2.A.9 The Membrane Protein Insertase (YidC/Alb3/Oxa1) Family

Mitochondria import nuclearly-encoded proteins, made in the cell cytoplasm, into the mitochondrial matrix where their mitochondrial targeting sequences are removed by proteolysis. They then export some of these proteins as well some mitochondrially-encoded proteins to the inter membrane space, or they insert them into the inner membrane. This latter export pathway requires the membrane potential. At least for those proteins that contain their N-termini in the intermembrane space, export is mediated by the Oxa1p export machinery. Bacteria also export (to the periplasm) N-tails of membrane proteins synthesized without leader sequences by a Sec (Type IIPS)-independent mechanism. These export domains do not bear a net positive charge but are neutral or negatively charged. Insertion of a membrane protein via the Oxa1p export machinery follows the 'positive-inside' rule for membrane protein topology. Conserved negative charges in the transmembrane segments of subunit K of the NADH:ubiquinone oxidoreductase determine its dependence on YidC for membrane insertion (Price and Driessen, 2010).  The functions and mechanisms of YidC homologues have been reviewed by Dalbey et al. 2014 and Hennon et al. 2015.  The crystal structure of full-length E. coli YidC revealed that a hydrophilic groove, formed by five transmembrane helices, is a conserved structural feature of YidC, as compared to the previous YidC structure from Bacillus halodurans, which lacks a periplasmic domain. Structural mapping of the substrate- or Sec protein-contact sites suggested the importance of the groove for the YidC functions as a chaperone and an insertase (Kumazaki et al. 2014). Petriman et al. 2018 explained how YidC interacts with the SecYEG translocon and the SRP-targeting machinery.

Homologues of the yeast Oxa1 protein are found in chloroplasts of plants and in a wide variety of bacteria. The chloroplast albino 3 (ALB3) protein appears to integrate the light harvesting chlorophyll-binding protein into thylakoid membranes using a pathway that is distinct from the chloroplast Sec translocation pathway. The matrix exposed C-terminal α-helical domain of Oxa1 can bind mitochondrial ribosomes to facilitate co-translational insertion of proteins into the mitochondrial membrane (Jia et al., 2003; Szyrach et al., 2003). The role of YidC homologues in membrane protein biogenesis is discussed by Wang and Dalbey (2011). The Pf3 phage coat protein requires the presence of the YidC membrane insertase, but not the Sec system for membrane insertion, whereas mutants that have a membrane-spanning region with increased hydrophobicity could spontaneously insert into the liposomes without YidC (Ernst et al., 2011).

Oxa1p homologues are found ubiquitously in all living organisms. While Gram-negative bacteria only have one homologue, several Gram-positive bacteria and archaea have two. Yeast encode two distant YidC homologues, Oxa1 and Oxa2. The latter can replace E. coli YidC for Sec-independent insertion of proteins (Bloois et al., 2007). Eukaryotes encode in their genomes between 1 and 6 paralogues (Yen et al., 2001). Mitochondria have two, one for co-translational, and one for post-translational insertion of membrane proteins. The former but not the latter has a ribosome binding domain (Preuss et al., 2005). Knock out mutants in the human mitochondrial Oxa1 impairs biogenesis of the F-type ATPase and the NADH dehydrogenase complex I, but not complexes III and IV (Stiburek et al., 2007).

Mitochondria inherited three inner membrane translocases Sec, TAT and Oxa1 (YidC) from its bacterial ancestor. Mitochondrial TAT transports folded proteins in those eukaryotes with TatA and TatC subunits encoded in the mitochondrial genome. However, mitochondria, in contrast to chloroplasts, abandoned the machinery multiple times during evolution. The hydrophobicity of Oxa1 may have been the main reason why this translocase was nearly universally retained in mitochondrial biogenesis pathways (Petrů et al. 2018).

Oxa1 homologues exhibit 3 (Oxa1p of S. cerevisiae), 4 (the E. coli 60 kDa inner membrane protein, YidC), or 5 (the Pseudomonas putida 60kDa protein (spP25754)) putative TMSs. One TMS occurs at the N-termini of the bacterial proteins while the rest are in the C-terminal domain. Thus the P. putida protein (560 aas) exhibits putative TMSs at positions 7-23, 343-361, 371-394, 434-458 and 516-535. The E. coli protein exhibits putative TMSs at positions 6-26, 350-370, 420-440 and 499-515. The yeast Oxa1 protein lacks the first 150 residues of the bacterial proteins and thus lacks the N-terminal TMS. Its putative TMSs are at positions 119-139, 200-220 and 282-302. Co-translational membrane insertion of mitochondrially encoded proteins using the Oxa1 apparatus has been demonstrated (Ott and Herrmann, 2010). Oxa1 directly binds to mitochondrial ribosomes and, together with the inner membrane protein Mba1, aligns the polypeptide exit tunnel of the ribosome with the insertion site at the inner membrane.

