| |
---|---|
Accession Number: | Q14524 |
Protein Name: | Nav1.5 aka Scn5A |
Length: | 2016 |
Molecular Weight: | 226940.00 |
Species: | Homo sapiens (Human) [9606] |
Number of TMSs: | 18 |
Location1 / Topology2 / Orientation3: | Membrane1 / Multi-pass membrane protein2 |
Substrate |
Cross database links:
RefSeq: | NP_000326.2 NP_001092874.1 NP_001092875.1 NP_001153632.1 NP_001153633.1 NP_932173.1 |
---|---|
Entrez Gene ID: | 6331 |
Pfam: | PF00520 PF06512 |
OMIM: |
108770 phenotype 113900 phenotype 272120 phenotype 600163 gene 601144 phenotype 601154 phenotype 603829 phenotype 603830 phenotype 608567 phenotype |
KEGG: | hsa:6331 |
Gene Ontology
GO:0001518
C:voltage-gated sodium channel complex
GO:0005515
F:protein binding
GO:0005248
F:voltage-gated sodium channel activity
GO:0008015
P:blood circulation
GO:0006936
P:muscle contraction
GO:0008016
P:regulation of heart contraction
GO:0006814
P:sodium ion transport
GO:0055085
P:transmembrane transport
| |
References (79)[1] “Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel.” Gellens M.E.et.al. 1309946 [2] “SCN5A is expressed in human jejunal circular smooth muscle cells.” Ou Y.et.al. 12358675 [3] “A ubiquitous splice variant and a common polymorphism affect heterologous expression of recombinant human SCN5A heart sodium channels.” Makielski J.C.et.al. 14500339 [4] “A common human SCN5A polymorphism modifies expression of an arrhythmia causing mutation.” Ye B.et.al. 12454206 [5] “Tetrodotoxin-resistant Na+ channels in human neuroblastoma cells are encoded by new variants of Nav1.5/SCN5A.” Ou S.-W.et.al. 16115203 [6] “The DNA sequence, annotation and analysis of human chromosome 3.” Muzny D.M.et.al. 16641997 [7] “The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).” The MGC Project Teamet.al. 15489334 [8] “Cardiac voltage-gated sodium channel Nav1.5 is regulated by Nedd4-2 mediated ubiquitination.” van Bemmelen M.X.et.al. 15217910 [9] “Molecular determinants of voltage-gated sodium channel regulation by the Nedd4/Nedd4-like proteins.” Rougier J.-S.et.al. 15548568 [10] “Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine.” Dichgans M.et.al. 16054936 [11] “GPD1L links redox state to cardiac excitability by PKC-dependent phosphorylation of the sodium channel SCN5A.” Valdivia C.R.et.al. 19666841 [12] “Analysis of four novel variants of Nav1.5/SCN5A cloned from the brain.” Wang J.et.al. 19376164 [13] “SCN5A channelopathies - An update on mutations and mechanisms.” Zimmer T.et.al. 19027780 [14] “SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome.” Wang Q.et.al. 7889574 [15] “Cardiac sodium channel mutations in patients with long QT syndrome, an inherited cardiac arrhythmia.” Wang Q.et.al. 8541846 [16] “Molecular mechanism for an inherited cardiac arrhythmia.” Bennett P.B.et.al. 7651517 [17] “Novel LQT-3 mutation affects Na+ channel activity through interactions between alpha- and beta1-subunits.” An R.H.et.al. 9686753 [18] “A de novo missense mutation of human cardiac Na(+) channel exhibiting novel molecular mechanisms of long QT syndrome.” Makita N.et.al. 9506831 [19] “Identification of a new SCN5A mutation, D1840G, associated with the long QT syndrome.” Benhorin J.et.al. 10627139 [20] “Genetic basis and molecular mechanism for idiopathic ventricular fibrillation.” Chen Q.et.al. 9521325 [21] “Sodium channel abnormalities are