TCDB is operated by the Saier Lab Bioinformatics Group

1.A.14 The Calcium Transporter A (CaTA) Family (formerly the Testis-Enhanced Gene Transfer (TEGT) Family)

The CaTA family (also called the TMBIM superfamily (Gamboa-Tuz et al. 2018) and the BI-1/YccA family; formerly the TEGT family (SwissProt family UPF0005; Prosite entry PDOC00957)) includes members represented in all three domains of life. One of these proteins, TEGT or the Bax Inhibitor-1 (TC# 1.A.14.1.1), has a C-terminal domain that forms a Ca2+-permeable channel (Bultynck et al., 2011).  These proteins are about 200-250 residues in length and exhibit 7 TMSs. They include the testis-enhanced gene transfer proteins of mammals which are expressed at high levels in the testis, the putative glutamate/aspartate binding proteins of plants and animals, the YccA protein of E. coli and the YetJ protein of Bacillus subtilis. They are distantly related to the ionotropic glutamate-binding protein of the N-methyl D-aspartate (NMDA) receptor of man.  Homologues include a putative cold shock inducible protein and a SecY stabilizing protein (van Stelten et al., 2009). Bacterial CaTA (BI-1) domains are found in 'fusion' proteins of  histidine sensor kinases, diguanylate cyclases and proteins with ABC2-like P-loop ATPase domains. Transmembrane BAX Inhibitor-1 Motif-containing (TMBIM) proteins that mediate Ca2+ homeostasis and cell death have been reviewed (Liu 2017).

The Transmembrane BAX Inhibitor motif containing (TMBIM) superfamily, divided into BAX Inhibitor (BI) and Lifeguard (LFG) families, comprises a group of cytoprotective cell death regulators conserved in prokaryotes and eukaryotes. Gamboa-Tuz et al. 2018 identified 685 TMBIM proteins in 171 organisms from Archaea, Bacteria, and Eukarya, and provided a phylogenetic overview of the whole TMBIM superfamily. A bacterial member of the CaTA family has been partially characterized. This is the YbhL protein of E. coli. It is 234 aas long, exhibits 7 putative TMSs and may stimulate glucose (and fructose?) uptake or metabolism in E. coli. It plays a role in preventing E. coli cell death in the stationary phase of growth (M. Inouye, personal communication).

Homologues are found in a variety of Gram-negative and Gram-positive bacteria, yeast, fungi, plants, animals and viruses. The E. coli genome encodes three paralogues, YbhL, YbhM and YccA. Distant homologues found in Drosophilia melanogaster and the rat are the N-methyl-D-aspartate receptor-associated protein (NMDARAI) (203 aas; pirS53708) and the N-methyl-D-aspartate receptor glutamate binding chain (516 aas; pirS19586), respectively. Two others are the rat neural membrane protein 35 (NMP35) (gbAF044201) and the Arabidopsis thaliana Bax inhibitor-1 (BI-1) protein capable of suppressing Bax-induced cell death in yeast (S. cerevisiae) (247 aas; gbAB025927). Most of the more closely related homologues of the E. coli SAD protein are of 200-250 aas.

Bax Inhibitor-1 (BI-1) is an ER-localized protein that protects against apoptosis and ER stress. BI-1 has been proposed to modulate ER Ca2+ homeostasis by acting as a Ca2+-leak channel. Based on experimental determination of the BI-1 topology, Bultynck et al. (2011) proposed that its C-terminal α-helical 20 aa peptide catalyzes Ca2+ flux both in vivo and in vitro. The Ca2+-leak properties were conserved among animal, but not plant and yeast orthologs. By mutating one of the critical aspartate residues in the proposed Ca2+-channel pore in full-length BI-1, D213 proved to be essential for BI-1 dependent ER Ca2+-leak. 

Calcium homeostasis balances passive calcium leak and active calcium uptake. Human Bax inhibitor-1, BI-1, an antiapoptotic protein, is representative of a highly conserved and widely distributed family, the transmembrane Bax inhibitor motif (TMBIM) proteins. Chang et al. 2014 published crystal structures of a bacterial homolog, YetJ (TC# 1.A.14.2.3) at 1.9 Å resolution and characterized its calcium leak activity. Its seven-transmembrane-helix fold features two triple-helix sandwiches wrapped around a central C-terminal helix. Structures obtained in closed and open conformations are reversibly interconvertible by changes in the pH. A hydrogen-bonded perturbed pair of conserved aspartyl residues explains the pH dependence of this transition, and the pH regulates calcium influx in proteoliposomes. Homology models for human BI-1 provided insight into its cytoprotective activity (Chang et al. 2014). 

