TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


3.A.2.1.3
H+-translocating F-type ATPase. Evidence of the proximity of ATP synthase subunit 6 is in proximity to the membrane in the supramolecular form (Velours et al., 2011).  The structure of the intact monomeric ATP synthase from the fungus, Pichia angusta, has been solved by electron cryo-microscopy (Vinothkumar et al. 2016). The Mg2+ and Ca2+-dependent enzymes are both active, but exhibit quite different behaviors (Nesci et al. 2017). Dimerization is necessary to create the inner membrane folds (cristae) characteristic of mitochondria.  Using cryo-electron microscopy, Guo et al. 2017 determined the structure of the dimeric FO complex from Saccharomyces cerevisiae at a resolution of 3.6 angstroms. The structure clarifies how the protons travel through the complex, how the complex dimerizes, and how the dimers bend the membrane to produce cristae. The crystal structure of the c-subunit ring with bound oligomycin revealed the inhibitor docked on the outer face of the proton-binding sites, deep in the transmembrane region (Zhou and Faraldo-Gómez 2018). A high resolution (3.7 Å) structure of the entire monomeric ATPase has been solved by cryo EM, suggesting how it is inhibited by oligomycin (Srivastava et al. 2018).  Absence of the e and g subunits decreases conductance of the F-ATP synthase channel about tenfold. Ablation of the first TMS of subunit b, which creates a distinct lateral domain with e and g, further affected channel activity. Thus, F-ATP synthase e, g and b subunits create a domain within the membrane that is critical for the generation of the high-conductance channel that is a prime candidate for formation of the permeability transition pore (PTP). Subunits e and g are only present in eukaryotes and may have evolved to confer this novel function to F-ATP synthases (Carraro et al. 2018). The translation rate of all yeast mitochondrial mRNAs, including all F-type ATPase subunits has been studied (Chicherin et al. 2021). Attenuated ADP-inhibition of F0F1 ATPase mitigates manifestations of mitochondrial dysfunction in yeast (Lapashina et al. 2022).

Accession Number:P00830
Protein Name:ATP2 aka ATPB aka YJR121W aka J2041
Length:511
Molecular Weight:54794.00
Species:Saccharomyces cerevisiae (Baker's yeast) [4932]
Location1 / Topology2 / Orientation3: Mitochondrion1
Substrate hydron

Cross database links:

DIP: DIP-3028N
RefSeq: NP_012655.1   
Entrez Gene ID: 853585   
Pfam: PF00006    PF00306    PF02874   
KEGG: sce:YJR121W   

Gene Ontology

GO:0005754 C:mitochondrial proton-transporting ATP synth...
GO:0005524 F:ATP binding
GO:0046933 F:hydrogen ion transporting ATP synthase acti...
GO:0008553 F:hydrogen-exporting ATPase activity, phospho...
GO:0046961 F:proton-transporting ATPase activity, rotati...
GO:0015986 P:ATP synthesis coupled proton transport

References (9)

[1] “Nuclear genes coding the yeast mitochondrial adenosine triphosphatase complex. Primary sequence analysis of ATP2 encoding the F1-ATPase beta-subunit precursor.”  Takeda M.et.al.   2866186
[2] “Characterization of mutations in the beta subunit of the mitochondrial F1-ATPase that produce defects in enzyme catalysis and assembly.”  Liang Y.et.al.   8900121
[3] “Complete nucleotide sequence of Saccharomyces cerevisiae chromosome X.”  Galibert F.et.al.   8641269
[4] “Transport of the yeast ATP synthase beta-subunit into mitochondria. Effects of amino acid substitutions on targeting.”  Walker M.E.et.al.   2138017
[5] “Nuclear genes coding the yeast mitochondrial adenosine triphosphatase complex. Isolation of ATP2 coding the F1-ATPase beta subunit.”  Saltzgaber-Muller J.et.al.   6225776
[6] “Protein expression during exponential growth in 0.7 M NaCl medium of Saccharomyces cerevisiae.”  Norbeck J.et.al.   8935650
[7] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[8] “Profiling phosphoproteins of yeast mitochondria reveals a role of phosphorylation in assembly of the ATP synthase.”  Reinders J.et.al.   17761666
[9] “Molecular architecture of the rotary motor in ATP synthase.”  Stock D.et.al.   10576729
Structure:
2HLD   3FKS   2WPD   2XOK   3OE7   3OEE   3OEH   3OFN   3ZIA   3ZRY   [...more]

External Searches:

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MVLPRLYTAT SRAAFKAAKQ SAPLLSTSWK RCMASAAQST PITGKVTAVI GAIVDVHFEQ 
61:	SELPAILNAL EIKTPQGKLV LEVAQHLGEN TVRTIAMDGT EGLVRGEKVL DTGGPISVPV 
121:	GRETLGRIIN VIGEPIDERG PIKSKLRKPI HADPPSFAEQ STSAEILETG IKVVDLLAPY 
181:	ARGGKIGLFG GAGVGKTVFI QELINNIAKA HGGFSVFTGV GERTREGNDL YREMKETGVI 
241:	NLEGESKVAL VFGQMNEPPG ARARVALTGL TIAEYFRDEE GQDVLLFIDN IFRFTQAGSE 
301:	VSALLGRIPS AVGYQPTLAT DMGLLQERIT TTKKGSVTSV QAVYVPADDL TDPAPATTFA 
361:	HLDATTVLSR GISELGIYPA VDPLDSKSRL LDAAVVGQEH YDVASKVQET LQTYKSLQDI 
421:	IAILGMDELS EQDKLTVERA RKIQRFLSQP FAVAEVFTGI PGKLVRLKDT VASFKAVLEG 
481:	KYDNIPEHAF YMVGGIEDVV AKAEKLAAEA N