The E. coli YidC protein has been shown to associate with the SecYEG complex (TC #3.A.5) (Scotti et al., 2000). It also forms a tetrameric complex with SecDF-YajC (Chen et al., 2002). It is essential for the insertion of several SecYEG-independent integral membrane proteins (Nouwen and Driessen, 2002; Serek et al., 2004) and facilitates insertion of some Sec-dependent membrane proteins (van der Laan et al., 2005). For example, YidC supports the folding of MalF into a stable conformation before it is incorporated into the maltose transport complex (Wagner et al., 2008). YidC is also required for the functional insertion of both cytochrome oxidase (3.D.4) and the F-type ATPase (3.A.2) of E. coli, and the same is true for Oxa1 in mitochondria (van der Laan et al., 2003). Subunits a and b of the E. coli F-type ATPase are inserted by a Sec/SRP/YidC-dependent) pmf-independent mechanism, but the c-subunit is inserted by a Sec/SRP-independent, YidC, pmf-dependent mechanism (Yi et al., 2004; Yi and Dalbey, 2005). YidC catalyzes c-subunit insertion prior to its oligomerization (Kol et al., 2006). Yuan et al. (2007) have shown that mutants in TMS3 of E. coli YidC lead to a cold sensitive phenotype and affect substrate protein affinity. The crystal structure of the major periplasmic domain of the E. coli YidC reveals a β-sandwich, one edge of which binds SecF (Oliver and Paetzel, 2007). The crystal structure of the periplasmic domain of the E. coli YidC reveals a conserved substrate binding domain (Ravaud et al., 2008).  X-ray structures of YidC from Bacillus halodurans and Escherichia coli revealed a hydrophilic groove that is accessible from the lipid bilayer and the cytoplasm. Chen et al. 2017 explored the water accessibility within the conserved core region of the E. coli YidC. As expected from the structure, YidC possesses an aqueous membrane cavity localized to the membrane inner leaflet. The lipid-exposed transmembrane helices 3, 4, and 5 are short, leading to membrane thinning around YidC.

A single TMS protein with a highly hydrophobic transmembrane segment that inserts into the membrane by a YidC/Sec-independent mechanism becomes YidC-dependent if negatively charged residues are inserted into the translocated periplasmic domain or if the hydrophobicity of the transmembrane segment is reduced by substituting polar residues for nonpolar ones (Zhu et al. 2013). This suggests that charged residues in the translocated domain and the hydrophobicity within the transmembrane segment are important determinants of the insertion pathway. The addition of a positively charged residue to either the translocated region or the transmembrane region can switch the insertion requirements such that insertion requires both YidC and SecYEG.

In E. coli, YidC also inserts the phage coat protein Pf3 and the M13 procoat protein in vivo and in vitro independently of other proteins (Serek et al., 2004; Stiegler et al., 2011). However, it has little or no effect on the export of periplasmic secretory proteins (Samuelson et al., 2000). YidC exhibits different structural requirements for Sec-dependent versus Sec-independent membrane protein insertion and also for Sec-independent insertion of two different phage coat proteins (Chen et al., 2003). The two driving forces for membrane protein insertion seem to be (1) the PMF and (2) hydrophobic forces (van der Laan et al., 2005), and both can compensate for each other. A projection structure of YidC obtained by electron cryomicroscopy revealed that the E. coli YidC forms dimers in the membrane, and each monomer has an area of low density that may be part of the path transmembrane segments follow during their insertion (Lotz et al., 2008).

In Neurospora crassa, a tetrameric Oxa1p is likely (Nargang et al., 2002). Oxa1 complements YidC of E. coli for the insertion of Sec-independent proteins but cannot take over the Sec-associated function of YidC (van Bloois et al., 2005). The YidC Sec-independent function may be conserved and essential.

In Bacillus subtilis, there are two YidC homologues, SpoIIIJ and YqjG. Neither is essential for vegetative growth, but a double knockout mutant is lethal (Murakami et al., 2002). SpoIIIJ alone is essential for sporulation. Both proteins localize to the plasma membrane in vegetative cells but to the polar and engulfment septa in sporulating cells. These two proteins have different but overlapping functions. They function both in membrane protein biogenesis and in protein secretion (Tjalsma et al., 2003).

