TCDB is operated by the Saier Lab Bioinformatics Group

2.A.17 The Proton-dependent Oligopeptide Transporter (POT/PTR) Family

Proteins of the POT family (also called the PTR (peptide transport) family) are from animals, plants, yeast, archaea and both Gram-negative and Gram-positive bacteria. Several of these organisms possess multiple POT family paralogues. The proteins are of about 450-600 amino acyl residues in length with the eukaryotic proteins in general being longer than the bacterial proteins. They exhibit 12 putative or established transmembrane α-helical spanners.  The plant homologues have been examined from phylogenetic standpoints (von Wittgenstein et al. 2014). This family is also called the solute carrier 15 family (Slc15). They utilize the proton gradient and negative membrane protential to drive the transmembrane transporter of di-/tripeptide and peptide-mimetic molecules, and they also play important roles in immunoreaction (Dong et al. 2020). Rehmannia glutinosa (Chinese foxglove) has 18 ntr1 genes encoding proteins of 419 to 601 aas with 7 - 12 TMSs. They are found primarily in the plasma membranes of various plant tissues (Gu et al. 2021). 109 members of the PTR family are encoded within the genome of tea plants (Camellia sinensis) (Wang et al. 2022).

Pairs of salt bridge interactions between transmembrane helices work in tandem to orchestrate alternating access transport within the PTR family (Newstead 2014). Key roles for residues conserved between bacterial and eukaryotic homologues suggest a conserved mechanism of peptide recognition and transport that in some cases has been subtly modified in individual species.  PepT1 and PepT2, mammalian members of this family, are responsible for the uptake of many pharmaceutically important drug molecules, including antibiotics and antiviral medications.  Thus, their promiscuity can be used for improving the oral bioavailability of poorly absorbed compounds (Newstead 2014). Signature peptides enabled the reliable quantification of human hepatic transporters (Mori et al. 2022). The QTAP protocol using these optimal signature peptides provides quantitative data on hepatic transporters, usable for integrated pharmacokinetic studies.

While most members of the POT family catalyze peptide transport, one is a nitrate permease and one can transport histidine as well as peptides. A nitrate permease of Arabidopsis, Chl1 (TC #2.A.17.3.1), exhibits dual affinity. When phosphorylated at threonine-101, it exhibits high affinity (50 μM) for nitrate, but when not phosphorylated, it exhibits low affinity (~5 mM) (Liu and Tsay, 2003). Some of the peptide transporters can also transport antibiotics. They function by proton symport, but the substrate:H+ stoichiometry is variable: the high affinity rat PepT2 carrier catalyzes uptake of 2 and 3H+ with neutral and anionic dipeptides, respectively, while the low affinity PepT1 carrier catalyzes uptake of one H+ per neutral peptide. In eukaryotes, some of these transporters may be in organellar membranes such as the lysosomes.  Candida tropicalis oligopeptide transporters assist in the transmembrane transport of the antimicrobial peptide, CGA-N9 (Wu et al. 2023).

Di- and tripeptide transporters of the POT/PTR/NRT1 family are localized either to the tonoplast (TP) or plasma membrane (PM). A 7 amino acid fragment of the hydrophilic N-terminal region of Arabidopsis PTR2, PTR4 and PTR6 is required for TP localization and sufficient to redirect not only PM-localized PTR1 or PTR5, but also sucrose transporter SUC2 to the tonopolast (Komarova et al., 2012). L(11) and I(12) of PTR2 are essential for TP targeting, while only one acidic amino acid at position 5, 6 or 7 is required, revealing a dileucine (LL or LI) motif with at least one upstream acidic residue. Similar dileucine motifs could be identified in other plant TP transporters. Targeting to the PM required the loop between transmembrane domains 6 and 7 of PTR1 or PTR5. Deletion of either PM or TP targeting signals resulted in retention in internal membranes, indicating that PTR trafficking to these destination membranes requires distinct signals and is in both cases not by default (Komarova et al., 2012). A comprehensive genome-wide systematic characterization of the PTR family led to the identification of 193 PTR genes in the genome of Brassica napus (Rapeseed) (Zhang et al. 2020). The  family exhibited high levels of genetic diversity among sub-families, and expression analyses identified a broad range of expression patterns for individual gene in response to multiple nutrient stresses, including nitrogen (N), phosphorus (P) and potassium (K+) deficiencies, as well as ammonium toxicity. Ten core genes induced in response to N stress (Zhang et al. 2020).

