TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


5.B.1.1.2
Nucleus/kidney/muscle/endothelial cell superoxide-generating NADPH oxidase (Nox4) (may regulate gene expression) (Cheng et al., 2001; Kuroda et al., 2005). Integrated analyses of heterodimerization, trafficking and catalytic activity have identified determinants for the NOX4-p22phox interaction such as heme incorporation into NOX4 and hot spot residues in TMSs 1 and 4 in p22phox; their effects on NOX4 maturation and ROS generation were analyzed (O'Neill et al. 2018).

Accession Number:Q9NPH5
Protein Name:KOX-1
Length:578
Molecular Weight:66932.00
Species:Homo sapiens (Human) [9606]
Number of TMSs:5
Location1 / Topology2 / Orientation3: Endoplasmic reticulum membrane1 / Multi-pass membrane protein2
Substrate Electrons

Cross database links:

Genevestigator: Q9NPH5
eggNOG: prNOG14994
RefSeq: NP_001137308.1    NP_058627.1   
Entrez Gene ID: 50507   
Pfam: PF08022    PF01794    PF08030   
OMIM: 605261  gene
KEGG: hsa:50507   

Gene Ontology

GO:0005789 C:endoplasmic reticulum membrane
GO:0005925 C:focal adhesion
GO:0016021 C:integral to membrane
GO:0005634 C:nucleus
GO:0009055 F:electron carrier activity
GO:0050660 F:FAD binding
GO:0020037 F:heme binding
GO:0016174 F:NAD(P)H oxidase activity
GO:0019826 F:oxygen sensor activity
GO:0007569 P:cell aging
GO:0000902 P:cell morphogenesis
GO:0006954 P:inflammatory response
GO:0008285 P:negative regulation of cell proliferation
GO:0055114 P:oxidation reduction
GO:0042554 P:superoxide anion generation

References (17)

[1] “Identification of renox, an NAD(P)H oxidase in kidney.”  Geiszt M.et.al.   10869423
[2] “Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5.”  Cheng G.et.al.   11376945
[3] “A novel superoxide-producing NAD(P)H oxidase in kidney.”  Shiose A.et.al.   11032835
[4] “NADPH oxidase-dependent acid production in airway epithelial cells.”  Schwarzer C.et.al.   15210697
[5] “Identification of novel Nox4 splice variants with impact on ROS levels in A549 cells.”  Goyal P.et.al.   15721269
[6] “Complete sequencing and characterization of 21,243 full-length human cDNAs.”  Ota T.et.al.   14702039
[7] “Human chromosome 11 DNA sequence and analysis including novel gene identification.”  Taylor T.D.et.al.   16554811
[8] “The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).”  The MGC Project Teamet.al.   15489334
[9] “Reactive oxygen species produced by NAD(P)H oxidase inhibit apoptosis in pancreatic cancer cells.”  Vaquero E.C.et.al.   15155719
[10] “Direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-kappa B.”  Park H.S.et.al.   15356101
[11] “The NAD(P)H oxidase homolog Nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insulin signal transduction.”  Mahadev K.et.al.   14966267
[12] “NAD(P)H oxidase Nox-4 mediates 7-ketocholesterol-induced endoplasmic reticulum stress and apoptosis in human aortic smooth muscle cells.”  Pedruzzi E.et.al.   15572675
[13] “Nox4 is critical for hypoxia-inducible factor 2-alpha transcriptional activity in von Hippel-Lindau-deficient renal cell carcinoma.”  Maranchie J.K.et.al.   16230378
[14] “NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts.”  Cucoranu I.et.al.   16179589
[15] “The superoxide-producing NAD(P)H oxidase Nox4 in the nucleus of human vascular endothelial cells.”  Kuroda J.et.al.   16324151
[16] “Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases.”  Martyn K.D.et.al.   15927447
[17] “NOX4 as an oxygen sensor to regulate TASK-1 activity.”  Lee Y.-M.et.al.   16019190

External Searches:

  • Search: DB with
  • BLAST ExPASy (Swiss Institute of Bioinformatics (SIB) BLAST)
  • CDD Search (Conserved Domain Database)
  • Search COGs (Clusters of Orthologous Groups of proteins)
  • 2° Structure (Network Protein Sequence Analysis)

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
Window Size: Angle:  
FASTA formatted sequence
1:	MAVSWRSWLA NEGVKHLCLF IWLSMNVLLF WKTFLLYNQG PEYHYLHQML GLGLCLSRAS 
61:	ASVLNLNCSL ILLPMCRTLL AYLRGSQKVP SRRTRRLLDK SRTFHITCGV TICIFSGVHV 
121:	AAHLVNALNF SVNYSEDFVE LNAARYRDED PRKLLFTTVP GLTGVCMVVV LFLMITASTY 
181:	AIRVSNYDIF WYTHNLFFVF YMLLTLHVSG GLLKYQTNLD THPPGCISLN RTSSQNISLP 
241:	EYFSEHFHEP FPEGFSKPAE FTQHKFVKIC MEEPRFQANF PQTWLWISGP LCLYCAERLY 
301:	RYIRSNKPVT IISVMSHPSD VMEIRMVKEN FKARPGQYIT LHCPSVSALE NHPFTLTMCP 
361:	TETKATFGVH LKIVGDWTER FRDLLLPPSS QDSEILPFIQ SRNYPKLYID GPFGSPFEES 
421:	LNYEVSLCVA GGIGVTPFAS ILNTLLDDWK PYKLRRLYFI WVCRDIQSFR WFADLLCMLH 
481:	NKFWQENRPD YVNIQLYLSQ TDGIQKIIGE KYHALNSRLF IGRPRWKLLF DEIAKYNRGK 
541:	TVGVFCCGPN SLSKTLHKLS NQNNSYGTRF EYNKESFS