The structures of both the E. coli YidC (TC#2.A.9.3.1) and the Saccharomyces cerevisiae Oxa1 bound to the E. coli ribosome nascent chain complexes have been determined by cryo-electron microscopy (Kohler et al. 2009). Dimers of YidC and Oxa1 are localized above the exit of the ribosomal tunnel. Crosslinking experiments showed that the ribosome specifically stabilizes the dimeric state. Functionally important and conserved transmembrane helices of YidC and Oxa1 were localized at the dimer interface by cysteine crosslinking. Both Oxa1 and YidC dimers contact the ribosome at ribosomal protein L23 and conserved rRNA helices 59 and 24, similarly to what was observed for the nonhomologous SecYEG translocon. Dimers of the YidC and Oxa1 presumably form the insertion pores and share a common overall architecture with the SecY monomer.

Kumazaki et al. 2014 determined the crystal structure of YidC from Bacillus halodurans at 2.4 Å resolution. The structure revealed a novel fold, in which five conserved transmembrane helices form a positively charged hydrophilic groove that is open towards both the lipid bilayer and the cytoplasm, but closed on the extracellular side. Structure-based in vivo analyses revealed that a conserved arginine residue in the groove is important for the insertion of membrane proteins by YidC. They proposed an insertion mechanism for single-spanning membrane proteins, in which the hydrophilic environment generated by the groove, recruits the extracellular regions of substrates into the low- dielectric environment of the membrane. 

YidC insertases interact with their substrates in a groove-like structure at an amphiphilic protein-lipid interface, thus allowing the transmembrane segments of the substrate to slide into the lipid bilayer. The high-resolution structures of YidC provide new mechanistic insights of how transmembrane proteins achieve the transition from an aqueous environment in the cytoplasm to the hydrophobic lipid bilayer environment of the membrane (Kuhn and Kiefer 2016). YidC prevents LacY from misfolding by stabilizing the unfolded state from which LacY inserts structural segments stepwise into the membrane until folding is completed. During stepwise insertion, YidC and the membrane together stabilize the transient folds. Remarkably, the order of insertion of structural segments is stochastic, indicating that LacY can fold along variable pathways toward the native structure (Serdiuk et al. 2016). 

YidC insertases play pivotal roles in membrane integration, folding, and assembly of a number of proteins, including energy-transducing respiratory complexes, both autonomously and in concert with the SecYEG channel in bacteria as noted above. The YidC family of proteins is widely conserved in all domains of life, with members identified in the eukaryotic endoplasmic reticular membrane (Shanmugam and Dalbey 2019). Bacterial and organellar members share the conserved 5-transmembrane core, which forms a unique hydrophilic cavity in the inner leaflet of the bilayer accessible from the cytoplasm and the lipid phase. Shanmugam and Dalbey 2019 discussed the YidC family of proteins, focusing on its mechanism of substrate insertion independently and in association with the Sec translocon.

The reaction believed to be catalyzed by the Oxa1 apparatus is:

(1) protein (cytoplasm) → protein (membrane) or
(2) protein (or protein fragment) (in) → protein (or protein fragment) (out)



This family belongs to the .

 

References:

Bloois, E.V., G. Koningstein, H. Bauerschmitt, J.M. Herrmann, and J. Luirink. (2007). Saccharomyces cerevisiae Cox18 complements the essential Sec-independent function of Escherichia coli YidC. FEBS J.274: 5704-5713.

Bonnefoy, N., M. Kermorgant, O. Groudinsky, and G. Dujardin. (2000). The respiratory gene OXA1 has two fission yeast orthrologues which together encode a function essential for cellular viability. Mol. Microbiol. 35: 1135-1145.

Bourens, M. and A. Barrientos. (2017). Human mitochondrial cytochrome c oxidase assembly factor COX18 acts transiently as a membrane insertase within the subunit 2 maturation module. J. Biol. Chem. 292: 7774-7783.

Camp, A.H. and R. Losick. (2008). A novel pathway of intercellular signalling in Bacillus subtilis involves a protein with similarity to a component of type III secretion channels. Mol. Microbiol. 69: 402-417.

Chen, M., J.C. Samuelson, F. Jiang, M. Muller, A. Kuhn, and R.E. Dalbey. (2002). Direct interaction of YidC with the Sec-independent Pf3 coat protein during its membrane protein insertion. J. Biol. Chem. 277: 7670-7675.

Chen, M., K. Xie, N. Nouwen, A.J.M. Driessen, and R.E. Dalbey. (2003). Conditional lethal mutations separate the M13 procoat and Pf3 coat functions of YidC. Different YidC structural requirements for membrane protein insertion. J. Biol. Chem. 278: 23295-23300.

