression and function of OATps has been described (Svoboda et al., 2011).

The generalized transport reaction catalyzed by members of the OAT family is:

Anion (in) → Anion (out)


Anion1 (in) + Anion2 (out) → Anion1 (out) + Anion2 (in).

This family belongs to the: MFS Superfamily.

References associated with 2.A.60 family:

Hong M. (2014). Critical domains within the sequence of human organic anion transporting polypeptides. Curr Drug Metab. 15(3):265-70. 24372098
Abe, T., M. Kakyo, H. Sakagami, T. Tokui, T. Nishio, M. Tanemoto, H. Nomura, S.C. Hebert, S. Matsuno, H. Kondo, and H. Yawo. (1998). Molecular characterization and tissue distribution of a new organic anion transporter subtype (Oatp3) that transports thyroid hormones and taurocholate and comparison with Oatp2. J. Biol. Chem. 273: 22395-22401. 9712861
Abe, T., M. Kakyo, T. Tokui, R. Nakagomi, T. Nishio, D. Nakai, H. Nomura, M. Unno, M. Suzuki, T. Naitoh, S. Matsuno, and H. Yawo. (1999). Identification of a novel gene family encoding human liver-specific organic anion transporter LST-1. J. Biol. Chem. 274: 17159-17163. 10358072
Arakawa, H., Y. Shirasaka, M. Haga, T. Nakanishi, and I. Tamai. (2012). Active intestinal absorption of fluoroquinolone antibacterial agent ciprofloxacin by organic anion transporting polypeptide, Oatp1a5. Biopharm Drug Dispos 33: 332-341. 22899169
Bernal J., Guadano-Ferraz A. and Morte B. (2015). Thyroid hormone transporters--functions and clinical implications. Nat Rev Endocrinol. 11(7):406-17. 25942657
Bian, J., M. Jin, M. Yue, M. Wang, H. Zhang, and C. Gui. (2016). Tryptophan Residue Located at the Middle of Putative Transmembrane Domain 11 Is Critical for the Function of Organic Anion Transporting Polypeptide 2B1. Mol Pharm. [Epub: Ahead of Print] 27576593
Brennan, B.J., A. Poirier, S. Moreira, P.N. Morcos, P. Goelzer, R. Portmann, J. Asthappan, C. Funk, and P.F. Smith. (2015). Characterization of the transmembrane transport and absolute bioavailability of the HCV protease inhibitor danoprevir. Clin Pharmacokinet 54: 537-549. 25488594
Briz, O., M.R. Romero, P. Martinez-Becerra, R.I. Macias, M.J. Perez, F. Jimenez, F.G. San Martin, and J.J. Marin. (2006). OATP8/1B3-mediated cotransport of bile acids and glutathione: an export pathway for organic anions from hepatocytes? J. Biol. Chem. 281: 30326-30335. 16877380
Cai, S.Y., W. Wang, C.J. Soroka, N. Ballatori, and J.L. Boyer. (2002). An evolutionarily ancient Oatp: insights into conserved functional domains of these proteins. Am. J. Physiol. Gastrointest Liver Physiol 282: G702-710. 11897630
Chahine, S., S. Seabrooke, and M.J. O'Donnell. (2012). Effects of genetic knock-down of organic anion transporter genes on secretion of fluorescent organic ions by Malpighian tubules of Drosophila melanogaster. Arch Insect Biochem Physiol 81: 228-240. 22972675
Chan, B.S., J.A. Satriano, M. Pucci, and V.L. Schuster. (1998). Mechanism of prostaglandin E2 transport across the plasma membrane of HeLa cells and Xenopus oocytes expressing the prostaglandin transporter "PGT". J. Biol. Chem. 273: 6689-6697. 9506966
Chi Y. and Schuster VL. (2010). The prostaglandin transporter PGT transports PGH(2). Biochem Biophys Res Commun. 395(2):168-72. 20346915
Cui, Y., J. König, I. Leier, U. Buchholz, and D. Keppler. (2001). Hepatic uptake of bilirubin and its conjugates by the human organic anion transporter SLC21A6. J. Biol. Chem. 276: 9626-9630. 11134001
