TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


2.A.1.2.29
The vesicular monoamine transporter, VMAT2 (pumps dopamine, norepinephrine, serotonin and histamine into synaptic vesicles) (Cliburn et al. 2016). VMAT2 physically and functionally interacts with the enzymes responsible for dopamine synthesis (Cartier et al., 2010).  Molecular hinge points mediating alternating access have been identified (Yaffe et al. 2013). The substituted amphetamine, 3,4-methylenedioxy-methamphetamine (MDMA, ecstasy), is a widely used drug of abuse that induces non-exocytotic release of serotonin, dopamine, and norepinephrine through their cognate transporters as well as blocking the reuptake of neurotransmitter by the same transporters (Sealover et al. 2016). The slc18a2 gene is expressed at high levels in neuroepithelial cells (Pan et al. 2022). Synaptic vesicle proteins are selectively delivered to axons in mammalian neurons (Watson et al. 2023). VMAT2 may play a role in Parkinson's disease (Zhou et al. 2023). Dopaminergic cell protection and alleviation of neuropsychiatric disease symptoms are aleviated by VMAT2 expression (Lee et al. 2023). Deutetrabenazine and valbenazine are VMAT2 inhibitors for tardive dyskinesia (Golsorkhi et al. 2024). Drug inhibition and substrate transport mechanisms of human VMAT2 have been characterized (Wei et al. 2025).

Accession Number:Q05940
Protein Name:VMAT2 aka VAT2
Length:514
Molecular Weight:55713.00
Species:Homo sapiens (Human) [9606]
Number of TMSs:11
Location1 / Topology2 / Orientation3: Cytoplasmic vesicle membrane1 / Multi-pass membrane protein2
Substrate serotonin, monoamine molecular messenger, (R)-noradrenaline, dopamine, histamine

Cross database links:

RefSeq: NP_003045.2   
Entrez Gene ID: 6571   
Pfam: PF07690   
OMIM: 193001  gene
KEGG: hsa:6571    hsa:6571   

Gene Ontology

GO:0030659 C:cytoplasmic vesicle membrane
GO:0005887 C:integral to plasma membrane
GO:0005624 C:membrane fraction
GO:0008504 F:monoamine transmembrane transporter activity
GO:0015844 P:monoamine transport
GO:0006836 P:neurotransmitter transport
GO:0055085 P:transmembrane transport
GO:0070083 C:clathrin sculpted monoamine transport vesicle membrane
GO:0031045 C:dense core granule
GO:0043025 C:neuronal cell body
GO:0030672 C:synaptic vesicle membrane
GO:0043195 C:terminal button
GO:0008144 F:drug binding
GO:0015222 F:serotonin transmembrane transporter activity
GO:0007568 P:aging
GO:0071242 P:cellular response to ammonium ion
GO:0035690 P:cellular response to drug
GO:0016265 P:death
GO:0032456 P:endocytic recycling
GO:0042593 P:glucose homeostasis
GO:0030073 P:insulin secretion
GO:0007626 P:locomotory behavior
GO:0051589 P:negative regulation of neurotransmitter transport
GO:0007269 P:neurotransmitter secretion
GO:0009791 P:post-embryonic development
GO:0001975 P:response to amphetamine
GO:0042220 P:response to cocaine
GO:0051412 P:response to corticosterone stimulus
GO:0009635 P:response to herbicide
GO:0042594 P:response to starvation
GO:0010043 P:response to zinc ion
GO:0006837 P:serotonin transport
GO:0015842 P:synaptic vesicle amine transport

References (22)