Chen, Y., R. Soman, S.K. Shanmugam, A. Kuhn, and R.E. Dalbey. (2014). The role of the strictly conserved positively charged residue differs among the Gram-positive, Gram-negative, and chloroplast YidC homologs. J. Biol. Chem. 289: 35656-35667.

Chen, Y., S. Capponi, L. Zhu, P. Gellenbeck, J.A. Freites, S.H. White, and R.E. Dalbey. (2017). YidC Insertase of Escherichia coli: Water Accessibility and Membrane Shaping. Structure 25: 1403-1414.e3.

Dalbey RE., Kuhn A., Zhu L. and Kiefer D. (2014). The membrane insertase YidC. Biochim Biophys Acta. 1843(8):1489-96.

Dünschede, B., T. Bals, S. Funke, and D. Schünemann. (2011). Interaction studies between the chloroplast signal recognition particle subunit cpSRP43 and the full-length translocase Alb3 reveal a membrane-embedded binding region in Alb3 protein. J. Biol. Chem. 286: 35187-35195.

Ernst, S., A.K. Schönbauer, G. Bär, M. Börsch, and A. Kuhn. (2011). YidC-Driven Membrane Insertion of Single Fluorescent Pf3 Coat Proteins. J. Mol. Biol. 412: 165-175.

Gaisne, M. and N. Bonnefoy. (2006). The COX18 gene, involved in mitochondrial biogenesis, is functionally conserved and tightly regulated in humans and fission yeast. FEMS Yeast Res 6: 869-882.

Gerdes, L., T. Bals, E. Klostermann, M. Karl, K. Philippar, M. Hunken, J. Soll, and D. Schunemann. (2006). A second thylakoid membrane-localized Alb3/OxaI/YidC homologue is involved in proper chloroplast biogenesis in Arabidopsis thaliana. J. Biol. Chem. 281: 16632-16642.

He, S. and T.D. Fox. (1997). Membrane translocation of mitochondrially coded Cox2p: distinct requirements for export of N and C termini and dependence on the conserved protein Oxa1p. Mol. Biol. Cell 8: 1449-1460.

Hell, K., J.M. Herrmann, E. Pratje, W. Neupert, and R.A. Stuart. (1997). Oxa1p mediates the export of N- and C-termini of pCoxII from the mitochondrial matrix to the intermembrane space. FEBS Lett. 418: 367-370.

Hell, K., J.M. Herrmann, E. Pratje, W. Neupert, and R.A. Stuart. (1998). Oxa1p, an essential component of the N-tail protein export machinery in mitochondria. Proc. Natl. Acad. Sci. USA 95: 2250-2255.

Hennon SW., Soman R., Zhu L. and Dalbey RE. (2015). YidC/Alb3/Oxa1 Family of Insertases. J Biol Chem. 290(24):14866-74.

Hennon, S.W. and R.E. Dalbey. (2014). Cross-linking-based flexibility and proximity relationships between the TM segments of the Escherichia coli YidC. Biochemistry 53: 3278-3286.

Jia, L. M. Dienhart, M. Schramp, M. McCauley, K. Hell, and R.A. Stuart. (2003). Yeast Oxa1 interacts with mitochondrial ribosomes: the importance of the C-terminal region of Oxa1. EMBO J. 22: 6438-6447.

Kohler, R., D. Boehringer, B. Greber, R. Bingel-Erlenmeyer, I. Collinson, C. Schaffitzel, and N. Ban. (2009). YidC and Oxa1 form dimeric insertion pores on the translating ribosome. Mol. Cell 34: 344-353.

Kol, S., B.R. Turrell, J. de Keyzer, M. van der Laan, N. Nouwen, and A.J. Driessen. (2006). YidC-mediated membrane insertion of assembly mutants of subunit c of the F1F0 ATPase. J. Biol. Chem. 281: 29762-29768.

Krüger, V., M. Deckers, M. Hildenbeutel, M. van der Laan, M. Hellmers, C. Dreker, M. Preuss, J.M. Herrmann, P. Rehling, R. Wagner, and M. Meinecke. (2012). The mitochondrial oxidase assembly protein1 (oxa1) insertase forms a membrane pore in lipid bilayers. J. Biol. Chem. 287: 33314-33326.