DeGorter, M.K., R.H. Ho, B.F. Leake, R.G. Tirona, and R.B. Kim. (2012). Interaction of three regiospecific amino acid residues is required for OATP1B1 gain of OATP1B3 substrate specificity. Mol Pharm 9: 986-995. 22352740
Eraly, S.A., J.C. Monte, and S.K. Nigam. (2004). Novel slc22 transporter homologs in fly, worm, and human clarify the phylogeny of organic anion and cation transporters. Physiol Genomics 18: 12-24. 15054140
Gruetz, M., H. Sticht, H. Glaeser, M.F. Fromm, and J. König. (2016). Analysis of amino acid residues in the predicted transmembrane pore influencing transport kinetics of the hepatic drug transporter organic anion transporting polypeptide 1B1 (OATP1B1). Biochim. Biophys. Acta. 1858: 2894-2902. [Epub: Ahead of Print] 27594653
Gui, C. and B. Hagenbuch. (2008). Amino acid residues in transmembrane domain 10 of organic anion transporting polypeptide 1B3 are critical for cholecystokinin octapeptide transport. Biochemistry 47: 9090-9097. 18690707
Hagenbuch, B. (1997). Molecular properties of hepatic uptake systems for bile acids and organic acids. J. Membr. Biol. 160: 1-8. 9351887
Hagenbuch, B. and B. Stieger. (2013). The SLCO (former SLC21) superfamily of transporters. Mol Aspects Med 34: 396-412. 23506880
Hagenbuch, B. and C. Gui. (2008). Xenobiotic transporters of the human organic anion transporting polypeptides (OATP) family. Xenobiotica 38: 778-801. 18668430
Hagenbuch, B. and P.J. Meier. (2003). The superfamily of organic anion transporting polypeptides. Biochim. Biophys. Acta 1609: 1-18. 12507753
Hakes, D.J. and R. Berezney. (1991). Molecular cloning of matrin F/G: a DNA binding protein of the nuclear matrix that contains putative zinc finger motifs. Proc. Natl. Acad. Sci. USA 88: 6186-6190. 2068100
Herfindal, L., C. Krakstad, L. Myhren, H. Hagland, R. Kopperud, K. Teigen, F. Schwede, R. Kleppe, and S.O. Døskeland. (2014). Introduction of Aromatic Ring-Containing Substituents in Cyclic Nucleotides Is Associated with Inhibition of Toxin Uptake by the Hepatocyte Transporters OATP 1B1 and 1B3. PLoS One 9: e94926. 24740327
Hogg K., Thomas J., Ashford D., Cartwright J., Coldwell R., Weston DJ., Pillmoor J., Surry D. and O'Toole P. (2015). Quantification of proteins by flow cytometry: Quantification of human hepatic transporter P-gp and OATP1B1 using flow cytometry and mass spectrometry. Methods. 82:38-46. 25916617
Hong W., Wu Z., Fang Z., Huang J., Huang H. and Hong M. (2015). Amino Acid Residues in the Putative Transmembrane Domain 11 of Human Organic Anion Transporting Polypeptide 1B1 Dictate Transporter Substrate Binding, Stability, and Trafficking. Mol Pharm. 12(12):4270-6. 26562723
Hosotani, R., W. Inoue, T. Takemiya, K. Yamagata, S. Kobayashi, and K. Matsumura. (2015). Prostaglandin transporter in the rat brain: its localization and induction by lipopolysaccharide. Temperature (Austin) 2: 425-434. 27227056
Huang J., Li N., Hong W., Zhan K., Yu X., Huang H. and Hong M. (2013). Conserved tryptophan residues within putative transmembrane domain 6 affect transport function of organic anion transporting polypeptide 1B1. Mol Pharmacol. 84(4):521-7. 23858103
Jacquemin, E., B. Hagenbuch, B. Stieger, A.W. Wolkoff, and P.J. Meier. (1994). Expression cloning of a rat liver Na(+)-independent organic anion transporter. Proc. Natl. Acad. Sci. USA 91: 133-137. 8278353