GAAPs regulate Ca2+ levels and fluxes from the Golgi and endoplasmic reticulum, confer resistance to a broad range of apoptotic stimuli, promote cell adhesion and migration via the activation of store- operated Ca2+ entry, are essential for the viability of human cells, and affect orthopoxvirus virulence. GAAPs are oligomeric, multi-transmembrane proteins that form cation-selective ion channels that may explain the multiple functions of these proteins. Residues contributing to the ion-conducting pore have been defined and provide the first clues about the mechanistic link between these very different functions of GAAP. Although GAAPs are naturally oligomeric, they can also function as monomers (Carrara et al. 2017). Serving as a quasi-instantaneous, global readout of density and mechanical pressure, the membrane potential is integrated with signal transduction networks by affecting the conformations and clustering of proteins in the membrane, as well as the transmembrane flux of key signaling ions (Mukherjee et al. 2023).

The anti-apoptotic transmembrane Bax inhibitor motif (TMBIM) containing protein family regulates Ca2+ homeostasis, cell death, and the progression of diseases including cancers. Crystal structures of the TMBIM homolog YetJ of Bacillus subtilis revealed a conserved Asp171-Asp195 dyad that regulates pH-dependent Ca2+ translocation.  Guo et al. 2019 showed that BsYetJ mediates Ca2+ fluxes in permeabilized mammalian cells, and its interaction with Ca2+ is sensitive to protons and other cations. They reported crystal structures of BsYetJ in several states, revealing the flexibility of the aspartyl dyad in a closed state and a pore-opening mechanism. Functional studies showed that the dyad is responsible for both Ca2+ affinity and pH dependence. Computational simulations suggested that protonation of Asp171 weakens its interaction with Arg60, leading to an open state. 

 


The generalized reaction catalyzed by TEGT channels is:

Cations (out) ⇌ cations (in)

References associated with 1.A.14 family:

Bultynck G., Kiviluoto S., Henke N., Ivanova H., Schneider L., Rybalchenko V., Luyten T., Nuyts K., De Borggraeve W., Bezprozvanny I., Parys JB., De Smedt H., Missiaen L. and Methner A. (2012). The C terminus of Bax inhibitor-1 forms a Ca2+-permeable channel pore. J Biol Chem. 287(4):2544-57. 22128171
Büttner, S., D. Ruli, F.N. Vögtle, L. Galluzzi, B. Moitzi, T. Eisenberg, O. Kepp, L. Habernig, D. Carmona-Gutierrez, P. Rockenfeller, P. Laun, M. Breitenbach, C. Khoury, K.U. Fröhlich, G. Rechberger, C. Meisinger, G. Kroemer, and F. Madeo. (2011). A yeast BH3-only protein mediates the mitochondrial pathway of apoptosis. EMBO. J. 30: 2779-2792. 21673659
Carrara G., Saraiva N., Parsons M., Byrne B., Prole DL., Taylor CW. and Smith GL. (2015). Golgi anti-apoptotic proteins are highly conserved ion channels that affect apoptosis and cell migration. J Biol Chem. 290(18):11785-801. 25713081
Carrara, G., M. Parsons, N. Saraiva, and G.L. Smith. (2017). Golgi anti-apoptotic protein: a tale of camels, calcium, channels and cancer. Open Biol 7:. 28469007
Chang, Y., R. Bruni, B. Kloss, Z. Assur, E. Kloppmann, B. Rost, W.A. Hendrickson, and Q. Liu. (2014). Structural basis for a pH-sensitive calcium leak across membranes. Science 344: 1131-1135. 24904158
Chen, K., X. Li, G. Song, T. Zhou, Y. Long, Q. Li, S. Zhong, and Z. Cui. (2019). Deficiency in the membrane protein Tmbim3a/Grinaa initiates cold-induced ER stress and cell death by activating an intrinsic apoptotic pathway in zebrafish. J. Biol. Chem. 294: 11445-11457. 31171717
Deng, K.Q., G.N. Zhao, Z. Wang, J. Fang, Z. Jiang, J. Gong, F.J. Yan, X.Y. Zhu, P. Zhang, Z.G. She, and H. Li. (2018). Targeting Transmembrane BAX Inhibitor Motif Containing 1 Alleviates Pathological Cardiac Hypertrophy. Circulation 137: 1486-1504. 29229612
Fernández, M., M.F. Segura, C. Solé, A. Colino, J.X. Comella, and V. Ceña. (2007). Lifeguard/neuronal membrane protein 35 regulates Fas ligand-mediated apoptosis in neurons via microdomain recruitment. J Neurochem 103: 190-203. 17635665
Gamboa-Tuz, S.D., A. Pereira-Santana, T. Zhao, M.E. Schranz, E. Castano, and L.C. Rodriguez-Zapata. (2018). New insights into the phylogeny of the TMBIM superfamily across the tree of life: Comparative genomics and synteny networks reveal independent evolution of the BI and LFG families in plants. Mol Phylogenet Evol 126: 266-278. 29702215
Guo, G., M. Xu, Y. Chang, T. Luyten, B. Seitaj, W. Liu, P. Zhu, G. Bultynck, L. Shi, M. Quick, and Q. Liu. (2019). Ion and pH Sensitivity of a TMBIM Ca Channel. Structure. [Epub: Ahead of Print] 30930064
Hearn, J.I., M. Alhilali, M. Kim, M.L. Kalev-Zylinska, and R.C. Poulsen. (2023). N-methyl-D-aspartate receptor regulates the circadian clock in megakaryocytic cells and impacts cell proliferation through BMAL1. Platelets 34: 2206918. 37183795
Hong, C.J., J. Yeon, B.K. Yeo, H. Woo, H.K. An, W. Heo, K. Kim, and S.W. Yu. (2020). Fas-apoptotic inhibitory molecule 2 localizes to the lysosome and facilitates autophagosome-lysosome fusion through the LC3 interaction region motif-dependent interaction with LC3. FASEB J. 34: 161-179. 31914609
Jin, L., M. Miyazaki, S. Mizuno, M. Takigawa, T. Hirose, K. Nishimura, T. Toida, K. Williams, K. Kashiwagi, and K. Igarashi. (2008). The pore region of N-methyl-D-aspartate receptors differentially influences stimulation and block by spermine. J Pharmacol Exp Ther 327: 68-77. 18632991
Kim, H.K., G.H. Lee, K.R. Bhattarai, M.S. Lee, S.H. Back, H.R. Kim, and H.J. Chae. (2020). TMBIM6 (transmembrane BAX inhibitor motif containing 6) enhances autophagy through regulation of lysosomal calcium. Autophagy 1-18. [Epub: Ahead of Print] 32167007
Kota K., Kuzhikandathil EV., Afrasiabi M., Lacy B., Kontoyianni M., Crider AM. and Song D. (2015). Identification of key residues involved in the activation and signaling properties of dopamine D3 receptor. Pharmacol Res. 99:174-184. 26116441
Lan, Y.J., C.C. Cheng, S.C. Chu, and Y.W. Chiang. (2023). A gating mechanism of the BsYetJ calcium channel revealed in an endoplasmic reticulum lipid environment. Biochim. Biophys. Acta. Biomembr 1865: 184153. [Epub: Ahead of Print] 36948481
Li, C.C., T.Y. Kao, C.C. Cheng, and Y.W. Chiang. (2020). Structure and regulation of the BsYetJ calcium channel in lipid nanodiscs. Proc. Natl. Acad. Sci. USA 117: 30126-30134. 33208533
Liu, Q. (2017). TMBIM-mediated Ca2+ homeostasis and cell death. Biochim. Biophys. Acta. [Epub: Ahead of Print] 28064000
Luganini, A., G. Di Nardo, L. Munaron, G. Gilardi, A. Fiorio Pla, and G. Gribaudo. (2018). Human cytomegalovirus US21 protein is a viroporin that modulates calcium homeostasis and protects cells against apoptosis. Proc. Natl. Acad. Sci. USA 115: E12370-E12377. 30530673