Kuhn, A. and D. Kiefer. (2016). Membrane protein insertase YidC in bacteria and archaea. Mol. Microbiol. [Epub: Ahead of Print]

Kumazaki, K., S. Chiba, M. Takemoto, A. Furukawa, K. Nishiyama, Y. Sugano, T. Mori, N. Dohmae, K. Hirata, Y. Nakada-Nakura, A.D. Maturana, Y. Tanaka, H. Mori, Y. Sugita, F. Arisaka, K. Ito, R. Ishitani, T. Tsukazaki, and O. Nureki. (2014). Structural basis of Sec-independent membrane protein insertion by YidC. Nature 509: 516-520.

Kumazaki, K., T. Kishimoto, A. Furukawa, H. Mori, Y. Tanaka, N. Dohmae, R. Ishitani, T. Tsukazaki, and O. Nureki. (2014). Crystal structure of Escherichia coli YidC, a membrane protein chaperone and insertase. Sci Rep 4: 7299.

Li, Z., D. Boyd, M. Reindl, and M.B. Goldberg. (2014). Identification of YidC residues that define interactions with the Sec Apparatus. J. Bacteriol. 196: 367-377.

Lotz, M., W. Haase, W. Kühlbrandt, and I. Collinson. (2008). Projection structure of yidC: a conserved mediator of membrane protein assembly. J. Mol. Biol. 375: 901-907.

Luirink, J., T. Samuelsson, and J.-W. de Gier. (2001). YidC/Oxa1p/Alb3: evolutionarily conserved mediators of membrane protein assembly. FEBS Lett. 501: 1-5.

McAvoy, C., A. Siegel, S. Piszkiewicz, E. Miaou, M. Yu, T. Nguyen, A. Moradian, M.J. Sweredoski, S. Hess, and S.O. Shan. (2018). Two Distinct Sites of client protein interaction with the chaperone cpSRP43. J. Biol. Chem. [Epub: Ahead of Print]

Moore, M., M.S. Harrison, E.C. Peterson, and R. Henry. (2000). Chloroplast Oxa1 homolog albino3 is required for post-translational integration of the light harvesting chlorophyll-binding protein into thylakoid membranes. J. Biol. Chem. 275: 1529-1532.

Murakami, T., K. Haga, M. Takeuchi, and T. Sato. (2002). Analysis of the Bacillus subtilis spoIIIJgene and its paralogue gene, yqjG. J. Bacteriol. 184: 1998-2004.

Nargang, F.E., M. Preuss, W. Neupert, and J.M. Herrmann. (2002). The Oxa1 protein forms a homooligomeric complex and is an essential part of the mitochondrial export translocase in Neurospora crassa. J. Biol. Chem. 277: 12846-12853.

Nouwen, N. and A.J.M. Driessen. (2002). SecDFyajC forms a heterotetrameric complex with YidC. Mol. Microbiol. 44: 1397-1405.

Oliver, D.C. and M. Paetzel. (2008). Crystal structure of the major periplasmic domain of the bacterial membrane protein assembly facilitator YidC. J. Biol. Chem. 283(8): 5208-5216.

Ott, M. and J.M. Herrmann. (2010). Co-translational membrane insertion of mitochondrially encoded proteins. Biochim. Biophys. Acta. 1803: 767-775.

Petriman, N.A., B. Jauß, A. Hufnagel, L. Franz, I. Sachelaru, F. Drepper, B. Warscheid, and H.G. Koch. (2018). The interaction network of the YidC insertase with the SecYEG translocon, SRP and the SRP receptor FtsY. Sci Rep 8: 578.

Petrů, M., J. Wideman, K. Moore, F. Alcock, T. Palmer, and P. Doležal. (2018). Evolution of mitochondrial TAT translocases illustrates the loss of bacterial protein transport machines in mitochondria. BMC Biol 16: 141.

Preuss, M., M. Ott, S. Funes, J. Luirink, and J.M. Herrmann. (2005). Evolution of mitochondrial Oxa proteins from bacterial YidC. Inherited and acquired functions of a conserved protein insertion machinery. J. Biol. Chem. 280: 13004-13011.

Price, C.E. and A.J. Driessen. (2008). YidC is involved in the biogenesis of anaerobic respiratory complexes in the inner membrane of Escherichia coli. J. Biol. Chem. 283: 26921-26927.

Price, C.E. and A.J. Driessen. (2010). Conserved negative charges in the transmembrane segments of subunit K of the NADH:ubiquinone oxidoreductase determine its dependence on YidC for membrane insertion. J. Biol. Chem. 285: 3575-3581.

Ravaud, S., G. Stjepanovic, K. Wild, and I. Sinning. (2008). The crystal structure of the periplasmic domain of the Escherichia coli membrane protein insertase YidC contains a substrate binding cleft. J. Biol. Chem. 283: 9350-9358.

