TCDB is operated by the Saier Lab Bioinformatics Group
TCIDNameDomainKingdom/PhylumProtein(s)
*9.B.39.1.1









CD36 antigen; plasma membrane fatty acid transporter (Schwenk et al. 2010). Also called the scavenger receptor protein as it binds many ligands including both Gram-positive and Gram-negative bacteria; plays a role in immune development (Liu et al. 2016). Direct interaction of CD36 with glycerol phospholipids has been demonstrated (Tsuzuki et al. 2017). CD36 plays a role in the perception of specific odour-active volatile compounds including oleic aldehyde (cis-9-octadecenal), in the nasal cavity (Lee et al. 2017).

Eukaryota
Metazoa
CD36 of Mus musculus (Q08857)
*9.B.39.1.2









Two component Carotenoid transporter CBP/Cameo2 (Sakudoh et al., 2010). Transports lutein, a carotenoid (Sakudoh et al. 2013). Since SCRB15 (9.B.39.1.5) transports β-carotene, CD30 family paralogues discriminate between different carotenoids (Sakudoh et al. 2013).

Eukaryota
Metazoa
Carotenoid transporter of Bombyx mori
Carotenoid-binding protein (CBP or yellow blood) (A4UVY6)
Membrane receptor and transporter, Cameo2 (D2KXB3)
*9.B.39.1.3









Scavenger receptor class B, member 1 (SR-B1; SCARB1; CD3621; CLA1). It comprises the hepatits C receptor together with its co-receptor, CD81 tetraspanin (Bartosch et al., 2003). When defective, leads to antibody deficiency. SR-B1 is a receptor for different ligands such as phospholipids, cholesterol esters, lipoproteins, phosphatidylserine and apoptotic cells. It facilitates the flux of free and esterified cholesterol between the cell surface and extracellular donors and acceptors, such as high density lipoproteins (HDL) and to a lesser extent, apoB-containing lipoproteins and modified lipoproteins (Orlowski et al. 2007). It is necessary for selective HDL-cholesterol uptake (Zanoni et al. 2016). Probably involved in the phagocytosis of apoptotic cells, via its phosphatidylserine binding activity.  Several proteins have been implicated in fatty acid transport by enterocytes including the scavenger receptor CD36 (SR-B2), the scavenger receptor B1 (SR-B1), and the FA transport protein 4 (FATP4) (Cifarelli and Abumrad 2018).

Eukaryota
Metazoa
SR-B1 of Homo sapiens (Q8WTV0)
*9.B.39.1.4









Putative fatty acid translocase, CD36 glycoprotein (FA translocase; FAT/CD36/SR-B2) (Glatz and Luiken 2017; Zhang et al. 2017).  It is a Leukocyte differentiation antigen and adhesin of 472 aas protein with 2 TMSs, one N-terminal and one C-terminal (Schwenk et al. 2010). Studies have shown that TMS 1 plays a role in formation of a homodimeric structure which may be involved in regulating signal transduction (Wei et al. 2017). Uptake of long chain unsaturated fatty acids, eicosapentaenoic acid and docosahexaenoic acid, is facilitated by CD36/SR-B2 (Glatz and Luiken 2017). Glycosylation, ubiquitination and palmitoylation are involved in regulating CD36 stability, while phosphorylation at extracellular sites affect the rate of fatty acid uptake (Luiken et al. 2016). CD36 may facilitate fatty acid uptake by an indirect mechanism (Jay and Hamilton 2016), but fatty acid uptake studies in breast cancer cells is consistent with its role in transport (Zhao et al. 2017).

Eukaryota
Metazoa
CD36 of Homo sapiens (P16671)
*9.B.39.1.5









Scavenger receptor class B member 1 protein 15, SCRB15 of 504 aas and 2 TMSs.  Transports β-carotene to the silk gland. Encoded by the Flesh (F) gene. 26% identical to the yellow cocoon gene product Cameo2, the lutein transporter (9.B.39.1.2; Sakudoh et al. 2013). 

Eukaryota
Metazoa
SCRB15 of Bombyx mori (K7ZLU1)
*9.B.39.1.6









Sensory neuron membrane protein 1, SNMP1 of 551 aas and 2 TMSs (N- and C-terminal). Plays an olfactory role that is not restricted to pheromone sensitivity. Has a role in detection and signal transduction of the fatty-acid-derived male pheromone 11-cis vaccenyl acetate (cVA). Not required for sensitivity to general odorants. Acts in concert with Or67d and lush to capture cVA molecules on the surface of Or67d expressing olfactory dendrites and facilitate their transfer to the odorant-receptor Orco complex. Essential for the electrophysiological responses of these olfactory sensory neurons (Benton et al. 2007; Jin et al. 2008; Gomez-Diaz et al. 2016).

Eukaryota
Metazoa
SNMP1 of Drosophila melanogaster (Fruit fly)
*9.B.39.1.7









Croquemort isoform 1 (CD36) of 259 aas and 2 TMSs, a homologue of human CD36, is a member of class B scavenger receptors, which are involved in phagocytosis of bacteria and cytokine release. Croquemort from Pacific white shrimp  (LvCroquemort) and its truncated form (LvCroquemort-S1) cDNA sequences have been identified (Hou et al. 2017). LvCroquemort transcripts are highly expressed in gills, hemocytes and testis.  Knock-down of LvCroquemort reduces bacterial clearance (Hou et al. 2017).

Eukaryota
Metazoa
Croquemort isoform 1 (CD36) of Litopenaeus vannamei
*9.B.39.1.8









Debris buster, Dsb of 615 aas and 2 TMSs, one near the N-terminus, and one near the C-terminus. Drosophila has 14 SR-B members whose functions are not well known. It is one of the scavenger receptors class B (SR-B) which are multifunctional transmembrane proteins which in vertebrates participate in lipid transport, pathogen clearance, lysosomal delivery and intracellular sorting. Dsb sorts components of the apical extracellular matrix which are essential for airway physiology. Since SR-B LIMP2-deficient mice show reduced expression of several apical plasma membrane proteins, sorting of proteins to the apical membrane is likely an evolutionary conserved function of Dsb and LIMP2 (Wingen et al. 2017).

Eukaryota
Metazoa
*9.B.39.1.9









Lysosomal membrane protein 2, LIMP2 or Scarb2, of 478 aas and 2 TMSs, N- and C-terminal.  LIMP2 plays a role in the regulation of membrane transport processes in the endocytic pathway. Knipper et al. 2006 showed that LIMP2-deficient mice display a progressive high-frequency hearing loss and decreased otoacoustic emissions as early as 4 weeks of age. The decline of functional KCNQ1/KCNE1 is likely to be the primary cause of the hearing loss because LIMP2 controls the localization and the level of apically expressed membrane proteins such as KCNQ1, KCNE1 in the stria vascularis (Knipper et al. 2006). LIMP2 deficiency also causes myoclonus epilepsy and glomerulosclerosis (Berkovic et al. 2008) and genetic variants are associated with Gaucher and Parkinson's diseases (Michelakakis et al. 2012). The pathologies associated with LIMP2 have been reviewed (Dibbens et al. 2016; Zigdon et al. 2017).

Eukaryota
Metazoa
LIMP2 of Mus musculus (Mouse)