TCID | Name | Domain | Kingdom/Phylum | Protein(s) |
---|---|---|---|---|
1.A.77.1.1 | Inner membrane 40KD mitochondrial Ca2+ channel-forming uniporter, MCU or MICU2 (DUF607; 350 aas; coiled coil domain protein 109 A) (De Stefani et al., 2011; Drago et al., 2011). It functions with MICU1, an essential component of the system, as well as the gatekeeper for Ca2+ uptake (Mallilankaraman et al. 2012a; Mallilankaraman et al. 2012b). It contributes to metabolism-insulin secretion coupling in clonal pancreatic beta-cells (Alam et al. 2012). MCU-mediated Ca2+ uptake in beta cells is essential to establish a nutrient-induced mitochondrial pH gradient which is critical for sustained ATP synthesis and metabolism-secretion coupling in insulin-releasing cells (Quan et al. 2015). The mitochondrial calcium uniporter of pulmonary type 2 cells determines the severity of acute lung injury (Islam et al. 2022). Regulation of mitochondrial calcium uptake by the mitochondrial calcium uniporter complex is crucial for heart function. It has been demonstrated that mitochondrial calcium uptake (MICU)1 and MICU2, regulatory subunits of the complex, help maintain calcium homeostasis in cardiac mitochondria, provide potential targets for therapies aimed at improving mitochondrial function in heart disease (Ozkurede et al. 2024). | Eukaryota |
Metazoa, Chordata | MCU of Mus musculus (Q3UMR5) |
1.A.77.1.2 | MCU homologue of 338 aas and 2 TMSs. | Eukaryota |
Viridiplantae, Streptophyta | MCU homologue of Arabidopsis thaliana (Q1PE15) |
1.A.77.1.3 | Algal MCU homologue (300 aas; 2 TMSs) | Eukaryota |
Viridiplantae, Chlorophyta | MCU homologue of Chlamydomonas reinhardtii (A8J6W0) |
1.A.77.1.4 | Slime mold MCU homologue of 275 aas and 2 TMSs. The structure of the N-terminal domain (NTD) has been solved at 1.7 A resolution (Yuan et al. 2020). The oligomeric DdMCU-NTD contains four helices and two strands arranged in a fold that is completely different from the known structures of other MCU-NTD homologues. This domain may regulate channel activity (Yuan et al. 2020). | Eukaryota |
Evosea | MCU homologue of Dictyostellium discoideum (Q54LT0) |
1.A.77.1.5 | Fungal MCU homologue of 493 aas and 2 TMS. The cryo-electron microscopy structure of the full-length MCU to an overall resolution of ~3.7 Å has been determined (Yoo et al. 2018). The structure reveals a tetrameric architecture, with the soluble and transmembrane domains adopting different symmetric arrangements within the channel. The conserved W-D-Phi-Phi-E-P-V-T-Y sequence motif of the MCU pore forms a selectivity filter comprising two acidic rings separated by one helical turn along the central axis of the channel pore (Yoo et al. 2018). | Eukaryota |
Fungi, Ascomycota | MCU homologue of Neurospora crassa (Q7S4I4) |
1.A.77.1.6 | MCU homologue of 355 aas; 4 TMSs (2+2) (Docampo et al. 2013). | Eukaryota |
Euglenozoa | MCU homologue of Trypanosoma cruzi (E7KWU4) |
1.A.77.1.7 | Mitochondrial Ca2+ Uniporter, a channel complex. MCU is a putative 5TMS protein (307 aas) with homology to MCU Ca2+/Mg2+ channels in the C-terminal 2TMS domain. The N-terminal domain is found only in Trypanosoma and Leishmania species. The TbMCU complex possesses four subunits, MCU (307 aas), MCUb (214 aas), MCUc (254 aas) and MCUd (249 aas)), present only in trypanosomatids and required for Ca2+ transport. These four subunits interact through their transmembrane helices to form hetero-oligomers in a ~380 KDa complex (Huang and Docampo 2018). | Eukaryota |
