TCID | Description | Domain | Kingdom/Phylum | Example |
---|---|---|---|---|
2.A.1.14.19 | Plasma membrane, high affinity vitamin H transporter 1 (H+:biotin symporter), Vht1 (Stolz, 2003) | Eukaryota | Fungi | Vht1 of Schizosaccharomyces pombe (O13880) |
2.A.21.5.2 |
Na+-dependent multivitamin (pantothenate, biotin, lipoate) transporter (de Carvalho and Quick 2011). Broad specificity. May be useful for drug delivery using biotin-conjugated drugs such as Biotin-Acyclovir (B-ACV) (Vadlapudi et al. 2012). Present in the inclusion membrane that encases Chlamydia trachomatis where it transports vitamins such as biotin (Fisher et al. 2012). May also take up iodide (de Carvalho and Quick 2011). |
Eukaryota | Metazoa | SMVT of Rattus norvegicus |
2.A.48.1.4 | Thiamine (and biotin) transporter-2, ThTr-2, of 496 aas and 12 TMSs. Downregulated in Chronic Kidney Disease (CKD) in heart, liver, and brain causing malabsorption (Bukhari et al., 2011). Activated by microtubules but not microfilaments (Subramanian et al. 2013). Activated by direct interaction with the 4 TMS protein, TM4 of the L6 family, member 4, TM4SF4 (P48230) (Subramanian et al. 2014). Mutations result in thiamine metabolism dysfunction syndrome 2, also known as biotin-thiamine-responsive basal ganglia disease (BTBGD). This neurometabolic disease typically presents in early childhood with progressive neurodegeneration, including confusion, seizures, and dysphagia, advancing to coma and death (Whitford et al. 2017). |
Eukaryota | Metazoa | SLC19A3, Thiamine transporter-2 of Homo sapiens |
2.A.88.1.1 | Biotin transporter, BioY (Biotin ECF transporter S component) (Hebbeln et al., 2007; Rodionov et al., 2009). |
Bacteria | Proteobacteria | BioY of Rhizobium etli (Q6GUB0) |
2.A.88.1.3 | Biotin transporter, BioY (Biotin ECF transporter S component) (Hebbeln et al. 2007; Rodionov et al., 2009). The functional unit is a dimer (Kirsch et al., 2012). |
Bacteria | Proteobacteria | BioY of Rhodobacter capsulatus (D5ARG8) |
2.A.88.1.4 | Biotin transporter, BioY of 201 aas and 6 TMSs. Transports biotin with high affinity without other subunits (Finkenwirth et al. 2013). |
Bacteria | Proteobacteria | BioY of Oceanicola batsensis |
2.A.88.1.5 | Biotin transporter, BioY of 192 aas and 5 TMSs. Transports biotin without other subunits (Finkenwirth et al. 2013). |
Bacteria | Proteobacteria | BioY of Rhodopseudomonas palustris |
2.A.88.1.6 | BioY of 195 aas and 6 TMSs. Transports biotin with high affinity without additional subunits (Finkenwirth et al. 2013). |
Bacteria | Proteobacteria | BioY of Ruegeria pomeroyi (Silicibacter pomeroyi) |
2.A.88.1.9 | Biotin transporter, BioY (Biotin ECF transporter S component) (Hebbeln et al., 2007; Rodionov et al., 2009). |
Bacteria | Firmicutes | BioY of Bacillus subtilis (O07620) |
3.A.1.25.1 | The biotin uptake porter (binding receptor lacking) (see also the VUT or ECF family; BioY; 2.A.88.1.1) (Rodionov et al., 2006; Hebbeln et al., 2007). BioN (the EcfT component of the biotin transporter) appears to be required for intramolecular signaling and subunit assembly (Neubauer et al., 2009). The Ala-Arg-Ser and Ala-Arg-Gly signatures in BioN are coupling sites to the BioM ATPases (Neubauer et al., 2011). Subunit stoicheometries have been estimated with the prediction that there are oligomeric forms of BioM and BioY in the BioMNY complex (Finkenwirth et al. 2010). |
Bacteria | Proteobacteria | BioMNY of Rhizobium etli |
3.A.1.25.2 | Putative biotin Ecf transporter, EcfSAA'T (function assigned based on genome context analyses). |
Archaea | Euryarchaeota | Putative Ecf transporter, EcfSAA'T, of Methanospirillum hungatei |
3.A.1.25.3 | Putative biotin Ecf transporter, EcfSAA'T (function assigned based on genome context analyses). |
Archaea | Euryarchaeota | The putative EcfSAA'T transporter of Methanocorpusculum labreanum |
3.A.1.26.8 | Putative biotin Ecf transporter, EcfSAT |
Archaea | Euryarchaeota | Putative Ecf transpoter, EcfSAT, of Archaeoglobus fulgidus |