TCID | Name | Domain | Kingdom/Phylum | Protein(s) |
---|---|---|---|---|
*4.A.6.1.1 | The mannose (glucose, 2-deoxyglucose, glucosamine, N-acetylglucosamine, N-acetylmannosamine, mannosamine and fructose) PTS porter/group translocator, ManXYZ (Rephaeli and Saier 1980; Plumbridge 2015). Catalyzes xylose facilitated diffusion in lactobacilli. The order of D-sugar substrate affinities is: glucose > mannose > 2-deoxyglucose > N-acetylglucosamine > glucosamine > N-acetylmannosamine > mannosamine > fructose (Rephaeli and Saier 1980). The mechanism appears to be rapid equilibrium, random, bi-bi sequential (Rephaeli and Saier 1980). L-sugars are not transported.
| Bacteria |
Proteobacteria | Mannose IIAB-IIC-IID (ManXYZ) complex of E. coli |
*4.A.6.1.2 | Fructose group translocator, LevDEFG (Martin-Verstraete et al. 1995; Stülke et al. 1995; Seip et al. 1997; Charrier et al. 1997). | Bacteria |
Firmicutes | Fructose IIA-IIB-IIC-IID complex of Bacillus subtilis LevD (IIA), 146 aas, P26379 LevE (IIB), 163 aas, P26380 LevF (IIC), 268 aas, 7 TMSs, P26381 LevG (IID), 275 aas, 5 - 7 putative TMSs |
*4.A.6.1.3 | Sorbose porter (Wehmeier et al. 1995). | Bacteria |
Proteobacteria | Sorbose IIA-IIB-IIC-IID complex of Klebsiella pneumoniae |
*4.A.6.1.4 | N-acetyl galactosamine (GalNAc or Aga) porter (used the same IIA protein (AgaF) as does 4.A.6.1.5) (Brinkkötter et al. 2000). | Bacteria |
Proteobacteria | AgaVWEF complex (IIAga) of E. coli |
*4.A.6.1.5 | Galactosamine (GalN or Gam) porter (used the same IIA protein (AgaF) as does 4.A.6.1.4) (Brinkkötter et al. 2000). | Bacteria |
Proteobacteria | AgaBCDF complex (IIGam) of E. coli |
*4.A.6.1.6 | Glucose porter, ManLMN (Yebra et al., 2006) | Bacteria |
Firmicutes | ManLMN of Lactobacillus casei ManL (IIAB) (AAY63962) ManM (IIC) (AAY63963) ManN (IID) (AAY63964) |
*4.A.6.1.7 | The glucose/mannose/2-deoxyglucose/fructose phosphotransferase systems (phosphorylates without transport), ManLMN (Cochu et al., 2003) | Bacteria |
Firmicutes | ManLMN of Streptococcus thermophilus ManL (IIAB) (Q5M5W6) ManM (IIC) (Q5M5W7) ManN (IID) (Q5M5W8) |
*4.A.6.1.8 | The gluconate PTS uptake system. IIAGnt and IIBGnt form a high affinity 2:2 heterotetrameric complex (Brockmeier et al., 2009; Reinelt et al., 2009). | Bacteria |
Firmicutes | The PTS gluconate uptake system of Enterococcus faecalis IIAGnt (Q82ZC8) IIBGnt (Q82ZC7) IICGnt (Q82ZC5) IIDGnt (Q82ZC6) |
*4.A.6.1.9 | The fucose PTS uptake transporter, IIA/IIB/IIC/IIDFuc (FcsABCD) (Manzoor et al. 2015). Expression in response to fucose is under the control of the FcsR transcriptional activator, and its DNA binding site has been identified (Manzoor et al. 2015). | Bacteria |
Firmicutes | FucTA, B, C, D (also called FcsABCD) of Streptococcus pneumoniae FucTA (IIA) (Q97N91) FucTB (IIB) (Q97N92) FucTC (IIC) (Q97N93) FucTD (IID) (Q97N94) |
*4.A.6.1.10 | The hexose (glucose and fructose demonstrated) PTS uptake system (Kim et al., 2011). | Bacteria |
Firmicutes | The hexose uptake system IIAB, IIC, IID of Oenococcus oeni IIABhex (C) (Q04GK1) IIChex (M) (Q04GK0) IIDhex (M) (Q04GJ9) |