infrequent in patients with long QT syndrome: identification of two novel SCN5A mutations.” Wattanasirichaigoon D.et.al. 10508990 [22] “Human SCN5A gene mutations alter cardiac sodium channel kinetics and are associated with the Brugada syndrome.” Rook M.B.et.al. 10690282 [23] “Congenital long-QT syndrome caused by a novel mutation in a conserved acidic domain of the cardiac Na+ channel.” Wei J.et.al. 10377081 [24] “Ionic mechanisms responsible for the electrocardiographic phenotype of the Brugada syndrome are temperature dependent.” Dumaine R.et.al. 10532948 [25] “A single Na(+) channel mutation causing both long-QT and Brugada syndromes.” Bezzina C.R.et.al. 10590249 [26] “Cardiac conduction defects associate with mutations in SCN5A.” Schott J.-J.et.al. 10471492 [27] “Cardiac Na(+) channel dysfunction in Brugada syndrome is aggravated by beta(1)-subunit.” Makita N.et.al. 10618304 [28] “Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2.” Splawski I.et.al. 10973849 [29] “A novel SCN5A mutation associated with idiopathic ventricular fibrillation without typical ECG findings of Brugada syndrome.” Akai J.et.al. 10940383 [30] “A molecular link between the sudden infant death syndrome and the long-QT syndrome.” Schwartz P.J.et.al. 10911008 [31] “Novel arrhythmogenic mechanism revealed by a long-QT syndrome mutation in the cardiac Na(+) channel.” Abriel H.et.al. 11304498 [32] “Inherited Brugada and long QT-3 syndrome mutations of a single residue of the cardiac sodium channel confer distinct channel and clinical phenotypes.” Rivolta I.et.al. 11410597 [33] “Novel SCN5A mutation leading either to isolated cardiac conduction defect or Brugada syndrome in a large French family.” Kyndt F.et.al. 11748104 [34] “Postmortem molecular analysis of SCN5A defects in sudden infant death syndrome.” Ackerman M.J.et.al. 11710892 [35] “A sodium-channel mutation causes isolated cardiac conduction disease.” Tan H.L.et.al. 11234013 [36] “Genotype-phenotype relationship in Brugada syndrome: electrocardiographic features differentiate SCN5A-related patients from non-SCN5A-related patients.” Smits J.P.P.et.al. 12106943 [37] “Clinical, genetic and biophysical characterisation of SCN5A mutations associated with atrioventricular conduction block.” Wang D.W.et.al. 11804990 [38] “Na(+) channel mutation that causes both Brugada and long-QT syndrome phenotypes: a simulation study of mechanism.” Clancy C.E.et.al. 11889015 [39] “Natural history of Brugada syndrome: insights for risk stratification and management.” Priori S.G.et.al. 11901046 [40] “Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes.” Yang P.et.al. 11997281 [41] “Genetic and biophysical basis of sudden unexplained nocturnal death syndrome (SUNDS), a disease allelic to Brugada syndrome.” Vatta M.et.al. 11823453 [42] “SNP S1103Y in the cardiac sodium channel gene SCN5A is associated with cardiac arrhythmias and sudden death in a white family.” Chen S.et.al. 12471205 [43] “Novel mutations in domain I of SCN5A cause Brugada syndrome.” Vatta M.et.al. 12051963 [44] “A novel SCN5A mutation associated with long QT-3: altered inactivation kinetics and channel dysfunction.” Rivolta I.et.al. 12209021 [45] “Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia.” Splawski I.et.al. 12193783 [46] “A cardiac sodium channel mutation cosegregates with a rare connexin40 