TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


3.A.5.1.1
General secretory pathway (Sec-SRP) complex.  A biphasic pulling force may act on TMSs during translocon-mediated membrane integration (Ismail et al. 2012).  Intermediate structures for the insertion of integral membrane proteins have been visualized (Bischoff et al. 2014).  Insertion of the Type II single span (N-terminus, in, C-terminus, out) protein, RodZ, requires only SecYEG, SecA and the pmf, but not SecB, SecDF, YidC or FtsY (Rawat et al. 2015).  The combined effects of ribosome and peptide binding to SecYEG may allow for co-translational membrane insertion of successive transmembrane segments (Ge et al. 2014). SecA penetrates deeply into the SecYEG channel during insertion, contacting transmembrane helices and periplasmic loops (Banerjee et al. 2017). A partially inserted nascent chain unzips the Sec translocon's lateral gate (Kater et al. 2019). Cardiolipin (CL) is required in vivo for the stability of the bacterial translocon (SecYEG) as well as its efficient function in co-translational insertion into and translocation across the inner membrane of E. coli (Ryabichko et al. 2020). PpiD (623 aas and 1 N-terminal TMS), a peptidyl-prolyl cis-trans isomerase D, and YfgM (206 aas and 1 N-terminal TMS) facilitate the transport of toxins into the E. coli cell in a SecY-dependent process (Jones et al. 2021). Synchronized real-time measurement of Sec-mediated protein translocation has been described (Gupta et al. 2021). An extracellular cutinase from Amycolatopsis mediterranei (AmCut) is able to degrade the plastics, polycaprolactone and polybutylene succinate (Tan et al. 2022). It is secreted from E. coli using the Sec system for export across the inner membrane, and possibly, a non-classical secretion pathway for export across the outer membrane (Tan et al. 2022).

Accession Number:P10408
Protein Name:Preprotein translocase subunit SecA aka PRLD aka AZI aka PEA aka B0098
Length:901
Molecular Weight:102023.00
Species:Escherichia coli [83333]
Number of TMSs:1
Location1 / Topology2 / Orientation3: Cell inner membrane1 / Peripheral membrane protein2 / Cytoplasmic side3
Substrate protein polypeptide chain

Cross database links:

DIP: DIP-10840N
RefSeq: AP_000761.1    NP_414640.1   
Entrez Gene ID: 944821   
Pfam: PF02810    PF07517    PF01043    PF07516   
BioCyc: EcoCyc:SECA    ECOL168927:B0098-MONOMER   
KEGG: ecj:JW0096    eco:b0098   

Gene Ontology

GO:0005737 C:cytoplasm
GO:0005886 C:plasma membrane
GO:0005524 F:ATP binding
GO:0000287 F:magnesium ion binding
GO:0005515 F:protein binding
GO:0065002 P:intracellular protein transmembrane transport
GO:0017038 P:protein import
GO:0006605 P:protein targeting
GO:0043952 P:protein transport by the Sec complex

References (16)

[1] “Nucleotide sequence of the secA gene and secA(Ts) mutations preventing protein export in Escherichia coli.”  Schmidt M.et.al.   2841285
[2] “Systematic sequencing of the Escherichia coli genome: analysis of the 0-2.4 min region.”  Yura T.et.al.   1630901
[3] “The complete genome sequence of Escherichia coli K-12.”  Blattner F.R.et.al.   9278503
[4] “Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110.”  Hayashi K.et.al.   16738553
[5] “Sequence analysis, transcriptional organization, and insertional mutagenesis of the envA gene of Escherichia coli.”  Beall B.et.al.   2824434
[6] “SecA protein hydrolyzes ATP and is an essential component of the protein translocation ATPase of Escherichia coli.”  Lill R.et.al.   2542029
[7] “Zinc stabilizes the SecB binding site of SecA.”  Fekkes P.et.al.   10213615
[8] “Dissociation of the dimeric SecA ATPase during protein translocation across the bacterial membrane.”  Or E.et.al.   12198149
[9] “Binding, activation and dissociation of the dimeric SecA ATPase at the dimeric SecYEG translocase.”  Duong F.et.al.   12941690
[10] “Phospholipid-induced monomerization and signal-peptide-induced oligomerization of SecA.”  Benach J.et.al.   12403785
[11] “Nucleotide binding induces changes in the oligomeric state and conformation of Sec A in a lipid environment: a small-angle neutron-scattering study.”  Bu Z.et.al.   12946344
[12] “Preprotein-controlled catalysis in the helicase motor of SecA.”  Karamanou S.et.al.   17525736
[13] “NMR structure of the C-terminal domain of SecA in the free state.”  Matousek W.M.et.al.   15488768
[14] “Structure of dimeric SecA, the Escherichia coli preprotein translocase motor.”  Papanikolau Y.et.al.   17229438
[15] “Control of SecA and SecM translation by protein secretion.”  Nakatogawa H.et.al.   15063851
[16] “Bacterial protein secretion through the translocase nanomachine.”  Papanikou E.et.al.   17938627
Structure:
1TM6   2FSF   2FSG   2FSH   2FSI   2VDA   3BXZ   6GOX     

External Searches:

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MLIKLLTKVF GSRNDRTLRR MRKVVNIINA MEPEMEKLSD EELKGKTAEF RARLEKGEVL 
61:	ENLIPEAFAV VREASKRVFG MRHFDVQLLG GMVLNERCIA EMRTGEGKTL TATLPAYLNA 
121:	LTGKGVHVVT VNDYLAQRDA ENNRPLFEFL GLTVGINLPG MPAPAKREAY AADITYGTNN 
181:	EYGFDYLRDN MAFSPEERVQ RKLHYALVDE VDSILIDEAR TPLIISGPAE DSSEMYKRVN 
241:	KIIPHLIRQE KEDSETFQGE GHFSVDEKSR QVNLTERGLV LIEELLVKEG IMDEGESLYS 
301:	PANIMLMHHV TAALRAHALF TRDVDYIVKD GEVIIVDEHT GRTMQGRRWS DGLHQAVEAK 
361:	EGVQIQNENQ TLASITFQNY FRLYEKLAGM TGTADTEAFE FSSIYKLDTV VVPTNRPMIR 
421:	KDLPDLVYMT EAEKIQAIIE DIKERTAKGQ PVLVGTISIE KSELVSNELT KAGIKHNVLN 
481:	AKFHANEAAI VAQAGYPAAV TIATNMAGRG TDIVLGGSWQ AEVAALENPT AEQIEKIKAD 
541:	WQVRHDAVLE AGGLHIIGTE RHESRRIDNQ LRGRSGRQGD AGSSRFYLSM EDALMRIFAS 
601:	DRVSGMMRKL GMKPGEAIEH PWVTKAIANA QRKVESRNFD IRKQLLEYDD VANDQRRAIY 
661:	SQRNELLDVS DVSETINSIR EDVFKATIDA YIPPQSLEEM WDIPGLQERL KNDFDLDLPI 
721:	AEWLDKEPEL HEETLRERIL AQSIEVYQRK EEVVGAEMMR HFEKGVMLQT LDSLWKEHLA 
781:	AMDYLRQGIH LRGYAQKDPK QEYKRESFSM FAAMLESLKY EVISTLSKVQ VRMPEEVEEL 
841:	EQQRRMEAER LAQMQQLSHQ DDDSAAAAAL AAQTGERKVG RNDPCPCGSG KKYKQCHGRL 
901:	Q