Euglenozoa | Channel homologues of Trypanosoma brucei MCU MCUb MCUc MCUd |
1.A.77.1.8 | Ciliate MCU homologue 362 aas; 2 TMSs | Eukaryota |
Ciliophora | MCU homologue of Paramecium tetraurelia (A0E7U6) |
1.A.77.1.9 | MCU homologue (766 aas; 2 TMSs) | Bacteria |
Bacteroidota | MCU homologue of Cytophaga hutchinsonii (Q11Z39) |
1.A.77.1.10 | MCU homologue (355 aas; 2 TMSs) | Bacteria |
Chlorobiota | MCU homologue of Chlorobium phaeobacteroides (A1BIL6) |
1.A.77.1.11 | Mitochondrial calcium uniporter, MCU, of 362 aas | Eukaryota |
Ciliophora | MCU of Tetrahymena thermophila |
1.A.77.1.12 | The mitochondrial calcium uniporter regulatory subunit MCUb of 336 aas; part of the MCU complex (Sancak et al. 2013). MCU regulates procoagulant platelet formation (Kholmukhamedov et al. 2018) and interacts with the c-subunit of the mitochondrial ATPase (Huang and Docampo 2020). It functions in animals (but not in fungi or protozoans) with another protein, EMRE or SMDT1 of 107 aas (TC# 8.A.45.1.1) that interacts with and renders the channel functional (MacEwen et al. 2020). The mitochondrial calcium uniporter of pulmonary type 2 cells determines the severity of acute lung injury (Islam et al. 2022). Metal coordination complexes, particularly multinuclear ruthenium complexes, are the most widely investigated MCU inhibitors due to both their potent inhibitory activities as well as their longstanding use for this application (Huang and Wilson 2023). | Eukaryota |
Metazoa, Chordata | MCUb of Homo sapiens |
1.A.77.1.13 | Mitochondrial calcium uniporter of 658 aas (Docampo et al. 2013). | Eukaryota |
MCU of Monosiga brevicollis | |
1.A.77.1.14 | Mitochondrial calcium uniporter of 297 aas. | Eukaryota |
Euglenozoa | MCU of Leishmania donovani |
1.A.77.1.15 | MCU of 488 aas and 2 TMSs. The 3.8 Å cryoEM structure has been solved (Nguyen et al. 2018). The channel is a homotetramer with two-fold symmetry in its amino-terminal domain (NTD) that adopts a structure similar to that of human MCU. The NTD assembles as a dimer of dimers to form a tetrameric ring that connects to the transmembrane domain through an elongated coiled-coil domain. The ion-conducting pore domain maintains four-fold symmetry, with the selectivity filter positioned at the start of the pore-forming TM2 helix. The aspartate and glutamate sidechains of the conserved DIME motif are oriented towards the central axis and separated by one helical turn (Nguyen et al. 2018). | Eukaryota |
Fungi, Ascomycota | MCU of the fungus, Neosartorya fischeri |
1.A.77.1.16 | Mitochondrial calcium uniporter protein, MCU, of 302 aas and 2 TMSs. It interacts with subunit c of the ATP synthase (Huang and Docampo 2020). | Eukaryota |
Euglenozoa | MCU of Trypanosoma cruzi |