genotype in familial atrial standstill.” Groenewegen W.A.et.al. 12522116 [47] “Compound heterozygosity for mutations (W156X and R225W) in SCN5A associated with severe cardiac conduction disturbances and degenerative changes in the conduction system.” Bezzina C.R.et.al. 12574143 [48] “A novel mutation L619F in the cardiac Na+ channel SCN5A associated with long-QT syndrome (LQT3): a role for the I-II linker in inactivation gating.” Wehrens X.H.et.al. 12673799 [49] “A common SCN5A polymorphism modulates the biophysical effects of an SCN5A mutation.” Viswanathan P.C.et.al. 12569159 [50] “Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A).” Benson D.W.et.al. 14523039 [51] “A trafficking defective, Brugada syndrome-causing SCN5A mutation rescued by drugs.” Valdivia C.R.et.al. 15023552 [52] “SCN5A mutation associated with dilated cardiomyopathy, conduction disorder, and arrhythmia.” McNair W.P.et.al. 15466643 [53] “Genetic analysis of the cardiac sodium channel gene SCN5A in Koreans with Brugada syndrome.” Shin D.-J.et.al. 15338453 [54] “Nav1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of Nav1.5 on the surface of cardiomyocytes.” Mohler P.J.et.al. 15579534 [55] “Novel Brugada syndrome-causing mutation in ion-conducting pore of cardiac Na+ channel does not affect ion selectivity properties.” Amin A.S.et.al. 16266370 [56] “Double SCN5A mutation underlying asymptomatic Brugada syndrome.” Yokoi H.et.al. 15851320 [57] “High risk for bradyarrhythmic complications in patients with Brugada syndrome caused by SCN5A gene mutations.” Makiyama T.et.al. 16325048 [58] “A novel SCN5A mutation, F1344S, identified in a patient with Brugada syndrome and fever-induced ventricular fibrillation.” Keller D.I.et.al. 16616735 [59] “Spectrum of pathogenic mutations and associated polymorphisms in a cohort of 44 unrelated patients with long QT syndrome.” Millat G.et.al. 16922724 [60] “Novel SCN5A gene mutations associated with Brugada syndrome: V95I, A1649V and delF1617.” Liang P.et.al. 17081365 [61] “A novel LQT-3 mutation disrupts an inactivation gate complex with distinct rate-dependent phenotypic consequences.” Bankston J.R.et.al. 18708744 [62] “A sodium channel pore mutation causing Brugada syndrome.” Pfahnl A.E.et.al. 17198989 [63] “A novel and lethal de novo LQT-3 mutation in a newborn with distinct molecular pharmacology and therapeutic response.” Bankston J.R.et.al. 18060054 [64] “Gene (SCN5A) mutation analysis of a Chinese family with Brugada syndrome.” Tian L.et.al. 18341814 [65] “Correlations between clinical and physiological consequences of the novel mutation R878C in a highly conserved pore residue in the cardiac Na+ channel.” Zhang Y.et.al. 18616619 [66] “Subepicardial phase 0 block and discontinuous transmural conduction underlie right precordial ST-segment elevation by a SCN5A loss-of-function mutation.” Bebarova M.et.al. 18456723 [67] “Analyses of a novel SCN5A mutation (C1850S): conduction vs. repolarization disorder hypotheses in the Brugada syndrome.” Petitprez S.et.al. 18252757 [68] “Lidocaine-induced Brugada syndrome phenotype linked to a novel double mutation in the cardiac sodium channel.” Barajas-Martinez H.M.et.al. 18599870 [69] “Cardiac sodium channel (SCN5A) variants associated with atrial fibrillation.” Darbar D.et.al. 18378609 [70] “A mutation in the sodium channel is responsible for the association of long QT syndrome and familial atrial fibrillation.” Benito B.et.al. 18929331 [71] “In utero onset of long QT syndrome with atrioventricular block and spontaneous or lidocaine-induced ventricular tachycardia: compound effects of hERG pore region mutation and SCN5A N-terminus variant.” Lin M.