TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


1.A.4.2.1
Vanilloid receptor subtype 1 (VR1 or TRPV1) (noxious, heat-sensitive [opens with increasing temperatures; e.g., >42°C]; also sensitive to acidic pH and voltage and inflamation; serves as the receptor for the alkaloid irritant, capsaicin, for resiniferatoxin and for endo-cannabinoids (Murillo-Rodriguez et al. 2017). Resiniferatoxin binds to the capsaicin receptor (TRPV1) near the extracellular side of the S4 transmembrane domain (Chou et al. 2004). It is regulated by bradykinin and prostaglandin E2) (contains a C-terminal region, adjacent to the channel gate, that determines the coupling of stimulus sensing and channel opening) (Garcia-Sanz et al., 2007; Matta and Ahern, 2007). It is activated and sensitized by local anesthetics in sensory neurons (Leffler et al., 2008). A bivalent tarantula toxin activates the capsaicin receptor (TRPV1) by targeting the outer pore domain (Bohlen et al., 2010). Single-channel properties of TRPV1 are modulated by phosphorylation (Studer and McNaughton, 2010). TRPV1 mediates an itch associated response (Kim et al., 2011). The thermosensitive TRP channel pore turret is part of the temperature activation apparatus (Yang et al., 2010). Modular thermal sensors in temperature-gated transient receptor potential (TRP) channels have been identified (Yao et al., 2011). TRPV1 opening is associated with major structural rearrangements in the outer pore, including the pore helix and selectivity filter, as well as pronounced dilation of a hydrophobic constriction at the lower gate, suggesting a dual gating mechanism (Cao et al. 2013). Allosteric coupling between upper and lower gates may account for modulation exhibited by TRPV1 and other TRP channels (Liao et al. 2013).  TRPV1 regulates longevity and metabolism by neuropeptides in mice (Riera et al. 2014). The pore of TRPV1 contains the structural elements sufficient for activation by noxious heat (Zhang et al. 2017). In bull sperm, TRPV1 functions in the regulation of motility and the  acrosome reaction (Kumar et al. 2019). The dynamics of water in the transmembrane pore of TRPV1 have been studied (Trofimov et al. 2019). TRPV1 - 6 channel subunits do not combine arbitrarily. With the exception of TRPV5 and TRPV6, TRPV channel subunits preferentially assemble into homomeric complexes (Hellwig et al. 2005). TrpV1-gated ion channels have been used as sensors for imaging applications (Zhu et al. 2021). Capsaicin and protons differently modulate the activation kinetics of the mouse TrpV1 channel induced by depolarization (Takahashi et al. 2021). The impact of TRPV1 on cancer pathogenesis and therapy has been reviewed (Li et al. 2021). TRPV1 may be an analgesic target for patients experiencing pain after oral irradiation (Lai et al. 2021). The vanilloid (capsaicin) receptor TRPV1 functions in blood pressure regulation and may be a therapeutic target in hypertension (Szallasi 2023). Chu et al. 2023 elucidated the redox state of C387-C391 mediated long-range allostery of TRPV1, which provided new insights into the activation mechanism of TRPV1.  TRPV1 channels are players in the reticulum-mitochondria Ca2+ coupling in a rat cardiomyoblast cell line (Tessier et al. 2023). TRPV1 is a target for recovery from chronic pain, producing analgesic effects after its inhibition. The study of TrpV1 channel antagonists revealed possible drug design purposes (Gianibbi et al. 2024).  Galangin improves ethanol-induced gastric mucosal injuryby targetting TrpV1 (Lin et al. 2024).

Accession Number:O35433
Protein Name:VR1
Length:838
Molecular Weight:94948.00
Species:Rattus norvegicus (Rat) [10116]
Number of TMSs:7
Location1 / Topology2 / Orientation3: Cell membrane1 / Multi-pass membrane protein2
Substrate calcium(2+), sodium(1+), proton

Cross database links:

DIP: DIP-46106N
RefSeq: NP_114188.1   
Entrez Gene ID: 83810   
Pfam: PF00023   
KEGG: rno:83810   

Gene Ontology

GO:0005829 C:cytosol
GO:0030425 C:dendrite
GO:0016021 C:integral to membrane
GO:0043025 C:neuronal cell body
GO:0005886 C:plasma membrane
GO:0045202 C:synapse
GO:0005524 F:ATP binding
GO:0005262 F:calcium channel activity
GO:0005516 F:calmodulin binding
GO:0017081 F:chloride channel regulator activity
GO:0006816 P:calcium ion transport
GO:0071363 P:cellular response to growth factor stimulus
GO:0071502 P:cellular response to temperature stimulus
GO:0007204 P:elevation of cytosolic calcium ion concentr...
GO:0014047 P:glutamate secretion
GO:0001774 P:microglial cell activation
GO:0090212 P:negative regulation of establishment of blo...
GO:0043065 P:positive regulation of apoptosis
GO:0060454 P:positive regulation of gastric acid secretion
GO:0045429 P:positive regulation of nitric oxide biosynt...
GO:0009408 P:response to heat
GO:0043434 P:response to peptide hormone stimulus
GO:0009268 P:response to pH

References (22)

