TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


2.A.1.2.66
Polyamine exporter 3 (Igarashi and Kashiwagi 2010).

Accession Number:Q06451
Protein Name:Polyamine transporter 3
Length:622
Molecular Weight:68066.00
Species:Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast) [559292]
Number of TMSs:12
Location1 / Topology2 / Orientation3: Cell membrane1 / Multi-pass membrane protein2
Substrate polyamine

Cross database links:

DIP: DIP-3907N
Entrez Gene ID: 856279   
Pfam: PF07690   
KEGG: sce:YPR156C   

Gene Ontology

GO:0000329 C:fungal-type vacuole membrane
GO:0016021 C:integral to membrane
GO:0005624 C:membrane fraction
GO:0005886 C:plasma membrane
GO:0015297 F:antiporter activity
GO:0000297 F:spermine transmembrane transporter activity

References (12)

[1] “The nucleotide sequence of Saccharomyces cerevisiae chromosome XVI.”  Bussey H.et.al.   9169875
[2] “Approaching a complete repository of sequence-verified protein-encoding clones for Saccharomyces cerevisiae.”  Hu Y.et.al.   17322287
[3] “Multiple polyamine transport systems on the vacuolar membrane in yeast.”  Tomitori H.et.al.   11171066
[4] “Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae.”  Ficarro S.B.et.al.   11875433
[5] “Localization and function of the yeast multidrug transporter Tpo1p.”  Albertsen M.et.al.   12562762
[6] “Global analysis of protein localization in budding yeast.”  Huh W.-K.et.al.   14562095
[7] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[8] “Exposure of Saccharomyces cerevisiae to acetaldehyde induces sulfur amino acid metabolism and polyamine transporter genes, which depend on Met4p and Haa1p transcription factors, respectively.”  Aranda A.et.al.   15066780
[9] “A global topology map of the Saccharomyces cerevisiae membrane proteome.”  Kim H.et.al.   16847258
[10] “Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae.”  Li X.et.al.   17330950
[11] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[12] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956

External Searches:

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MNRQESINSF NSDETSSLSD VESQQPQQYI PSESGSKSNM APNQLKLTRT ETVKSLQDMG 
61:	VSSKAPVPDV NAPQSSKNKI FPEEYTLETP TGLVPVATLH SIGRTSTAIS RTRTRQIDGA 
121:	SSPSSNEDAL ESDNNEKGKE GDSSGANDEA PDLDPEIEFV TFVTGDPENP HNWPAWIRWS 
181:	YTVLLSILVI CVAYGSACIS GGLGTVEKKY HVGMEAAILS VSLMVIGFSL GPLIWSPVSD 
241:	LYGRRVAYFV SMGLYVIFNI PCALAPNLGS LLACRFLCGV WSSSGLCLVG GSIADMFPSE 
301:	TRGKAIAFFA FAPYVGPVVG PLVNGFISVS TGRMDLIFWV NMAFAGVMWI ISSAIPETYA 
361:	PVILKRKAAR LRKETGNPKI MTEQEAQGVS MGEMMRACLL RPLYFSVTEP VLVATCFYVC 
421:	LIYSLLYAFF FAFPVIFGEL YGYKDNLVGL MFIPIVIGAL WALATTFYCE NKYLQIVKQR 
481:	KPTPEDRLLG AKIGAPFAAI ALWILGATAY KHIIWVGPAS AGLAFGFGMV LIYYSLNNYI 
541:	IDCYVQYASS ALATKVFLRS AGGAAFPLFT IQMYHKLNLH WGSWLLAFIS TAMIALPFAF 
601:	SYWGKGLRHK LSKKDYSIDS IE