-T.et.al. 18848812 [72] “A novel SCN5A gain-of-function mutation M1875T associated with familial atrial fibrillation.” Makiyama T.et.al. 18929244 [73] “The E1784K mutation in SCN5A is associated with mixed clinical phenotype of type 3 long QT syndrome.” Makita N.et.al. 18451998 [74] “SCN5A variants in Japanese patients with left ventricular noncompaction and arrhythmia.” Shan L.et.al. 18368697 [75] “Cardiac ion channel gene mutations in sudden infant death syndrome.” Otagiri T.et.al. 18596570 | |
Structure: | |
External Searches:
|
Analyze:
Predict TMSs (Predict number of transmembrane segments) | ||||
FASTA formatted sequence |
|
1: MANFLLPRGT SSFRRFTRES LAAIEKRMAE KQARGSTTLQ ESREGLPEEE APRPQLDLQA 61: SKKLPDLYGN PPQELIGEPL EDLDPFYSTQ KTFIVLNKGK TIFRFSATNA LYVLSPFHPI 121: RRAAVKILVH SLFNMLIMCT ILTNCVFMAQ HDPPPWTKYV EYTFTAIYTF ESLVKILARG 181: FCLHAFTFLR DPWNWLDFSV IIMAYTTEFV DLGNVSALRT FRVLRALKTI SVISGLKTIV 241: GALIQSVKKL ADVMVLTVFC LSVFALIGLQ LFMGNLRHKC VRNFTALNGT NGSVEADGLV 301: WESLDLYLSD PENYLLKNGT SDVLLCGNSS DAGTCPEGYR CLKAGENPDH GYTSFDSFAW 361: AFLALFRLMT QDCWERLYQQ TLRSAGKIYM IFFMLVIFLG SFYLVNLILA VVAMAYEEQN 421: QATIAETEEK EKRFQEAMEM LKKEHEALTI RGVDTVSRSS LEMSPLAPVN SHERRSKRRK 481: RMSSGTEECG EDRLPKSDSE DGPRAMNHLS LTRGLSRTSM KPRSSRGSIF TFRRRDLGSE 541: ADFADDENST AGESESHHTS LLVPWPLRRT SAQGQPSPGT SAPGHALHGK KNSTVDCNGV 601: VSLLGAGDPE ATSPGSHLLR PVMLEHPPDT TTPSEEPGGP QMLTSQAPCV DGFEEPGARQ 661: RALSAVSVLT SALEELEESR HKCPPCWNRL AQRYLIWECC PLWMSIKQGV KLVVMDPFTD 721: LTITMCIVLN TLFMALEHYN MTSEFEEMLQ VGNLVFTGIF TAEMTFKIIA LDPYYYFQQG 781: WNIFDSIIVI LSLMELGLSR MSNLSVLRSF RLLRVFKLAK SWPTLNTLIK IIGNSVGALG 841: NLTLVLAIIV FIFAVVGMQL FGKNYSELRD SDSGLLPRWH MMDFFHAFLI IFRILCGEWI 901: ETMWDCMEVS GQSLCLLVFL LVMVIGNLVV LNLFLALLLS SFSADNLTAP DEDREMNNLQ 961: LALARIQRGL RFVKRTTWDF CCGLLRQRPQ KPAALAAQGQ LPSCIATPYS PPPPETEKVP 1021: PTRKETRFEE GEQPGQGTPG DPEPVCVPIA VAESDTDDQE EDEENSLGTE EESSKQQESQ 1081: PVSGGPEAPP DSRTWSQVSA TASSEAEASA SQADWRQQWK AEPQAPGCGE TPEDSCSEGS 1141: TADMTNTAEL LEQIPDLGQD VKDPEDCFTE GCVRRCPCCA VDTTQAPGKV WWRLRKTCYH 1201: IVEHSWFETF IIFMILLSSG ALAFEDIYLE ERKTIKVLLE YADKMFTYVF VLEMLLKWVA 1261: YGFKKYFTNA WCWLDFLIVD VSLVSLVANT LGFAEMGPIK SLRTLRALRP LRALSRFEGM 1321: RVVVNALVGA IPSIMNVLLV CLIFWLIFSI MGVNLFAGKF GRCINQTEGD LPLNYTIVNN 1381: KSQCESLNLT GELYWTKVKV NFDNVGAGYL ALLQVATFKG WMDIMYAAVD SRGYEEQPQW 1441: EYNLYMYIYF VIFIIFGSFF TLNLFIGVII DNFNQQKKKL GGQDIFMTEE QKKYYNAMKK 1501: LGSKKPQKPI PRPLNKYQGF IFDIVTKQAF DVTIMFLICL NMVTMMVETD DQSPEKINIL 1561: AKINLLFVAI FTGECIVKLA ALRHYYFTNS WNIFDFVVVI LSIVGTVLSD IIQKYFFSPT 1621: LFRVIRLARI GRILRLIRGA KGIRTLLFAL MMSLPALFNI GLLLFLVMFI YSIFGMANFA 1681: YVKWEAGIDD MFNFQTFANS MLCLFQITTS AGWDGLLSPI LNTGPPYCDP TLPNSNGSRG 1741: DCGSPAVGIL FFTTYIIISF LIVVNMYIAI ILENFSVATE ESTEPLSEDD FDMFYEIWEK 1801: FDPEATQFIE YSVLSDFADA LSEPLRIAKP NQISLINMDL PMVSGDRIHC MDILFAFTKR 1861: VLGESGEMDA LKIQMEEKFM AANPSKISYE PITTTLRRKH EEVSAMVIQR AFRRHLLQRS 1921: LKHASFLFRQ QAGSGLSEED APEREGLIAY VMSENFSRPL GPPSSSSISS TSFPPSYDSV 1981: TRATSDNLQV RGSDYSHSED LADFPPSPDR DRESIV