[1] “A human synaptic vesicle monoamine transporter cDNA predicts posttranslational modifications, reveals chromosome 10 gene localization and identifies TaqI RFLPs.”  Surratt C.K.et.al.   8095030
[2] “Functional identification and molecular cloning of a human brain vesicle monoamine transporter.”  Erickson J.D.et.al.   8245983
[3] “Chromosomal localization of the human vesicular amine transporter genes.”  Peter D.et.al.   7905859
[4] “Extensive sequence divergence between the human and rat brain vesicular monoamine transporter: possible molecular basis for species differences in the usceptibility to MPP+.”  Lesch K.P.et.al.   8373557
[5] “Exon/intron boundaries, novel polymorphisms, and association analysis with schizophrenia of the human synaptic vesicle monoamine transporter (SVMT) gene.”  Kunugi H.et.al.   11443533
[6] “Complete sequencing and characterization of 21,243 full-length human cDNAs.”  Ota T.et.al.   14702039
[7] “The DNA sequence and comparative analysis of human chromosome 10.”  Deloukas P.et.al.   15164054
[8] “The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).”  The MGC Project Teamet.al.   15489334
[9] “Identification of human vesicle monoamine transporter (VMAT2) lumenal cysteines that form an intramolecular disulfide bond.”  Thiriot D.S.et.al.   12009896
[10] “Phosphoproteome of resting human platelets.”  Zahedi R.P.et.al.   18088087
[11] “Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions.”  Mayya V.et.al.   19690332
[12] “A human synaptic vesicle monoamine transporter cDNA predicts posttranslational modifications, reveals chromosome 10 gene localization and identifies TaqI RFLPs.”  Surratt C.K.et.al.   8095030
[13] “Functional identification and molecular cloning of a human brain vesicle monoamine transporter.”  Erickson J.D.et.al.   8245983
[14] “Chromosomal localization of the human vesicular amine transporter genes.”  Peter D.et.al.   7905859
[15] “Extensive sequence divergence between the human and rat brain vesicular monoamine transporter: possible molecular basis for species differences in the usceptibility to MPP+.”  Lesch K.P.et.al.   8373557
[16] “Exon/intron boundaries, novel polymorphisms, and association analysis with schizophrenia of the human synaptic vesicle monoamine transporter (SVMT) gene.”  Kunugi H.et.al.   11443533
[17] “Complete sequencing and characterization of 21,243 full-length human cDNAs.”  Ota T.et.al.   14702039
[18] “The DNA sequence and comparative analysis of human chromosome 10.”  Deloukas P.et.al.   15164054
[19] “The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).”  The MGC Project Teamet.al.   15489334
[20] “Identification of human vesicle monoamine transporter (VMAT2) lumenal cysteines that form an intramolecular disulfide bond.”  Thiriot D.S.et.al.   12009896
[21] “Phosphoproteome of resting human platelets.”  Zahedi R.P.et.al.   18088087
[22] “Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions.”  Mayya V.et.al.   19690332

External Searches:

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MALSELALVR WLQESRRSRK LILFIVFLAL LLDNMLLTVV VPIIPSYLYS IKHEKNATEI 
61:	QTARPVHTAS ISDSFQSIFS YYDNSTMVTG NATRDLTLHQ TATQHMVTNA SAVPSDCPSE 
121:	DKDLLNENVQ VGLLFASKAT VQLITNPFIG LLTNRIGYPI PIFAGFCIMF VSTIMFAFSS 
181:	SYAFLLIARS LQGIGSSCSS VAGMGMLASV YTDDEERGNV MGIALGGLAM GVLVGPPFGS 
241:	VLYEFVGKTA PFLVLAALVL LDGAIQLFVL QPSRVQPESQ KGTPLTTLLK DPYILIAAGS 
301:	ICFANMGIAM LEPALPIWMM ETMCSRKWQL GVAFLPASIS YLIGTNIFGI LAHKMGRWLC 
361:	ALLGMIIVGV SILCIPFAKN IYGLIAPNFG VGFAIGMVDS SMMPIMGYLV DLRHVSVYGS 
421:	VYAIADVAFC MGYAIGPSAG GAIAKAIGFP WLMTIIGIID ILFAPLCFFL RSPPAKEEKM 
481:	AILMDHNCPI KTKMYTQNNI QSYPIGEDEE SESD