1.A.77.1.17 | CMU of 248 aas and 2 TMSs. It functions together with the EMRE regulatory protein (TC#8.A.45.1.6). MCU and EMRE form the minimal functional unit of the mitochondrial calcium uniporter complex in metazoans. Wang et al. 2020 functionally reconstituted an MCU-EMRE complex from the red flour beetle, Tribolium castaneum, and determined a cryo-EM structure of the complex at 3.5 Å resolution. They demonstrated Ca2+ uptake into proteoliposomes containing the purified complex. Uptake depended on EMRE as well as cardiolipin. The structure revealed a tetrameric channel with a single ion pore. EMRE was located at the periphery of the transmembrane domain and associates primarily with the first TMS of MCU. Coiled-coil and juxtamembrane domains within the matrix portion of the complex adopt markedly different conformations than in a structure of a human MCU-EMRE complex, suggesting that the structures represent different conformations of these functionally similar metazoan channels (Wang et al. 2020). | Eukaryota |
Metazoa, Arthropoda | Mcu of Tribolium castaneum |
1.A.77.2.1 | Putative Mg2+ transporter, AtpZ | Bacteria |
Campylobacterota | AtpZ of Helicobacter pylori (Q1CUJ6) |
1.A.77.2.2 | AtpZ homologue (125 aas; 2 TMSs) | Bacteria |
Myxococcota | AtpZ homologue of Anaeromyxobacter sp. Fw109-5 (A7HIX1) |
1.A.77.2.3 | AtpZ of 92 aas | Bacteria |
Thermodesulfobacteriota | AtpZ of Desulfovibrio vulgaris (A1VF64) |
1.A.77.2.4 | AtpZ of 106 aas | Bacteria |
Chlorobiota | AtpZ of Chlorobium tepidum (Q8KGE5) |
1.A.77.2.5 | AtpZ of 105 aas | AtpZ of Rhodomicrobium vannielii (E3I7U2) | ||
1.A.77.2.6 | AtpZ of 108 aas | Bacteria |
Pseudomonadota | AtpZ of Maricaulis maris (Q0AMJ5) |
1.A.77.2.7 | ATP synthase protein Z of 114 aas | Bacteria |
Pseudomonadota | AtpZ of Rhodobacter capsulatus |
1.A.77.2.8 | The Mg2+ uptake channel, AtpZ. Postulated to form homo- and/or hetero oligomers [(AtpZ)n-x (AtpI)x] (Hicks et al., 2003). The AtpI homologue (P22475) is in subfamily 1.A.77.3 and has TC# 1.A.77.3.1. | Bacteria |
Bacillota | The AtpZI Mg2+/Ca2+ channel of Bacillus pseudofirmus AtpZ (Q9EXJ9) |
1.A.77.2.9 | AtpZ of 112 aas.
| Archaea |
Euryarchaeota | AtpI of Methanosarcina acetivorans (Q8TN54) |
1.A.77.2.10 | AtpZ homologue of 87 aas. | Bacteria |
Campylobacterota | AtpZ of Hippea maritima |
1.A.77.2.11 | AtpZ homologue of 90 aas | Bacteria |
Campylobacterota | AtpZ of Campylobacter curvus |
1.A.77.2.12 | AtpZ homologue of 60 aas | Archaea |
Euryarchaeota | AtpZ homologue of Methanothermococcus okinawensis |
1.A.77.2.13 | AtpZ homologue of 80 aas | Bacteria |
Thermodesulfobacteriota | AtpZ of Geobacter metallireducens |
1.A.77.2.14 | AtpZ homologue of 105 aas | Bacteria |
Pseudomonadota | AtpZ of Acidophilium multivorum |
1.A.77.2.15 | AtpZ homologue of 96 aas | Bacteria |
Pseudomonadota | AtpZ of Tistrella mobilis |
1.A.77.2.16 | Putative Mg2+ channel of 113 aas and 2 TMSs. Part of the F-type ATPase (Morales-Rios et al. 2015). | Bacteria |
Pseudomonadota | Magnesium channel of Paracoccus denitrificans |
1.A.77.2.17 | Putative Mg2+ channel, AtpI, that functions with a Na+-transporting F-type ATPase (Soontharapirakkul et al. 2011). | Bacteria |
Cyanobacteriota | AtpI of Aphanothece halophytica |
1.A.77.3.1 | AtpI of 133 aas, This protein is a part of a two component channel and as such is also listed with TC# 1.A.77.2.8. | Bacteria |
Bacillota | AtpI of Bacillus pseudofirmus |