Kanai, N., R. Lu, J.A. Satriano, Y. Bao, A.W. Wolkoff, and V.L. Schuster. (1995). Identification and characterization of a prostaglandin transporter. Science 268: 866-869. 7754369
Kinne, A., R. Schülein, and G. Krause. (2011). Primary and secondary thyroid hormone transporters. Thyroid Res 4Suppl1: S7. 21835054
Li, N., W. Hong, H. Huang, H. Lu, G. Lin, and M. Hong. (2012). Identification of Amino Acids Essential for Estrone-3-Sulfate Transport within Transmembrane Domain 2 of Organic Anion Transporting Polypeptide 1B1. PLoS One 7: e36647. 22574206
Lofthouse EM., Brooks S., Cleal JK., Hanson MA., Poore KR., O'Kelly IM. and Lewis RM. (2015). Glutamate cycling may drive organic anion transport on the basal membrane of human placental syncytiotrophoblast. J Physiol. 593(20):4549-59. 26277985
Maeda, T., K. Takahashi, N. Ohtsu, T. Oguma, T. Ohnishi, R. Atsumi, and I. Tamai. (2007). Identification of influx transporter for the quinolone antibacterial agent levofloxacin. Mol. Pharm. 4: 85-94. 17274666
Mikkaichi, T., T. Suzuki, T. Onogawa, M. Tanemoto, H. Mizutamari, M. Okada, T. Chaki, S. Masuda, T. Tokui, N. Eto, M. Abe, F. Satoh, M. Unno, T. Hishinuma, K. Inui, S. Ito, J. Goto, and T. Abe. (2004). Isolation and characterization of a digoxin transporter and its rat homologue expressed in the kidney. Proc. Natl. Acad. Sci. USA 101: 3569-3574. 14993604
Mulenga, A., R. Khumthong, K.C. Chalaire, O. Strey, and P. Teel. (2008). Molecular and biological characterization of the Amblyomma americanum organic anion transporter polypeptide. J Exp Biol 211: 3401-3408. 18931313
Nele Bourgeois, M.A., S.L. Van Herck, P. Vancamp, J. Delbaere, C. Zevenbergen, S. Kersseboom, V.M. Darras, and T.J. Visser. (2016). CHARACTERIZATION OF CHICKEN THYROID HORMONE TRANSPORTERS. Endocrinology en20152025. [Epub: Ahead of Print] 27070099
Ohkura, N., Y. Shigetani, N. Yoshiba, K. Yoshiba, and T. Okiji. (2014). Prostaglandin transporting protein-mediated prostaglandin E2 transport in lipopolysaccharide-inflamed rat dental pulp. J Endod 40: 1112-1117. 25069917
Patik I., Kovacsics D., Nemet O., Gera M., Varady G., Stieger B., Hagenbuch B., Szakacs G. and Ozvegy-Laczka C. (2015). Functional expression of the 11 human Organic Anion Transporting Polypeptides in insect cells reveals that sodium fluorescein is a general OATP substrate. Biochem Pharmacol. 98(4):649-58. 26415544
Patrick PS., Lyons SK., Rodrigues TB. and Brindle KM. (2014). Oatp1 enhances bioluminescence by acting as a plasma membrane transporter for D-luciferin. Mol Imaging Biol. 16(5):626-34. 24798747
Popovic, M., R. Zaja, K. Fent, and T. Smital. (2013). Molecular characterization of zebrafish Oatp1d1 (Slco1d1), a novel organic anion-transporting polypeptide. J. Biol. Chem. 288: 33894-33911. 24126916
Prestin, K., S. Wolf, R. Feldtmann, J. Hussner, I. Geissler, C. Rimmbach, H.K. Kroemer, U. Zimmermann, and H.E. Meyer zu Schwabedissen. (2014). Transcriptional regulation of urate transportosome member SLC2A9 by nuclear receptor HNF4α. Am. J. Physiol. Renal Physiol 307: F1041-1051. 25209865
Qi, X., E. Wagenaar, W. Xu, K. Huang, and A.H. Schinkel. (2017). Ochratoxin A transport by the human breast cancer resistance protein (BCRP), multidrug resistance protein 2 (MRP2), and organic anion-transporting polypeptides 1A2, 1B1 and 2B1. Toxicol Appl Pharmacol 329: 18-25. 28532671
Rižner, T.L., T. Thalhammer, and C. Özvegy-Laczka. (2017). The Importance of Steroid Uptake and Intracrine Action in Endometrial and Ovarian Cancers. Front Pharmacol 8: 346. 28674494