*4.A.6.1.11 | Mannose enzyme II complex, IIAB, IIC, IID. IIC/IID serve allows entry of some bacteriocins including pediocin (class IIa) and lactococcin A (class IIc) (Kjos et al., 2011). Transports and phosphorylates Glucose, Mannose and Glucosamine. The IID component is the probably receptor for several bacteriocins, subclass IIa bacteriocins (pediocin-like; pediocins) and subclass IId ones - lactococcin A (LcnA), lactococcin B (LcnB), garvicin Q (GarQ), and garvicins A, B and C (GarA-C) (Tymoszewska et al. 2018). Individual amino acids localized mostly in the sugar channel-forming transmembrane parts of subunit IIC or in the extracellular parts of IID likely are involved in the interaction with each bacteriocin, and these have been specified (Tymoszewska et al. 2018). | Bacteria |
Firmicutes | IIAB, IIC, and IID of Lactococcus lactis IIAB (D2BKY7) IIC (D2BKY8) IID (D2BKY9) |
*4.A.6.1.12 | Putative Hexose Enzyme II complex, IIABCD | Bacteria |
Proteobacteria | IIABCD of Myxococcus xanthus
IIA
IIB
IIC
IID |
*4.A.6.1.13 | Fucosyl-α-1,3-N-acetylglucosamine PTS uptake porter, AlfEFG (next to an operon encoding a fucosidase (AlfB) and a transcriptional regulator of the GntR family, AlfR). The fucosidase is specific for this disaccharide which is present in mammalian glycoproteins, glycolipids and milk (Rodríguez-Díaz et al. 2012). Uptake is dependent of AlfF but not on the PTS Enzyme I, suggesting that uptake does not require phosphorylation, consistent with the activity of AlfB as a fucosidase. Only the glucosamine moiety is utilized and the fucose moiety, after hydrolysis, is excreted (Rodríguez-Díaz et al. 2012). | Bacteria |
Firmicutes | AlfEFG of Lactobacillus casei. AlfE (IIAB) AlfF (IIC) AlfG (IID) |
*4.A.6.1.14 | Probable PTS uptake porter (IIA - IID) of disaccharides of gluconate and N-acetyglucosamine derived from degradation of hyaluronate and chondroitin by hyaluronidase (Marion et al. 2012). The cytoplasmic disaccharide may be hydrolyzed by the enzyme Ugl. | Bacteria |
Firmicutes | Hyaluronate disaccharide porter of Streptococcus pneumoniae |
*4.A.6.1.15 | The primary glucose /mannose uptake transporter, ManLMN (Aké et al. 2011). | Bacteria |
Firmicutes | ManLMN of Listeria monocytogenes ManL, IIAB ManM, IIC ManN, IID |
*4.A.6.1.16 | Constitutively synthesized sensor, MpoABCD, controlling man operon (see TC# 4.A.6.1.15) expression by interacting with and phosphorylating ManR, the transcriptional regulator of the man operon (Aké et al. 2011). | Bacteria |
Firmicutes | MpoABCD of Listeria monocytogenes MpoA (IID) MpoB (IIC) MpoC (IIB) MpoD (IIA) |
*4.A.6.1.17 | D-glucosaminate group translocating uptake porter, DgaABCD (IIA-141 aas, IIB-161 aas, IIC-249 aas, and IID-285 aas, respectively) (Miller et al. 2013). | Bacteria |
Proteobacteria | DgaABCD of Samonella enterica Typhimurium |
*4.A.6.1.18 | Uptake porter/group translocator of galacto N-biose (Gal-β-1,3-GalNAc: galactose linked β-1,3 to N-acetylgalactosamine), lacto N-biose (Gal-β-1,3-GlcNAc: galactose linked β-1,3 to N-acetylglucosamine), and D-N-acetylgalactosamine (Bidart et al. 2014). The system is designated the GnbABCD system where GnbA = IIA, GnbB = IIB, GnbC = IIC, and GnbD = IID of the mannose-type PTS Enzyme II complex. These disaccaride substrates are human milk oligosaccharides and glycoconjugates (Bidart et al. 2014). | Bacteria |
Firmicutes | GnbABCD of Lactobacillus casei GnbA, IIA, 126 aas GnbB. IIB, 160 aas GnbC, IIC, 305 aas GnbD, IID, 273 aas |
*4.A.6.1.19 | PTS uptake system for glucoselysine and fructoselysine, GfrABCD (Miller et al. 2015). Two glycases, GfrE and GfrF, are requred for the utilization of these two compounds for growth, respectively, and GfrF was shown to hydrolyze fructoselysine-6-P to lysine and fructose-6-P. Expression of the operon, gfrABCDEF, is regulated by a transcriptional activator, GfrR and sigma factor RpoN (Miller et al. 2015). GfrD affects proteolytic processing, a necessary but insufficient step for CadC activation, rendering CadC able to activate target genes involved in lysine metabolism (Lee et al. 2013). | Bacteria |