Rojo, E.E., B. Guiard, W. Neupert, and R.A. Stuart. (1999). N-terminal tail export from the mitochondrial matrix. J. Biol. Chem. 274: 19617-19622.

Sachelaru I., Petriman NA., Kudva R., Kuhn P., Welte T., Knapp B., Drepper F., Warscheid B. and Koch HG. (2013). YidC occupies the lateral gate of the SecYEG translocon and is sequentially displaced by a nascent membrane protein. J Biol Chem. 288(23):16295-307.

Saller, M.J., F. Fusetti, and A.J. Driessen. (2009). Bacillus subtilis SpoIIIJ and YqjG function in membrane protein biogenesis. J. Bacteriol. 191: 6749-6757.

Samuelson, J.C., M. Chen, F. Jiang, I. Möller, M. Wiedmann, A. Kuhn, G.J. Phillips, and R.E. Dalbey. (2000). YidC mediates membrane protein insertion in bacteria. Nature 406: 637-641.

Scotti, P.A., M.L. Urbanus, J. Brunner, J.-W. de Gier, G. von Heijne, C. van der Does, A.J.M. Driessen, B. Oudega, and J. Luirink. (2000). YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase. EMBO J. 19: 542-549.

Serdiuk, T., D. Balasubramaniam, J. Sugihara, S.A. Mari, H.R. Kaback, and D.J. Müller. (2016). YidC assists the stepwise and stochastic folding of membrane proteins. Nat Chem Biol 12: 911-917.

Serek, J., G. Bauer-Manz, G. Struhalla, L. van den Berg, D. Kiefer, R. Dalbey, and A. Kuhn. (2004). Escherichia coli YidC is a membrane insertase for Sec-independent proteins. EMBO J. 23: 294-301.

Shanmugam, S.K. and R.E. Dalbey. (2019). The Conserved Role of YidC in Membrane Protein Biogenesis. Microbiol Spectr 7:.

Stiburek, L., D. Fornuskova, L. Wenchich, M. Pejznochova, H. Hansikova, and J. Zeman. (2007). Knockdown of human Oxa1l impairs the biogenesis of F1Fo-ATP synthase and NADH:ubiquinone oxidoreductase. J. Mol. Biol. 374: 506-516.

Stiegler, N., R.E. Dalbey, and A. Kuhn. (2011). M13 procoat protein insertion into YidC and SecYEG proteoliposomes and liposomes. J. Mol. Biol. 406: 362-370.

Szyrach, G., M. Ott, N. Bonnefoy, W. Neupert, and J.M. Herrmann. (2003). Ribosome binding to the Oxa1 complex facilitates co-translational protein insertion in mitochondria. EMBO J. 22: 6448-6457.

Tjalsma, H., S. Bron, and J.M. van Dijl. (2003). Complementary impact of paralogous Oxa1-like proteins of Bacillus subtilis on post-translocational stages in protein secretion. J. Biol. Chem. 278: 15622-15632.

Tokatlidis, K. and G. Schatz. (1999). Biogenesis of mitochondrial inner membrane proteins. J. Biol. Chem. 274: 35285-35288.

van Bloois, E., G.J. Haan, J.W. de Gier, B. Oudega, and J. Luirink. (2006). Distinct requirements for translocation of the N-tail and C-tail of the Escherichia coli inner membrane protein CyoA. J. Biol. Chem. 281: 10002-10009.

van Bloois, E., S. Nagamori, G. Koningstein, R.S. Ullers, M. Preuss, B. Oudega, N. Harms, H.R. Kaback, J.M. Herrmann, and Luirink, J. (2005). The Sec-independent function of Escherichia coli YidC is evolutionary-conserved and essential. J. Biol. Chem. 280: 12996-13003.

van der Laan, M., M.L. Urbanus, C.M. ten Hagen-Jongman, N. Nouwen, B. Oudega, N. Harms, A.J.M. Driessen, and J. Luirink. (2003). A conserved function of YidC in the biogenesis of respiratory chain complexes. Proc. Natl. Acad. Sci. USA 100: 5801-5806.

van der Laan, M., N.P. Nouwen, and A.J. Driessen. (2005). YidC — an evolutionary conserved device for the assembly of energy-transducing membrane protein complexes. Curr. Opin. Microbiol. 8: 182-187.