1.A.77.3.2 | ATP synthase protein I | Bacteria |
Bacillota | AtpI of Bacillus subtilis |
1.A.77.3.3 | ATP synthase subunit I | Bacteria |
Thermodesulfobacteriota | AtpI of Desulfococcus oleovorans |
1.A.77.3.4 | ATP synthase protein I | Bacteria |
Bacillota | AtpI of Bacillus megaterium |
1.A.77.3.5 | AtpI homologue | Bacteria |
Bacillota | AtpI homologue of Coprococcus catus |
1.A.77.3.6 | AtpI homologue of 122aas and 4 TMSs | Bacteria |
Bacillota | AtpI homologue of Paenibacillus mucilaginosus |
1.A.77.3.7 | ATP synthase protein I | Bacteria |
Pseudomonadota | AtpI of Vibrio cholerae serotype O1 |
1.A.77.3.8 | AtpI homologue of 150 aas | Bacteria |
Pseudomonadota | AtpI of Klebsiella pneumoniae |
1.A.77.3.9 | AtpI homologue of 135 aas | Bacteria |
Pseudomonadota | AtpI of Pseudomonas putida |
1.A.77.3.10 | AtpI homologue of 126 aas | Bacteria |
Pseudomonadota | AtpI of Ferrimonas balearica |
1.A.77.3.11 | AtpI of 126 aas | Bacteria |
Pseudomonadota | AtpI of E. coli |
1.A.77.3.12 | AtpI homologue of 185 aas | Bacteria |
Pseudomonadota | AtpI of Ralstonia solanacearum |
1.A.77.3.13 | ATP synthase protein I | Bacteria |
Mycoplasmatota | AtpI of Mycoplasma gallisepticum ) |
1.A.77.3.14 | ATP synthase I, AtpI | Bacteria |
Bacillota | AtpI of Acetohalobium arabaticum |
1.A.77.3.15 | ATP synthase subunit I | Bacteria |
Thermodesulfobacteriota | AtpI of Geobacter uraniireducens |
1.A.77.3.16 | ATP synthase I | Bacteria |
Thermotogota | AtpI of Fervidobacterium pennivorans |
1.A.77.3.17 | AtpI of the Na+ ATPase. Essential for assembly of the c-ring of the rotor (Brandt et al. 2013). | Bacteria |
Bacillota | AtpI of Acetobacterium woodii |
1.A.77.3.18 | AtpI homologue of 122 aas and 4 TMSs | Bacteria |
Bacillota | AtpI homologue of Clostridium sticklandii |
1.A.77.3.19 | AtpI homologue of 109 aas | Bacteria |
Thermotogota | AtpI of Thermatoga thermarum |
1.A.77.3.20 | ATP synthase, subunit I of 117 aas and 4 TMSs | Bacteria |
Bacillota | AtpI of Staphylococcus aureus |
1.A.77.3.21 | Bacteria |
Cyanobacteriota | AtpI of Synechococcus sp. | |
1.A.77.3.22 | ATP snthase subunit I, AtpI of 147 aas | Bacteria |
Bacillota | AtpI of Halothermothrix orenii |
1.A.77.3.23 | ATP synthase, subunit I, AtpI of 153 aas | Bacteria |
Actinomycetota | AtpI of Mycobacterium leprae |
1.A.77.3.24 | AtpI of 255 aas and 4 TM | Eukaryota |
Rhodophyta | AtpI of Galdieria sulfuraria |
1.A.77.3.25 | Putative AtpI of 122 aas and 4 TMSs | Bacteria |
Deferribacterota | AtpI of Denitrovibrio acetophilus |
1.A.77.3.26 | Uncharacterized protein of 189 aas and 5 TMSs | Bacteria |
Myxococcota | UP of Anaeromyxobacter dehalogenans |
1.A.77.3.27 | AtpI homologue of 133 aas | Bacteria |
Fusobacteriota | AtpI of Leptotrichia buccalis |
1.A.77.3.28 | AtpI homologue of 126 aas | Bacteria |
Fusobacteriota | AtpI of Ilyobacter polytrophus |
1.A.77.3.29 | AtpI homologue of 127 aas | Bacteria |
Fusobacteriota | AtpI of Propionigenium modestum |
1.A.77.3.30 | AtpI homologue of 135 aas | Bacteria |
Fusobacteriota | AtpI of Sebaldella termitidis |
1.A.77.3.31 | AtpI homologue of 164aas and 4 TMSs | Bacteria |
Mycoplasmatota | AtpI of Mycoplasma fermentans |
1.A.77.3.32 | AtpI homologue of 150 aas | Bacteria |
