TCDB is operated by the Saier Lab Bioinformatics Group
TCIDNameDomainKingdom/PhylumProtein(s)
*2.A.85.1.1









YccS of unknown specificity

Bacteria
Proteobacteria
YccS of E. coli (720 aas) (P75870)
*2.A.85.1.2









p-hydroxybenzoate efflux carrier, AaeB (Van Dyk et al., 2004).

Bacteria
Proteobacteria
AaeB (YhcP) of E. coli (655 aas) (P46481)
*2.A.85.1.3









YhfK of unknown specificity

Bacteria
Proteobacteria
YhfK of E. coli (P45537)
*2.A.85.1.4









Fusaric acid resistance protein

Bacteria
Proteobacteria
Fusaric acid resistance protein of Pantoea sp. aB (E0M081)
*2.A.85.1.5









Uncharacterized transporter YdhK
Bacteria
Proteobacteria
YdhK of Salmonella typhimurium
*2.A.85.1.6









Uncharacterized transporter YdhK
Bacteria
Proteobacteria
YdhK of Escherichia coli O157:H7
*2.A.85.2.1









An inorganic anion (Cl-/NO3-) transporter, ALMT12 or QUAC1 (Quickly activating Anion Channel 1), reported to be incapable of transporting organic anions, is involved in stomatal closure (Sasaki et al, 2010). It is an R-type inorganic anion channel required for stomatal movement in Arabidopsis guard cells (Meyer et al., 2010).  The C-terminal cytosolic domain mediates voltage gating (Mumm et al. 2013).

Eukaryota
Viridiplantae
Orf1 of Arabidopsis thaliana (560 aas) (O49696)
*2.A.85.2.2









Putative protein

Eukaryota
Viridiplantae
Orf5 of Arabidopsis thaliana (533 aas) (Q9SX23)
*2.A.85.2.3









The root aluminum-activated malate efflux transporter, ALMT1 (required for aluminum tolerance) (Hoekenga et al., 2006).  Also called Quick Anion Channel, QUAC, based on activation kinetics of anion channel currents in response to voltage changes.  Evolutionary studies have been reported (Dreyer et al. 2012).  Plants respond to aluminum (Al) ions by releasing malate from their root apices via ALMT1 with malate bound to the toxic Al ions, contributing to Al tolerance (Sasaki et al. 2014).

Eukaryota
Viridiplantae
ALMT1 of Arabidopsis thaliana (Q15EV0)
*2.A.85.2.4









The anion-selective transporter ALMT1 (transports anions) (35% identical to 2.A.85.2.3) (Pineros et al., 2008)
Eukaryota
Viridiplantae
ALMT1 of Zea mays (A1XGH3)
*2.A.85.2.5









Aluminum-activated anion (Malate >> NO3- > Cl-; Malate/Cl- ≈ 20) channel (Zhang et al., 2008) (67% identical to 2.A.85.2.4). Confers Al+3 resistance (Ryan et al., 2011).  ALMT1 has 6 TMSs with the N- and C-termini being on the external surface of the plasma membrane (Motoda et al. 2007).

Eukaryota
Viridiplantae
ALMT1 of Triticum aestivum (Q76LB2)
*2.A.85.2.6









Putative aluminum-activated malate transporter 3 (AtALMT3)
Eukaryota
Viridiplantae
ALMT3 of Arabidopsis thaliana
*2.A.85.2.7









The vacuolar ALMT9.  Citrate is an open channel blocker.  There are probably four subunits, and TMS5 contributes to pore formation (Zhang et al. 2013).

Eukaryota
Viridiplantae
ALMT9 of Arabidopsis thaliana
*2.A.85.3.1









Hypothetical protein

Eukaryota
Fungi
Ydg8 of Schizosaccharomyces pombe (977 aas) (Q10495)
*2.A.85.3.2









Uncharacterized protein of 1125 aas

Eukaryota
Fungi
UP of Saccharomyces cerevisiae
*2.A.85.3.3









Uncharacterized protein of 1219 aas

Eukaryota
Fungi
UP of Saccharomyces cerevisiae
*2.A.85.3.4









Protein required for ubiquinone biosynthesis of 1035 aas and 14 putative TMSs

Eukaryota
Fungi
Protein of Komagataella pastoris
*2.A.85.3.5









Uncharacterized protein of 1040 aas

Eukaryota
Fungi
UP of Gloeophyllum trabeum (Brown rot fungus)
*2.A.85.4.1









Lantibiotic protection protein, MutG

Bacteria
Firmicutes
MutG of Aerococcus viridans (D4YEF0)
*2.A.85.4.2









YgaE

Bacteria
Firmicutes
YgaE of Bacillus subtilis (P71083)
*2.A.85.4.3









DUF939 (N-terminus) with C-terminal HAD hydrolase (Cof or haloacid dehydrogenase) family IIB domain;  450 aas.

Bacteria
Firmicutes
DUF939 protein of Clostridium methylpentosum
*2.A.85.5.1









5 or 6 TMS 'half sized', YqjA

Bacteria
Firmicutes
YqjA of Bacillus subtilis (322 aas) (P54538)
*2.A.85.6.1









MdtO (YjcQ), Multidrug resistance protein (involved in resistance to puromycin, acriflavin and tetraphenyl arsonium chloride; acts with MdtN (TC# 8.A.1.1.3) and MdtP (TC# 1.B.17.3.9)) (Sulavik et al., 2001).

Bacteria
Proteobacteria
MdtO of E. coli (P32715)
*2.A.85.7.1









Fusaric acid resistance protein, FusC (YeeA; 352aas; 6 N-terminal TMSs plus a hydrophilic C-terminal cytoplasmic domain).

Bacteria
Proteobacteria
FusC of E. coli (P33011)
*2.A.85.7.2









MutG lantibiotic protection protein with 6 N-terminal TMSs and a hydrophilic C-terminal domain.

Bacteria
Proteobacteria
MutG of Psychrobacter sp. 1501 (F5SU14)
*2.A.85.8.1









Putative integral membrane protein

 

Bacteria
Actinobacteria
Putative integral membrane protein of Streptomyces coelicolor
*2.A.85.9.1









Bacteria
Actinobacteria
*2.A.85.10.1









Fusaric acid resistance protein homologue

Bacteria
Actinobacteria
FusB homologue of Streptomyces coelicolor
*2.A.85.10.2









FusB homologue

Bacteria
Actinobacteria
FusB homologue of Streptomyces coelicolor
*2.A.85.11.1









Uncharacterized protein of 1406 aas

Eukaryota
Bangiophyceae
UP of Galdieria sulphuraria
*2.A.85.11.2









Uncharacterized protein of 1365 aas

Eukaryota
Bangiophyceae
UP of Galdieria sulphuraria
*2.A.85.11.3









Uncharacterized protein of 1638 aas

Eukaryota
Bangiophyceae
UP of Galdieria sulphuraria
*2.A.85.11.4









Uncharacterized protein of 1269 aas and 11 - 14 TMSs.

Eukaryota
Viridiplantae
UP of Chlamydomonas reinhardtii (Chlamydomonas smithii)