Wagner, S., O. Pop, G.J. Haan, L. Baars, G. Koningstein, M.M. Klepsch, P. Genevaux, J. Luirink, and J.W. de Gier. (2008). Biogenesis of MalF and the MalFGK2 Maltose Transport Complex in Escherichia coli Requires YidC. J. Biol. Chem. 283: 17881-17890.

Wang, P. and R.E. Dalbey. (2011). Inserting membrane proteins: The YidC/Oxa1/Alb3 machinery in bacteria, mitochondria, and chloroplasts. Biochim. Biophys. Acta. 1808: 866-875.

Wickles, S., A. Singharoy, J. Andreani, S. Seemayer, L. Bischoff, O. Berninghausen, J. Soeding, K. Schulten, E.O. van der Sluis, and R. Beckmann. (2014). A structural model of the active ribosome-bound membrane protein insertase YidC. Elife 3: e03035.

Yen, M.-R., K.T. Harley, Y.-H. Tseng, and M.H. Saier, Jr. (2001). Phylogenetic and structural analyses of the Oxa1 family of putative protein translocation constituents. FEMS Microbiol. Lett. 204: 223-231.

Yi, L. and R.E. Dalbey. (2005). Oxa1/Alb3/YidC system for insertion of membrane proteins in mitochondria, chloroplasts and bacteria. Mol. Membr. Biol. 22: 101-111.

Yi, L., N. Celebi, M. Chen, and R.E. Dalbey. (2004). Sec/SRP requirements and energetics of membrane insertion of subunits a, b, and c of the Escherichia coli F1F0 ATP synthase. J. Biol. Chem. 279: 39260-39267.

Yu, Z., G. Koningstein, A. Pop, and J. Luirink. (2008). The conserved third transmembrane segment of YidC contacts nascent Escherichia coli inner membrane proteins. J. Biol. Chem. 283: 34635-34642.

Yuan, J., G.J. Phillips,and R.E. Dalbey. (2007). Isolation of Cold-Sensitive yidC Mutants Provides Insights into the Substrate Profile of the YidC Insertase and the Importance of Transmembrane 3 in YidC Function. J. Bacteriol. 189: 8961-8972.

Zhu, L., A. Wasey, S.H. White, and R.E. Dalbey. (2013). Charge composition features of model single-span membrane proteins that determine selection of YidC and SecYEG translocase pathways in Escherichia coli. J. Biol. Chem. 288: 7704-7716.

Zhu, L., H.R. Kaback, and R.E. Dalbey. (2013). YidC protein, a molecular chaperone for LacY protein folding via the SecYEG protein machinery. J. Biol. Chem. 288: 28180-28194.

Examples:

TC#NameOrganismal TypeExample
2.A.9.1.1

Cytochrome oxidase biogenesis protein, Oxa1p (involved in the insertion of a wide range of membrane proteins).  Forms a cation-selective channel (4-state; diameter, 0.6 - 2.0 nm), regulated by the membrane potential and association with the substrate protein (Krüger et al. 2012).  The structure of the dimeric insertion pore associated with the translating ribosome has been solved (Kohler et al. 2009).

Yeast mitochondria

Oxa1p of Saccharomyces cerevisiae

 
2.A.9.1.2

Mammalian Oxa1L has a C-terminal 100 aa tail that binds ribosomes and promotes translation coupled membrane insertion (Haque et al., 2010).

Mammals

Oxa1L of Homo sapiens (Q15070)

 
2.A.9.1.3

Cytochrome c oxidase assembly protein 18, COX18 of 333 aas and 4 TMSs. Acts transiently as a membrane insertase within the subunit 2 module of Cytochrome oxidase (Bourens and Barrientos 2017). Plays a central role in the translocation and export of the C-terminal part of the COX2 protein into the mitochondrial intermembrane space (Gaisne and Bonnefoy 2006).

COX18 of Homo sapiens

 
2.A.9.1.4

Cox18 (Oxa1-3; Oxa103) of 202 aas and 5 TMSs.  Required for the insertion of integral membrane proteins into the mitochondrial inner membrane (Gaisne and Bonnefoy 2006).

Cox18 of Schizosaccharomyces pombe (Fission yeast)

 
Examples:

TC#NameOrganismal TypeExample
2.A.9.2.1

Chloroplast protein, ALBINO3 (Alb3). Inserts a subset of light harvesting chlorophyll-binding proteins) (Gerdes et al., 2006). SRP43 (3.A.5.1.2) and the translocase, Alb3, interact directly (Dünschede et al., 2011). SRP43 is an ATP-independent chaperone containing ankyrin repeats required for the biogenesis of the most abundant class of membrane proteins, the light-harvesting chlorophyll a/b-binding proteins (LHCPs) (McAvoy et al. 2018).

