TCDB is operated by the Saier Lab Bioinformatics Group

1.C.123 The Pore-forming Gasdermin (Gasdermin) Family 

Pyroptosis (cell death with inflamation) was long regarded as caspase-1-mediated monocyte death in response to certain bacterial insults. Caspase-1 is activated upon various infectious and immunological challenges through different inflammasomes. The discovery of caspase-11/4/5 function in sensing intracellular lipopolysaccharide expanded the spectrum of pyroptosis mediators and also revealed that pyroptosis is not cell type specific.

The gasdermin (GSDM) family consists of gasdermin A (GSDMA), B (GSDMB), C (GSDMC), D (GSDMD), E or DNFA5 (GSDME), and DFNB59 in humans. Expressed in the skin, gastrointestinal tract, and various immune cells, GSDMs mediate homeostasis and inflammation upon activation by caspases and unknown proteases (Xia et al. 2019).

The pyroptosis executioner, gasdermin D (GSDMD), is a substrate of both caspase-1 and caspase-11/4/5 and is in the large gasdermin family bearing membrane pore-forming activity (Shi et al. 2016). Thus, pyroptosis is defined as gasdermin-mediated programmed necrosis.  These proteins are associated with various genetic diseases.

The N-terminal domain of Gasdermin-D promotes pyroptosis in response to microbial infection and danger signals. The active protein is produced by the cleavage of gasdermin-D by an inflammatory caspase, CASP1 or CASP4, in response to canonical, as well as non-canonical (such as cytosolic LPS) inflammasome activators (Shi et al. 2015; Kayagaki et al. 2015; Sborgi et al. 2016). After cleavage, the product moves to the plasma membrane where it binds to inner leaflet lipids, including monophosphorylated phosphatidylinositols, as well as phosphatidic acid and phosphatidylserine (Ding et al. 2016). Homooligomerization within the membrane generates pores of 10 - 15 nanometers (nm) (inner diameter), allowing the release of mature IL1B and triggering pyroptosis (Sborgi et al. 2016; Ding et al. 2016). It thus exhibits bactericidal activity. The N-terminal domain of Gasdermin-D, released from pyroptotic cells into the extracellular milieu rapidly binds to and kills both Gram-negative and Gram-positive bacteria, without harming neighboring mammalian cells, as it does not disrupt the plasma membrane from the outside due to lipid-binding specificity (Ding et al. 2016). It strongly binds to bacterial and mitochondrial lipids, including cardiolipin but does not bind to unphosphorylated phosphatidylinositol, phosphatidylethanolamine or phosphatidylcholine (Ding et al. 2016).

Once inserted, GSDMDNterm assembles arc-, slit-, and ring-shaped oligomers, each of which being able to form transmembrane pores. This assembly and pore forming process is independent of whether GSDMD has been cleaved by caspase-1, caspase-4, or caspase-5. Using time-lapse AFM, Mulvihill et al. 2018 monitored how GSDMDNterm assembles into arc-shaped oligomers that can transform into larger slit-shaped and finally into stable ring-shaped oligomers. The mechanism of GSDMDNterm transmembrane pore assembly is likely shared with other members of the gasdermin protein family. Granzyme A from cytotoxic lymphocytes cleaves gasdermin B (GSDMB) to trigger pyroptosis in target cells via oligomeric pore formation (Zhou et al. 2020).


The reactions catalyzed by Gasdermins is:

Solutes (in) → Solutes (out)

References associated with 1.C.123 family:

Collin, R.W., E. Kalay, J. Oostrik, R. Caylan, B. Wollnik, S. Arslan, A.I. den Hollander, Y. Birinci, P. Lichtner, T.M. Strom, B. Toraman, L.H. Hoefsloot, C.W. Cremers, H.G. Brunner, F.P. Cremers, A. Karaguzel, and H. Kremer. (2007). Involvement of DFNB59 mutations in autosomal recessive nonsyndromic hearing impairment. Hum Mutat 28: 718-723. 17373699
Delmaghani, S., F.J. del Castillo, V. Michel, M. Leibovici, A. Aghaie, U. Ron, L. Van Laer, N. Ben-Tal, G. Van Camp, D. Weil, F. Langa, M. Lathrop, P. Avan, and C. Petit. (2006). Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy. Nat. Genet. 38: 770-778. 16804542
Ding, J., K. Wang, W. Liu, Y. She, Q. Sun, J. Shi, H. Sun, D.C. Wang, and F. Shao. (2016). Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535: 111-116. 27281216
Hergueta-Redondo, M., D. Sarrió, &.#.1.9.3.;. Molina-Crespo, D. Megias, A. Mota, A. Rojo-Sebastian, P. García-Sanz, S. Morales, S. Abril, A. Cano, H. Peinado, and G. Moreno-Bueno. (2014). Gasdermin-B promotes invasion and metastasis in breast cancer cells. PLoS One 9: e90099. 24675552
Kayagaki, N., I.B. Stowe, B.L. Lee, K. O''Rourke, K. Anderson, S. Warming, T. Cuellar, B. Haley, M. Roose-Girma, Q.T. Phung, P.S. Liu, J.R. Lill, H. Li, J. Wu, S. Kummerfeld, J. Zhang, W.P. Lee, S.J. Snipas, G.S. Salvesen, L.X. Morris, L. Fitzgerald, Y. Zhang, E.M. Bertram, C.C. Goodnow, and V.M. Dixit. (2015). Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526: 666-671. 26375259
Kim, M.S., X. Chang, K. Yamashita, J.K. Nagpal, J.H. Baek, G. Wu, B. Trink, E.A. Ratovitski, M. Mori, and D. Sidransky. (2008). Aberrant promoter methylation and tumor suppressive activity of the DFNA5 gene in colorectal carcinoma. Oncogene 27: 3624-3634. 18223688
Lin, H.Y., P.H. Lin, S.H. Wu, and L.T. Yang. (2015). Inducible expression of gasdermin A3 in the epidermis causes epidermal hyperplasia and skin inflammation. Exp Dermatol 24: 897-899. 26173759
Masuda, Y., M. Futamura, H. Kamino, Y. Nakamura, N. Kitamura, S. Ohnishi, Y. Miyamoto, H. Ichikawa, T. Ohta, M. Ohki, T. Kiyono, H. Egami, H. Baba, and H. Arakawa. (2006). The potential role of DFNA5, a hearing impairment gene, in p53-mediated cellular response to DNA damage. J Hum Genet 51: 652-664. 16897187
Muendlein, H.I., D. Jetton, W.M. Connolly, K.P. Eidell, Z. Magri, I. Smirnova, and A. Poltorak. (2020). cFLIP protects macrophages from LPS-induced pyroptosis via inhibition of complex II formation. Science 367: 1379-1384. 32193329
Mulvihill, E., L. Sborgi, S.A. Mari, M. Pfreundschuh, S. Hiller, and D.J. Müller. (2018). Mechanism of membrane pore formation by human gasdermin-D. EMBO. J. [Epub: Ahead of Print] 29898893
Op de Beeck, K., G. Van Camp, S. Thys, N. Cools, I. Callebaut, K. Vrijens, L. Van Nassauw, V.F. Van Tendeloo, J.P. Timmermans, and L. Van Laer. (2011). The DFNA5 gene, responsible for hearing loss and involved in cancer, encodes a novel apoptosis-inducing protein. Eur J Hum Genet 19: 965-973. 21522185
Sborgi, L., S. Rühl, E. Mulvihill, J. Pipercevic, R. Heilig, H. Stahlberg, C.J. Farady, D.J. Müller, P. Broz, and S. Hiller. (2016). GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO. J. 35: 1766-1778. 27418190
Shi, J., W. Gao, and F. Shao. (2016). Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death. Trends. Biochem. Sci. [Epub: Ahead of Print] 27932073
Shi, J., Y. Zhao, K. Wang, X. Shi, Y. Wang, H. Huang, Y. Zhuang, T. Cai, F. Wang, and F. Shao. (2015). Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526: 660-665. 26375003
Wang, Y., W. Gao, X. Shi, J. Ding, W. Liu, H. He, K. Wang, and F. Shao. (2017). Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547: 99-103. 28459430
Xia, S., J. Ruan, and H. Wu. (2019). Monitoring gasdermin pore formation in vitro. Methods Enzymol 625: 95-107. 31455540
Xia, S., Z. Zhang, V.G. Magupalli, J.L. Pablo, Y. Dong, S.M. Vora, L. Wang, T.M. Fu, M.P. Jacobson, A. Greka, J. Lieberman, J. Ruan, and H. Wu. (2021). Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature. [Epub: Ahead of Print] 33883744
Zhang, Z., Y. Zhang, S. Xia, Q. Kong, S. Li, X. Liu, C. Junqueira, K.F. Meza-Sosa, T.M.Y. Mok, J. Ansara, S. Sengupta, Y. Yao, H. Wu, and J. Lieberman. (2020). Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature 579: 415-420. 32188940
Zhou, Z., H. He, K. Wang, X. Shi, Y. Wang, Y. Su, Y. Wang, D. Li, W. Liu, Y. Zhang, L. Shen, W. Han, L. Shen, J. Ding, and F. Shao. (2020). Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science 368:. 32299851
Zihlif, M., N.M. Obeidat, N. Zihlif, T. Mahafza, T. Froukh, M.T. Ghanim, H. Beano, F.M. Al-Akhras, and R. Naffa. (2016). Association Between Gasdermin A and Gasdermin B Polymorphisms and Susceptibility to Adult and Childhood Asthma Among Jordanians. Genet Test Mol Biomarkers 20: 143-148. 26886240