TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


5.B.1.5.1
Plasma membrane Fe3+ and Cu2+ reductase, Fre1 (transfers electrons from NADPH in the cytoplasm to Fe3+ and Cu2+ in the extracellular millieu) (Rees and Thiele, 2007).  Thus, it, as well as Fre2 (TC# 5.B.1.7.2), mediate the reductive uptake of Fe3+-salts and Fe3+ bound to catecholate or hydroxamate siderophores. Fe3+ is reduced to Fe2+, which then dissociates from the siderophore and can be imported by the high-affinity Fe2+ transport complex in the plasma membrane. Also participates in Cu2+ reduction and Cu+ uptake (Dancis et al. 1992; Hassett and Kosman 1995; Lesuisse et al. 1996; Georgatsou et al. 1997; Shi et al. 2003).

Accession Number:P32791
Protein Name:Fre1p aka FRE1 aka YLR214W aka L8167.2
Length:686
Molecular Weight:78854.00
Species:Saccharomyces cerevisiae (Baker's yeast) [4932]
Number of TMSs:9
Location1 / Topology2 / Orientation3: Cell membrane1 / Multi-pass membrane protein2
Substrate Electrons

Cross database links:

Genevestigator: P32791
eggNOG: fuNOG08199
HEGENOM: HBG447622
DIP: DIP-5349N
RefSeq: NP_013315.1   
Entrez Gene ID: 850911   
Pfam: PF08022    PF01794    PF08030   
KEGG: sce:YLR214W   

Gene Ontology

GO:0016021 C:integral to membrane
GO:0005624 C:membrane fraction
GO:0005886 C:plasma membrane
GO:0009055 F:electron carrier activity
GO:0050660 F:FAD binding
GO:0000293 F:ferric-chelate reductase activity
GO:0005506 F:iron ion binding
GO:0005515 F:protein binding
GO:0015677 P:copper ion import
GO:0022900 P:electron transport chain
GO:0006826 P:iron ion transport

References (19)

[1] “Ferric reductase of Saccharomyces cerevisiae: molecular characterization, role in iron uptake, and transcriptional control by iron.”  Dancis A.et.al.   1570306
[2] “The nucleotide sequence of Saccharomyces cerevisiae chromosome XII.”  Johnston M.et.al.   9169871
[3] “Ferric iron reduction and iron assimilation in Saccharomyces cerevisiae.”  Anderson G.J.et.al.   1431884
[4] “AFT1: a mediator of iron regulated transcriptional control in Saccharomyces cerevisiae.”  Yamaguchi-Iwai Y.et.al.   7720713
[5] “Evidence for Cu(II) reduction as a component of copper uptake by Saccharomyces cerevisiae.”  Hassett R.et.al.   7814363
[6] “Evidence for the Saccharomyces cerevisiae ferrireductase system being a multicomponent electron transport chain.”  Lesuisse E.et.al.   8662826
[7] “The FRE1 ferric reductase of Saccharomyces cerevisiae is a cytochrome b similar to that of NADPH oxidase.”  Shatwell K.P.et.al.   8662973
[8] “Intramembrane bis-heme motif for transmembrane electron transport conserved in a yeast iron reductase and the human NADPH oxidase.”  Finegold A.A.et.al.   8940093
[9] “The yeast Fre1p/Fre2p cupric reductases facilitate copper uptake and are regulated by the copper-modulated Mac1p activator.”  Georgatsou E.et.al.   9153234
[10] “The AFT1 transcriptional factor is differentially required for expression of high-affinity iron uptake genes in Saccharomyces cerevisiae.”  Casas C.et.al.   9200812
[11] “Metalloregulation of FRE1 and FRE2 homologs in Saccharomyces cerevisiae.”  Martins L.J.et.al.   9726978
[12] “Regulated expression of the Saccharomyces cerevisiae Fre1p/Fre2p Fe/Cu reductase related genes.”  Georgatsou E.et.al.   10341420
[13] “The role of the FRE family of plasma membrane reductases in the uptake of siderophore-iron in Saccharomyces cerevisiae.”  Yun C.-W.et.al.   11120744
[14] “Fre1p Cu2+ reduction and Fet3p Cu1+ oxidation modulate copper toxicity in Saccharomyces cerevisiae.”  Shi X.et.al.   12954629
[15] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[16] “Inhibition of the yeast metal reductase heme protein fre1 by nitric oxide (NO): a model for inhibition of NADPH oxidase by NO.”  Shinyashiki M.et.al.   15288128
[17] “Azo reductase activity of intact Saccharomyces cerevisiae cells is dependent on the Fre1p component of plasma membrane ferric reductase.”  Ramalho P.A.et.al.   16000801
[18] “Direct activation of genes involved in intracellular iron use by the yeast iron-responsive transcription factor Aft2 without its paralog Aft1.”  Courel M.et.al.   16024809
[19] “Probing the membrane environment of the TOR kinases reveals functional interactions between TORC1, actin, and membrane trafficking in Saccharomyces cerevisiae.”  Aronova S.et.al.   17507646

External Searches:

  • Search: DB with
  • BLAST ExPASy (Swiss Institute of Bioinformatics (SIB) BLAST)
  • CDD Search (Conserved Domain Database)
  • Search COGs (Clusters of Orthologous Groups of proteins)
  • 2° Structure (Network Protein Sequence Analysis)

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
Window Size: Angle:  
FASTA formatted sequence
1:	MVRTRVLFCL FISFFATVQS SATLISTSCI SQAALYQFGC SSKSKSCYCK NINWLGSVTA 
61:	CAYENSKSNK TLDSALMKLA SQCSSIKVYT LEDMKNIYLN ASNYLRAPEK SDKKTVVSQP 
121:	LMANETAYHY YYEENYGIHL NLMRSQWCAW GLVFFWVAVL TAATILNILK RVFGKNIMAN 
181:	SVKKSLIYPS VYKDYNERTF YLWKRLPFNF TTRGKGLVVL IFVILTILSL SFGHNIKLPH 
241:	PYDRPRWRRS MAFVSRRADL MAIALFPVVY LFGIRNNPFI PITGLSFSTF NFYHKWSAYV 
301:	CFMLAVVHSI VMTASGVKRG VFQSLVRKFY FRWGIVATIL MSIIIFQSEK VFRNRGYEIF 
361:	LLIHKAMNIM FIIAMYYHCH TLGWMGWIWS MAGILCFDRF CRIVRIIMNG GLKTATLSTT 
421:	DDSNVIKISV KKPKFFKYQV GAFAYMYFLS PKSAWFYSFQ SHPFTVLSER HRDPNNPDQL 
481:	TMYVKANKGI TRVLLSKVLS APNHTVDCKI FLEGPYGVTV PHIAKLKRNL VGVAAGLGVA 
541:	AIYPHFVECL RLPSTDQLQH KFYWIVNDLS HLKWFENELQ WLKEKSCEVS VIYTGSSVED 
601:	TNSDESTKGF DDKEESEITV ECLNKRPDLK ELVRSEIKLS ELENNNITFY SCGPATFNDD 
661:	FRNAVVQGID SSLKIDVELE EESFTW