Plant chloroplasts

ALBINO3 of Arabidopsis thaliana

 
2.A.9.2.2Chloroplast protein ALBINO4 (Alb4) (essential for proper chloroplast biogenesis (Gerdes et al., 2006)Plant chloroplastsALBINO4 of Arabidopsis thaliana (CAJ45566)
 
Examples:

TC#NameOrganismal TypeExample
2.A.9.3.1

60 kDa inner membrane protein, YidC (involved in insertion of a wide range of membrane proteins, including anaerobic respiratory complexes (Price and Driessen, 2008). The thrid TMS in YidC contacts the substrate protein (Yu et al., 2008).  YidC occupies the lateral gate of the SecYEG translocase and is sequentially displaced by the nascent membrane protein (Sachelaru et al. 2013).  Residues involved in interaction with the Sec translocon have been identified (Li et al. 2014). YidC acts as a flexible chaperone, facilitating LacY folding (Zhu et al. 2013; Hennon and Dalbey 2014).  The structure of the dimeric insertion pore associated with the translating ribosome has been solved (Kohler et al. 2009).  A single copy of YidC interacts with the ribosome at the ribosomal tunnel; a site for membrane protein insertion at the YidC protein-lipid interface has been identified (Wickles et al. 2014).  The crystal structure of full-length E. coli YidC revealed that a hydrophilic groove, formed by five transmembrane helices, is a conserved structural feature as compared to the previous YidC structure from Bacillus halodurans, which lacks a periplasmic domain. Structural mapping of the substrate- or Sec protein-contact sites suggested the importance of the groove for the YidC functions as a chaperone and an insertase (Kumazaki et al. 2014).

Proteobacteria

YidC of E. coli

 
2.A.9.3.2

Essential sporulation inner membrane protein, SpoIIIJ is a proposed membrane protein translocase that facilitates the insertion of SpoIIIAE into the membrane (Camp and Losik, 2008). Also facilitates membrane insertion of F-ATPase subunit c from B. subtilis and E. coli. Plays a role in membrane protein biogenesis rather than protein secretion (Saller et al., 2009).

Bacteria

SpoIIIJ of Bacillus subtilis

 
2.A.9.3.3

OxaA2 membrane protein biogenesis protein, OxaA2 or YqjG (Saller et al., 2009).

Bacteria

OxaA2 of Bacillus subtilis (P54544)

 
2.A.9.3.4

YidC homologue

Proteobacteria

YidC of Myxococcus xanthus

 
2.A.9.3.5

YidC protein insertase.  The 3-D structure has been determined at 2.4 Å resolution (see the YidC Family discussion section).

Firmicutes

YidC1 of Bacillus halodurans

 
2.A.9.3.6

YidC2.  The 3-D structure of YidC has been determined (Kumazaki et al. 2014).  The conserved positively charged residue within transmembrane segment one (at position 72) is located in a hydrophilic groove that is embedded in the inner leaflet of the lipid bilayer.  It is essential in Gram positive bacteria but not Gram negative bacteria or plant chloroplasts (Chen et al. 2014).

Firmicutes

YidC2 of Bacillus halodurans

 
2.A.9.3.7

YidC of 562 aas and 4 - 6 TMSs. Shows sequence similarity to 1.A.106.2.4, TMSs 2 - 3 in both proteins.

YidC of Sutterella parvirubra

 
2.A.9.3.8

Uncharacterized YidC homologue of 237 aas and 4 - 6 TMSs.

YidC of Candidatus Harrisonbacteria bacterium

 
2.A.9.3.9

Uncharacterized YidC homologue of 241 aas and 5 - 6 TMSs.

YidC of Candidatus Magasanikbacteria bacterium

 
Examples:

TC#NameOrganismal TypeExample
2.A.9.4.1Oxa2 (Cox18) YidC homologue (replace E. coli YidC for SecYEG-independent insertion by genetic complementation) (Bloois et al., 2007). YeastOxa2 of Saccharomyces cerevisiae (P53239)
 
Examples:

TC#NameOrganismal TypeExample
2.A.9.5.1

Uncharacterized YidC homologue of 366 aas and 6 or 7 TMSs.

YidC of Candidatus Wirthbacteria bacterium

 
2.A.9.5.2

Putative YidC of 236 aas and 4 or 5 TMSs.

YidC of Candidatus Beckwithbacteria bacterium

 
2.A.9.5.3

Putative YidC of 383 aas and 7 or 8 TMSs

YidC of Candidatus Shapirobacteria bacterium