Luganini, A., V. Serra, G. Scarpellino, S.M. Bhat, L. Munaron, A. Fiorio Pla, and G. Gribaudo. (2023). The US21 viroporin of human cytomegalovirus stimulates cell migration and adhesion. mBio 14: e0074923. 37477430
M''Angale, P.G. and B.E. Staveley. (2016). Knockdown of the putative Lifeguard homologue CG3814 in neurons of Drosophila melanogaster. Genet Mol Res 15:. 28002605
Mallmann, R.T., L. Moravcikova, K. Ondacova, L. Lacinova, and N. Klugbauer. (2019). Grina/TMBIM3 modulates voltage-gated Ca2.2 Ca channels in a G-protein-like manner. Cell Calcium 80: 71-78. [Epub: Ahead of Print] 30991297
Mukherjee, A., Y. Huang, J. Elgeti, S. Oh, A.R. Neliat, J. Schüttler, N.C. Benites, X. Liu, M. Barboiu, H. Stocker, M.W. Kirschner, and M. Basan. (2023). Membrane potential mediates an ancient mechano-transduction mechanism for multi-cellular homeostasis. bioRxiv. 37961564
Philippaert, K., M. Roden, D. Lisak, D. Bueno, T. Jelenik, K. Radyushkin, T. Schacht, M. Mesuere, V. Wüllner, A.K. Herrmann, J. Baumgart, R. Vennekens, and A. Methner. (2020). Bax inhibitor-1 deficiency leads to obesity by increasing Ca-dependent insulin secretion. J Mol Med (Berl). [Epub: Ahead of Print] 32394396
Pihán, P., F. Lisbona, J. Borgonovo, S. Edwards-Jorquera, P. Nunes-Hasler, K. Castillo, O. Kepp, H. Urra, S. Saarnio, H. Vihinen, A. Carreras-Sureda, S. Forveille, A. Sauvat, D. De Giorgis, A. Pupo, D.A. Rodríguez, G. Quarato, A. Sagredo, F. Lourido, A. Letai, R. Latorre, G. Kroemer, N. Demaurex, E. Jokitalo, M.L. Concha, &.#.1.9.3.;. Glavic, D.R. Green, and C. Hetz. (2021). Control of lysosomal-mediated cell death by the pH-dependent calcium channel RECS1. Sci Adv 7: eabe5469. 34767445
Rice, S.J., M. Tselepi, A.K. Sorial, G. Aubourg, C. Shepherd, D. Almarza, A.J. Skelton, I. Pangou, D. Deehan, L.N. Reynard, and J. Loughlin. (2019). Prioritization of PLEC and GRINA as Osteoarthritis Risk Genes Through the Identification and Characterization of Novel Methylation Quantitative Trait Loci. Arthritis Rheumatol 71: 1285-1296. 30730609
Somia, N.V., M.J. Schmitt, D.E. Vetter, D. Van Antwerp, S.F. Heinemann, and I.M. Verma. (1999). LFG: an anti-apoptotic gene that provides protection from Fas-mediated cell death. Proc. Natl. Acad. Sci. USA 96: 12667-12672. 10535980
Swain, L.L., C. Mishra, S.S. Sahoo, G. Nayak, S.K. Pradhan, S.R. Mishra, and M. Dige. (2020). An in vivo and in silico analysis of novel variation in TMBIM6 gene affecting cardiopulmonary traits of Indian goats. J Therm Biol 88: 102491. 32125979
van Stelten, J., F. Silva, D. Belin, and T.J. Silhavy. (2009). Effects of antibiotics and a proto-oncogene homolog on destruction of protein translocator SecY. Science 325: 753-756. 19661432
Xu, D.H., Q. Li, H. Hu, B. Ni, X. Liu, C. Huang, Z.Z. Zhang, and G. Zhao. (2018). Transmembrane protein GRINA modulates aerobic glycolysis and promotes tumor progression in gastric cancer. J Exp Clin Cancer Res 37: 308. 30541591
Yamagami, A., C. Saito, M. Nakazawa, S. Fujioka, T. Uemura, M. Matsui, M. Sakuta, K. Shinozaki, H. Osada, A. Nakano, T. Asami, and T. Nakano. (2017). Evolutionarily conserved BIL4 suppresses the degradation of brassinosteroid receptor BRI1 and regulates cell elongation. Sci Rep 7: 5739. 28720789
Zhang, G., F. Zhong, L. Chen, P. Qin, J. Li, F. Zhi, L. Tian, D. Zhou, P. Lin, H. Chen, K. Tang, W. Liu, Y. Jin, and A. Wang. (2021). Integrated Proteomic and Transcriptomic Analyses Reveal the Roles of Homolog of BAX Inhibitor 1 in Cell Division and Membrane Homeostasis of S2. Front Microbiol 12: 632095. 33584633
Zhang, L., S. Buhr, A. Voigt, and A. Methner. (2021). The Evolutionary Conserved Transmembrane BAX Inhibitor Motif (TMBIM) Containing Protein Family Members 5 and 6 Are Essential for the Development and Survival of. Front Cell Dev Biol 9: 666484. 34540824
Zhao, G.N., P. Zhang, J. Gong, X.J. Zhang, P.X. Wang, M. Yin, Z. Jiang, L.J. Shen, Y.X. Ji, J. Tong, Y. Wang, Q.F. Wei, Y. Wang, X.Y. Zhu, X. Zhang, J. Fang, Q. Xie, Z.G. She, Z. Wang, Z. Huang, and H. Li. (2017). Tmbim1 is a multivesicular body regulator that protects against non-alcoholic fatty liver disease in mice and monkeys by targeting the lysosomal degradation of Tlr4. Nat. Med. 23: 742-752. 28481357
Zhou, H., Z. Dai, J. Li, J. Wang, H. Zhu, X. Chang, and Y. Wang. (2023). TMBIM6 prevents VDAC1 multimerization and improves mitochondrial quality control to reduce sepsis-related myocardial injury. Metabolism 140: 155383. [Epub: Ahead of Print] 36603706