TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


3.A.2.1.3
H+-translocating F-type ATPase. Evidence of the proximity of ATP synthase subunit 6 is in proximity to the membrane in the supramolecular form (Velours et al., 2011).  The structure of the intact monomeric ATP synthase from the fungus, Pichia angusta, has been solved by electron cryo-microscopy (Vinothkumar et al. 2016). The Mg2+ and Ca2+-dependent enzymes are both active, but exhibit quite different behaviors (Nesci et al. 2017). Dimerization is necessary to create the inner membrane folds (cristae) characteristic of mitochondria.  Using cryo-electron microscopy, Guo et al. 2017 determined the structure of the dimeric FO complex from Saccharomyces cerevisiae at a resolution of 3.6 angstroms. The structure clarifies how the protons travel through the complex, how the complex dimerizes, and how the dimers bend the membrane to produce cristae. The crystal structure of the c-subunit ring with bound oligomycin revealed the inhibitor docked on the outer face of the proton-binding sites, deep in the transmembrane region (Zhou and Faraldo-Gómez 2018). A high resolution (3.7 Å) structure of the entire monomeric ATPase has been solved by cryo EM, suggesting how it is inhibited by oligomycin (Srivastava et al. 2018).  Absence of the e and g subunits decreases conductance of the F-ATP synthase channel about tenfold. Ablation of the first TMS of subunit b, which creates a distinct lateral domain with e and g, further affected channel activity. Thus, F-ATP synthase e, g and b subunits create a domain within the membrane that is critical for the generation of the high-conductance channel that is a prime candidate for formation of the permeability transition pore (PTP). Subunits e and g are only present in eukaryotes and may have evolved to confer this novel function to F-ATP synthases (Carraro et al. 2018). The translation rate of all yeast mitochondrial mRNAs, including all F-type ATPase subunits has been studied (Chicherin et al. 2021). Attenuated ADP-inhibition of F0F1 ATPase mitigates manifestations of mitochondrial dysfunction in yeast (Lapashina et al. 2022).

Accession Number:P07251
Protein Name:ATP1 aka ATPA aka YBL099W aka YBL0827
Length:545
Molecular Weight:58608.00
Species:Saccharomyces cerevisiae (Baker's yeast) [4932]
Location1 / Topology2 / Orientation3: Mitochondrion inner membrane1
Substrate hydron

Cross database links:

DIP: DIP-3025N
RefSeq: NP_009453.1   
Entrez Gene ID: 852177   
Pfam: PF00006    PF00306    PF02874   
KEGG: sce:YBL099W   

Gene Ontology

GO:0042645 C:mitochondrial nucleoid
GO:0005754 C:mitochondrial proton-transporting ATP synth...
GO:0005524 F:ATP binding
GO:0046933 F:hydrogen ion transporting ATP synthase acti...
GO:0046961 F:proton-transporting ATPase activity, rotati...
GO:0015986 P:ATP synthesis coupled proton transport

References (8)

[1] “Nuclear genes encoding the yeast mitochondrial ATPase complex. Analysis of ATP1 coding the F1-ATPase alpha-subunit and its assembly.”  Takeda M.et.al.   2876995
[2] “Sequence analysis of a 78.6 kb segment of the left end of Saccharomyces cerevisiae chromosome II.”  Obermaier B.et.al.   7502586
[3] “Complete DNA sequence of yeast chromosome II.”  Feldmann H.et.al.   7813418
[4] “Approaching a complete repository of sequence-verified protein-encoding clones for Saccharomyces cerevisiae.”  Hu Y.et.al.   17322287
[5] “Yeast mitochondrial dehydrogenases are associated in a supramolecular complex.”  Grandier-Vazeille X.et.al.   11502169
[6] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[7] “Profiling phosphoproteins of yeast mitochondria reveals a role of phosphorylation in assembly of the ATP synthase.”  Reinders J.et.al.   17761666
[8] “Molecular architecture of the rotary motor in ATP synthase.”  Stock D.et.al.   10576729
Structure:
2HLD   3FKS   2WPD   2XOK   3OE7   3OEE   3OEH   3OFN   3ZIA   3ZRY   [...more]

External Searches:

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MLARTAAIRS LSRTLINSTK AARPAAAALA STRRLASTKA QPTEVSSILE ERIKGVSDEA 
61:	NLNETGRVLA VGDGIARVFG LNNIQAEELV EFSSGVKGMA LNLEPGQVGI VLFGSDRLVK 
121:	EGELVKRTGN IVDVPVGPGL LGRVVDALGN PIDGKGPIDA AGRSRAQVKA PGILPRRSVH 
181:	EPVQTGLKAV DALVPIGRGQ RELIIGDRQT GKTAVALDTI LNQKRWNNGS DESKKLYCVY 
241:	VAVGQKRSTV AQLVQTLEQH DAMKYSIIVA ATASEAAPLQ YLAPFTAASI GEWFRDNGKH 
301:	ALIVYDDLSK QAVAYRQLSL LLRRPPGREA YPGDVFYLHS RLLERAAKLS EKEGSGSLTA 
361:	LPVIETQGGD VSAYIPTNVI SITDGQIFLE AELFYKGIRP AINVGLSVSR VGSAAQVKAL 
421:	KQVAGSLKLF LAQYREVAAF AQFGSDLDAS TKQTLVRGER LTQLLKQNQY SPLATEEQVP 
481:	LIYAGVNGHL DGIELSRIGE FESSFLSYLK SNHNELLTEI REKGELSKEL LASLKSATES 
541:	FVATF