Proteobacteria | GfrABCD of Salmonella typhimurium GfrA, IIA, 140 aas GfrB, IIB, 153 aas GfrC, IIC, 259 aas GfrD, IID, 278 aas |
*4.A.6.1.20 | Putative sorbose PTS Enzyme II complex, IIA, IIB, IIC and IID. The IIC protein is of 230 aas with 6 - 8 putative TMSs. The genes encoding IIC and IID are in an operon with an Enzyme I (TC# 8.A.7.1.5) and an HPr (TC# 8.A.8.1.5). | Bacteria |
Deferribacteres | IIC/D of Caldithrix abyssi |
*4.A.6.1.21 | Putative Mannose Enzyme II complex including IIA, IIB, IIC and IID; IIC has 231 aas and 6 TMSs. | Bacteria |
Proteobacteria | Mannose Enzyme II complex of Desulfuromonas acetoxidans |
*4.A.6.1.22 | PTS Mannose-like Enzyme II complex. IIC, 257 aas and 6 TMSs. Hits 4.A.6.2.1, 3.1 and 4.1 with scores of e-6 - e-12. | Bacteria |
Firmicutes | PTS EII complex of Peptoclostridium difficile |
*4.A.6.1.23 | Putative Enzyme II complex consisting of IIA, IIB, IIC and IID; IIC has 240 aas and 6 putative TMSs. | Bacteria |
Gemmatimonadetes | Putative EII complex of Gemmatimonas aurantiaca |
*4.A.6.1.24 | Mannose (Man)-type PTS with IIA (129 aas), IIB (167 aas) and IICD (534 aas). The Enzyme I and HPr proteins of this system are 8.A.7.1.6 and 8.A.8.1.6, respectively. The IICD protein appears to have 8 TMSs in the IIC domain and 5 TMSs in the IID domain. | Archaea |
Crenarchaeota | Mannose PTS (IIA, IIB, and IICD) of Thermofilum pendens IIA IIB IICD |
*4.A.6.1.25 | D-ribitol (D-aldonitol) (a pentitol) PTS Enzyme II complex RtlABCD (Bourand et al. 2013). | Bacteria |
Firmicutes | RtlABCD of Lactobacillus casei |
*4.A.6.1.26 | L-Sorbose PTS enzyme II complex, SorABCD (enzymes IIABCD, respectively (Yebra et al. 2000)). Two operons, encoding the strcutural genes (one homologous to D-glucitol-6-P dehydrogenase) as well as the regulatory genes, are induced by growth on L-sorbose. | Bacteria |
Firmicutes | SorABCD of Lactobacillus casei SorA, 164 aas SorB, 138 aas SorC, 277 aas SorD, 282 aas |
*4.A.6.2.1 | Uncharacterized PTS Enzyme II complex with a putative IIC protein of 225 aas and 6 TMSs in a 3 + 3 arrangement. The IIA, IIB and IIC components are encoded adjacent to each other in a single operon. | Bacteria |
Proteobacteria | UP of Desulfovibrio hydrothermalis |
*4.A.6.2.2 | Putative Mannose-type PTS Enzyme II complex. IIC has 248 aas and 6 TMSs. | EII complex of Desulfohalobium retbaense | ||
*4.A.6.3.1 | Uncharacterized putative Enzyme II complex including IIA, IIB, IIC and IID. The IIC protein is of 227 aas with 6 predicted TMSs. | Bacteria |
Deferribacteres | Enzyme II complex of Mucispirillum schaedleri |
*4.A.6.4.1 | Putative mannose/fructose/sorbose PTS Enzyme IIC of 304 aas with 11 predicted TMSs. No IIA, IIB or IID domain for the mannose/sorbose PTS family was identified in the entire proteome of A. arabaticum. | Bacteria |
Firmicutes | Putative PTS Enzyme IIC of Acetohalobium arabaticum |
*4.A.6.4.2 | Uncharacterized protein of 304 aas and 11 TMSs | Bacteria |
Firmicutes | UP of Halobacteroides halobius |
*4.A.6.5.1 | Putative multi-domain sensor signal transduction histidine kinase of 562 aas with 6 N-terminal TMSs. | Bacteria |
Proteobacteria | Putative sensor kinase with an N-terminal 6 TMS domain resembling PTS Mannose-like IIC proteins of Roseibium sp. TrichSKD4 |