[1] “The capsaicin receptor: a heat-activated ion channel in the pain pathway.”  Caterina M.J.et.al.   9349813
[2] “Molecular cloning of an N-terminal splice variant of the capsaicin receptor. Loss of N-terminal domain suggests functional divergence among capsaicin receptor subtypes.”  Schumacher M.A.et.al.   10644739
[3] “Propofol activates vanilloid receptor channels expressed in human embryonic kidney 293 cells.”  Tsutsumi S.et.al.   11578842
[4] “The genomic organization of the gene encoding the vanilloid receptor: evidence for multiple splice variants.”  Xue Q.et.al.   11549313
[5] “Identification of an aspartic residue in the P-loop of the vanilloid receptor that modulates pore properties.”  Garcia-Martinez C.et.al.   10931826
[6] “Induction of vanilloid receptor channel activity by protein kinase C.”  Premkumar L.S.et.al.   11140687
[7] “Biochemical characterization of the vanilloid receptor 1 expressed in a dorsal root ganglia derived cell line.”  Jahnel R.et.al.   11683872
[8] “Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition.”  Chuang H.H.et.al.   11418861
[9] “Direct phosphorylation of capsaicin receptor VR1 by protein kinase Cepsilon and identification of two target serine residues.”  Numazaki M.et.al.   11884385
[10] “Protein kinase C(alpha) is required for vanilloid receptor 1 activation. Evidence for multiple signaling pathways.”  Olah Z.et.al.   12095983
[11] “cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor (VR1) by direct phosphorylation.”  Bhave G.et.al.   12194871
[12] “Structural determinant of TRPV1 desensitization interacts with calmodulin.”  Numazaki M.et.al.   12808128
[13] “Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1).”  Bhave G.et.al.   14523239
[14] “A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity.”  Prescott E.D.et.al.   12764195
[15] “Modulation of TRPV1 by nonreceptor tyrosine kinase, c-Src kinase.”  Jin X.et.al.   15084474
[16] “Agonist recognition sites in the cytosolic tails of vanilloid receptor 1.”  Jung J.et.al.   12228246
[17] “Phosphorylation of vanilloid receptor 1 by Ca2+/calmodulin-dependent kinase II regulates its vanilloid binding.”  Jung J.et.al.   14630912
[18] “Molecular determinants of vanilloid sensitivity in TRPV1.”  Gavva N.R.et.al.   14996838
[19] “TRPV1 acts as proton channel to induce acidification in nociceptive neurons.”  Hellwig N.et.al.   15173182
[20] “Interaction between protein kinase Cmu and the vanilloid receptor type 1.”  Wang Y.et.al.   15471852
[21] “Identification of a tetramerization domain in the C-terminus of the vanilloid receptor.”  Garcia-Sanz N.et.al.   15190102
[22] “The ankyrin repeats of TRPV1 bind multiple ligands and modulate channel sensitivity.”  Lishko P.V.et.al.   17582331
Structure:
2NYJ   2PNN   3J5P   3J5Q   3J5R   3SUI   3J9J   5irx   5IRZ   5IS0   [...more]

External Searches:

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MEQRASLDSE ESESPPQENS CLDPPDRDPN CKPPPVKPHI FTTRSRTRLF GKGDSEEASP 
61:	LDCPYEEGGL ASCPIITVSS VLTIQRPGDG PASVRPSSQD SVSAGEKPPR LYDRRSIFDA 
121:	VAQSNCQELE SLLPFLQRSK KRLTDSEFKD PETGKTCLLK AMLNLHNGQN DTIALLLDVA 
181:	RKTDSLKQFV NASYTDSYYK GQTALHIAIE RRNMTLVTLL VENGADVQAA ANGDFFKKTK 
241:	GRPGFYFGEL PLSLAACTNQ LAIVKFLLQN SWQPADISAR DSVGNTVLHA LVEVADNTVD 
301:	NTKFVTSMYN EILILGAKLH PTLKLEEITN RKGLTPLALA ASSGKIGVLA YILQREIHEP 
361:	ECRHLSRKFT EWAYGPVHSS LYDLSCIDTC EKNSVLEVIA YSSSETPNRH DMLLVEPLNR 
421:	LLQDKWDRFV KRIFYFNFFV YCLYMIIFTA AAYYRPVEGL PPYKLKNTVG DYFRVTGEIL 
481:	SVSGGVYFFF RGIQYFLQRR PSLKSLFVDS YSEILFFVQS LFMLVSVVLY FSQRKEYVAS 
541:	MVFSLAMGWT NMLYYTRGFQ QMGIYAVMIE KMILRDLCRF MFVYLVFLFG FSTAVVTLIE 
601:	DGKNNSLPME STPHKCRGSA CKPGNSYNSL YSTCLELFKF TIGMGDLEFT ENYDFKAVFI 
661:	ILLLAYVILT YILLLNMLIA LMGETVNKIA QESKNIWKLQ RAITILDTEK SFLKCMRKAF 
721:	RSGKLLQVGF TPDGKDDYRW CFRVDEVNWT TWNTNVGIIN EDPGNCEGVK RTLSFSLRSG 
781:	RVSGRNWKNF ALVPLLRDAS TRDRHATQQE EVQLKHYTGS LKPEDAEVFK DSMVPGEK