Schuster, V.L. (1998). Molecular mechanisms of prostaglandin transport. Annu. Rev. Physiol. 60: 221-242. 9558462
Schuster, V.L. (2002). Prostaglandin transport. Prostaglandins Other Lipid Mediat 68-69: 633-647. 12432949
Sugiyama, D., H. Kusuhara, H. Taniguchi, S. Ishikawa, Y. Nozaki, H. Aburatani, and Y. Sugiyama. (2003). Functional characterization of rat brain-specific organic anion transporter (Oatp14) at the blood-brain barrier. High affinity transporter for thyroxine. J. Biol. Chem. 278: 43489-43495. 12923172
Svoboda, M., J. Riha, K. Wlcek, W. Jaeger, and T. Thalhammer. (2011). Organic anion transporting polypeptides (OATPs): regulation of expression and function. Curr Drug Metab 12: 139-153. 21395542
Sweet, D.H., D.S. Miller, J.B. Pritchard, Y. Fujiwara, D.R. Beier, and S.K. Nigam. (2002). Impaired organic anion transport in kidney and choroid plexus of organic anion transporter 3 (Oat3 (Slc22a8)) knockout mice. J. Biol. Chem. 277: 26934-26943. 12011098
Tian J., Keller MP., Oler AT., Rabaglia ME., Schueler KL., Stapleton DS., Broman AT., Zhao W., Kendziorski C., Yandell BS., Hagenbuch B., Broman KW. and Attie AD. (2015). Identification of the Bile Acid Transporter Slco1a6 as a Candidate Gene That Broadly Affects Gene Expression in Mouse Pancreatic Islets. Genetics. 201(3):1253-62. 26385979
Tirona, R.G., B.F. Leake, G. Merino, and R.B. Kim. (2001). Polymorphisms in OATP-C. Identification of multiple allelic variants associated with altered transport activity among European- and African-Americans. J. Biol. Chem. 276: 35669-35675. 11477075
Tsigelny, I.F., D. Kovalskyy, V.L. Kouznetsova, O. Balinskyi, Y. Sharikov, V. Bhatnagar, and S.K. Nigam. (2011). Conformational changes of the multispecific transporter organic anion transporter 1 (OAT1/SLC22A6) suggests a molecular mechanism for initial stages of drug and metabolite transport. Cell Biochem Biophys 61: 251-259. 21499753
van Montfoort, J.E., T.E. Schmid, I.-D. Adler, P.J. Meier, and B. Hagenbuch. (2002). Functional characterization of the mouse organic-anion-transporting polypeptide 2. Biochim. Biophys. Acta 1564: 183-188. 12101011
Wang, P., R.B. Kim, J.R. Chowdhury, and A.W. Wolkoff. (2003). The human organic anion transport protein SLC21A6 is not sufficient for bilirubin transport. J. Biol. Chem. 278: 20695-20699. 12670950
Westholm, D.E., J.D. Marold, K.J. Viken, A.H. Duerst, G.W. Anderson, and J.N. Rumbley. (2010). Evidence of evolutionary conservation of function between the thyroxine transporter Oatp1c1 and major facilitator superfamily members. Endocrinology 151: 5941-5951. 20881245
Yerushalmi, G.M., S. Markman, Y. Yung, E. Maman, S. Aviel-Ronen, R. Orvieto, E.Y. Adashi, and A. Hourvitz. (2016). The prostaglandin transporter (PGT) as a potential mediator of ovulation. Sci Transl Med 8: 338ra68. 27169804
Zada, D., E. Blitz, and L. Appelbaum. (2017). Zebrafish - An emerging model to explore thyroid hormone transporters and psychomotor retardation. Mol. Cell Endocrinol. [Epub: Ahead of Print] 28274736
Zhang, H.X., X. Zhao, Z. Yang, C.Y. Peng, R. Long, G.N. Li, J. Li, and Z.K. He. (2010). [OATP 1B1 T521C/A388G is an important polymorphism gene related to neonatal hyperbilirubinemia]. Zhonghua Er Ke Za Zhi 48: 650-655. 21092521
Zhang, Y., K.H. Boxberger, and B. Hagenbuch. (2017). Organic anion transporting polypeptide 1B3 can form homo- and hetero-oligomers. PLoS One 12: e0180257. 28644885