Mycoplasmatota | AtpI of Mycoplasma arthritidis |
1.A.77.3.33 | AtpI homologue of 161 aas. Immunogenic proteins have been evaluated as vaccine candidates against Mycoplasma synoviae (Zhang et al. 2023). | Bacteria |
Mycoplasmatota | AtpI of Mycoplasma synoviae |
1.A.77.3.34 | AtpI of 140 aas and 4 TMSs | Bacteria |
Thermodesulfobacteriota | AtpI of Desulfotalea psychrophila |
1.A.77.3.35 | Putative AtpI of 129 aas and 4 TMSs | Bacteria |
Bacillota | AtpI of Heliobacterium modesticaldum |
1.A.77.3.36 | Putative AtpI of 139 aas and 4 TMSs | Bacteria |
Acidobacteriota | AtpI of Candidatus Koribacter versatilis |
1.A.77.3.37 | Putative AtpI of 133 aas and 4 TMSs | Bacteria |
Thermodesulfobacteriota | AtpI of Desulfobacula toluolica |
1.A.77.3.38 | Putative AtpI of 140 aas and 4 TMSs | Bacteria |
Thermodesulfobacteriota | AtpI of Syntrophus aciditrophicus |
1.A.77.3.39 | Putative AtpI of 256 aas and 4 or 5 TMSs. The N-terminus may include a single TMS plus a hydrophilic domain before the C-terminal AtpI domain. | Eukaryota |
Rhodophyta | AtpI of Chondrus crispus |
1.A.77.3.40 | AtpI of 156 aas and 4 TMSs | Eukaryota |
Cercozoa | AtpI of Paulinella chromatophora |
1.A.77.3.41 | Putative AtpI of 119 aas and 4 TMSs | Bacteria |
Deferribacterota | AtpI of Deferribacter desulfuricans |
1.A.77.3.42 | Putative AtpI of 138 aas and 4 TMSs | Bacteria |
Fibrobacteres/Acidobacteria group | AtpI of Granulicella tundricola |
1.A.77.3.43 | Putative AtpI of 121 aas and 4 TMSs | Bacteria |
Nitrospirota | AtpI of Thermodesulfovibrio yellowstonii |
1.A.77.3.44 | Putative AtpI of 160 aas and 4 TMSs | Bacteria |
Mycoplasmatota | AtpI of Mycoplasma mobile |
1.A.77.3.45 | ATP synthase I-like protein, AtpI, of 385 aas amd 3 - 4 TMSs. | Eukaryota |
Viridiplantae, Chlorophyta | AtpI of Chlamydomonas reinhardtii (Chlamydomonas smithii) |
1.A.77.4.1 | Fusion protein with N-terminal 4 TMS AtpI domain and large soluble C-terminal α/β-hydrolase domain. | Eukaryota |
Rhodophyta | Fusion protein of Galdieria sulphuraria |
1.A.77.4.2 | Fusion protein with N-terminal 4 TMS AtpI domain and large soluble C-terminal α/β-hydrolase domain. | Eukaryota |
Evosea | Fusion protein of Dictyostelium discoideum |
1.A.77.4.3 | Fusion protein with N-terminal 4 TMS AtpI domain and large soluble C-terminal α/β-hydrolase domain. | Eukaryota |
Evosea | Fusion protein of Entamoeba histolytica |
1.A.77.5.1 | AtpI homologue of 147 aas and 4 TMSs. Deletion of the gene encoding the ortholog, cg1360, affects ATP synthase function and enhances production of L-Valine in Corynebacterium glutamicum (Wang et al. 2019). | Bacteria |
Actinomycetota | AtpI of Corynebacterium diphtheriae |
1.A.77.5.2 | AtpI homologue of 137 aas | Bacteria |
Actinomycetota | AtpI of Streptomyces avermitilis |
1.A.77.5.3 | AtpI homologue of 145 aas | Bacteria |
Actinomycetota | AtpI of Frankia alni |
1.A.77.5.4 | Putative AtpI of 177 aas and 4 TMSs | Bacteria |
Actinomycetota | AtpI of Saccharomonospora cyanea |
1.A.77.5.5 | Putative ATP synthase protein I2 of 161 aas and 4 TMSs | Bacteria |
Actinomycetota | Putative reductase of Actinokineospora spheciospongiae |
1.A.77.5.6 | Uncharacterized protein of 157 aas and 3-4 TMSs | Bacteria |
Actinomycetota | UP of Cellulomonas fimi |