TCDB is operated by the Saier Lab Bioinformatics Group
TCIDNameDomainKingdom/PhylumProtein(s)
*3.E.2.1.1









Photosynthetic reaction center (RC).  Chromatophores containing the RC and light harvesting complex, LH1, can interface with a conducting support to allow capture and conversion of solar energy as an alternative fuel source (Harrold et al. 2013). This RC may catalyze transmembrane electron transfer, as for members of TC class 5 (Khatypov et al. 2017).

Bacteria
Proteobacteria
PRC of Rhodobacter sphaeroides
*3.E.2.2.1









Cyanobacterial photosystem II in thylakoid membranes (Sarcina et al. 2006). Photosynthetic water oxidation is catalyzed by the Mn4CaO5 cluster of photosystem II (PSII) with linear progression through five S-state intermediates (S0 to S4). To reveal the mechanism of water oxidation, Suga et al. 2019 analyzed structures of PSII of Thermosynechococcus vulcanus in the S1, S2, and S3 states by x-ray free-electron laser serial crystallography. No insertion of water was found in S2, but flipping of D1 Glu189 upon transition to S3 led to the opening of a water channel and provided a space for incorporation of an additional oxygen ligand, resulting in an open cubane Mn4CaO6 cluster with an oxyl/oxo bridge. Structural changes of PSII between the different S states revealed cooperative action of substrate water access, proton release, and dioxygen formation in photosynthetic water oxidation (Suga et al. 2019). The oxygen-evolving complex (OEC) is located at a node of five water channels involved in proton release, balancing the net charge of the OEC, and inlet of substrate water (Shen 2015).

Bacteria
Cyanobacteria
PRC of Synechococcus PCC7942 Photosystem II
*3.E.2.2.2









Cyanobacterial thylakoid membrane photosystem II.  Biophotovoltaic devices can be used to employ cyanobacteria such as Synechocystis PCC6803 at the anode of a microbial fuel cell to generate electrical power (Cereda et al. 2014).

Bacteria
Cyanobacteria
PRC of Synechocystis PCC6803 Photosystem II