Both proton and ligand significantly change the conformational free-energy landscape of PepT (Batista et al. 2019). In the absence of ligand and protonation, only transitions involving inner facing (IF) and occluded (OC) states are allowed. After protonation of residue Glu300, the wider free-energy well  indicates a greater conformational variability relative to the apo system, and outward facing (OF) conformations become accessible. For the Glu300 protonated holo-PepT, the presence of a second free-energy minimum suggests that OF conformations are accessible and stable. Thus, the differences in the free-energy profiles suggest that transitions toward outward-facing conformations occur only after protonation, which is likely the first step in the mechanism of peptide transport. The transmembrane proton flux drives essential steps of the full functional cycle: 1) protonation of a glutamate in TMS 7 opens the extracellular gate, allowing ligand entry; 2) inward proton flow induces the cytosolic release of the ligand by varying the protonation state of a second conserved glutamate in TMS 10; 3) proton movement between TMS 7 and TMS 10 is thermodynamically driven and kinetically permissible via water proton shuttling without the participation of ligand (Li et al. 2022).

The generalized transport reaction catalyzed by the proteins of the POT family is:

Substrate (out) +  nH+ (out) → substrate (in) + nH+ (in)

This family belongs to the: Major Facilitator (MFS) Superfamily.

References associated with 2.A.17 family:

Newstead S. (2015). Molecular insights into proton coupled peptide transport in the PTR family of oligopeptide transporters. Biochim Biophys Acta. 1850(3):488-99. 24859687
Andersen, T.G., H.H. Nour-Eldin, V.L. Fuller, C.E. Olsen, M. Burow, and B.A. Halkier. (2013). Integration of biosynthesis and long-distance transport establish organ-specific glucosinolate profiles in vegetative Arabidopsis. Plant Cell 25: 3133-3145. 23995084
Batista, M.R.B., A. Watts, and A. José Costa-Filho. (2019). Exploring Conformational Transitions and Free-Energy Profiles of Proton-Coupled Oligopeptide Transporters. J Chem Theory Comput. [Epub: Ahead of Print] 31639304
Belmondo, S., V. Fiorilli, J. Pérez-Tienda, N. Ferrol, R. Marmeisse, and L. Lanfranco. (2014). A dipeptide transporter from the arbuscular mycorrhizal fungus Rhizophagus irregularis is upregulated in the intraradical phase. Front Plant Sci 5: 436. 25232358
Bhardwaj, R.K., D. Herrera-Ruiz, N. Eltoukhy, M. Saad, and G.T. Knipp. (2006). The functional evaluation of human peptide/histidine transporter 1 (hPHT1) in transiently transfected COS-7 cells. Eur J Pharm Sci 27: 533-542. 16289537
Bippes, C.A., L. Ge, M. Meury, D. Harder, Z. Ucurum, H. Daniel, D. Fotiadis, and D.J. Müller. (2013). Peptide transporter DtpA has two alternate conformations, one of which is promoted by inhibitor binding. Proc. Natl. Acad. Sci. USA 110: E3978-3986. 24082128
Bucking, C. and P.M. Schulte. (2012). Environmental and nutritional regulation of expression and function of two peptide transporter (PepT1) isoforms in a euryhaline teleost. Comp Biochem Physiol A Mol Integr Physiol 161: 379-387. 22227314
Byrnes, K., S. Blessinger, N.T. Bailey, R. Scaife, G. Liu, and B. Khambu. (2022). Therapeutic regulation of autophagy in hepatic metabolism. Acta Pharm Sin B 12: 33-49. 35127371
Cai, H., M. Hauser, F. Naider, and J.M. Becker. (2007). Differential regulation and substrate preferences in two peptide transporters of Saccharomyces cerevisiae. Eukaryot. Cell. 6: 1805-1813. 17693598
Casagrande F., Harder D., Schenk A., Meury M., Ucurum Z., Engel A., Weitz D., Daniel H. and Fotiadis D. (2009). Projection structure of DtpD (YbgH), a prokaryotic member of the peptide transporter family. J Mol Biol. 394(4):708-17. 19782088
Chan, T., X. Lu, T. Shams, L. Zhu, M. Murray, and F. Zhou. (2016). The role of N-glycosylation in maintaining the transporter activity and expression of human Oligopeptide transporter 1 (hPepT1). Mol Pharm. [Epub: Ahead of Print] 27547863
Chao, Z.F., Y.L. Wang, Y.Y. Chen, C.Y. Zhang, P.Y. Wang, T. Song, C.B. Liu, Q.Y. Lv, M.L. Han, S.S. Wang, J. Yan, M.G. Lei, and D.Y. Chao. (2021). NPF transporters in synaptic-like vesicles control delivery of iron and copper to seeds. Sci Adv 7: eabh2450. 34516912
Chen, H.Y., S.H. Lin, L.H. Cheng, J.J. Wu, Y.C. Lin, and Y.F. Tsay. (2021). Potential transceptor AtNRT1.13 modulates shoot architecture and flowering time in a nitrate-dependent manner. Plant Cell 33: 1492-1505. 33580260
Chen, X.-Z., T. Zhu, D.E. Smith, and M.A. Hediger. (1999). Stoichiometry and kinetics of the high-affinity H+-coupled peptide transporter PepT2. J. Biol. Chem. 274: 2773-2779. 9915809
Covitz, K.-M.Y., G.L. Amidon, and W. Sadée. (1998). Membrane topology of the human dipeptide transporter, hPEPT1, determined by epitope insertions. Biochemistry 37: 15214-15221. 9790685
Custódio, T.F., M. Killer, D. Yu, V. Puente, D.P. Teufel, A. Pautsch, G. Schnapp, M. Grundl, J. Kosinski, and C. Löw. (2023). Molecular basis of TASL recruitment by the peptide/histidine transporter 1, PHT1. Nat Commun 14: 5696. 37709742
Daniel, H. (1996). Function and molecular structure of brush border membrane peptide/H+ symporters. J. Membr. Biol. 154: 197-203. 8952949
Deshayes, S., A. Heitz, M.C. Morris, P. Charnet, G. Divita, and F. Heitz. (2004). Insight into the mechanism of internalization of the cell-penetrating carrier peptide Pep-1 through conformational analysis. Biochemistry 43: 1449-1457. 14769021
Deutschbauer, A., M.N. Price, K.M. Wetmore, W. Shao, J.K. Baumohl, Z. Xu, M. Nguyen, R. Tamse, R.W. Davis, and A.P. Arkin. (2011). Evidence-based annotation of gene function in Shewanella oneidensis MR-1 using genome-wide fitness profiling across 121 conditions. PLoS Genet 7: e1002385. 22125499
Doki, S., H.E. Kato, N. Solcan, M. Iwaki, M. Koyama, M. Hattori, N. Iwase, T. Tsukazaki, Y. Sugita, H. Kandori, S. Newstead, R. Ishitani, and O. Nureki. (2013). Structural basis for dynamic mechanism of proton-coupled symport by the peptide transporter POT. Proc. Natl. Acad. Sci. USA 110: 11343-11348. 23798427
Dong, C., Z. Jiang, X. Zhang, J. Feng, L. Wang, X. Tian, P. Xu, and X. Li. (2020). Phylogeny of Slc15 family and response to Aeromonas hydrophila infection following Lactococcus lactis dietary supplementation in Cyprinus carpio. Fish Shellfish Immunol 106: 705-714. 32846240
Dong, M., P. Li, J. Luo, B. Chen, and H. Jiang. (2023). Oligopeptide/Histidine Transporter PHT1 and PHT2 - Function, Regulation, and Pathophysiological Implications Specifically in Immunoregulation. Pharm Res. [Epub: Ahead of Print] 37610621
Döring, F., J. Will, S. Amasheh, W. Clauss, H. Ahlbrecht, and H. Daniel. (1998). Minimal molecular determinants of substrates for recognition by the intestinal peptide transporter. J. Biol. Chem. 273: 23211-23218. 9722551
Ernst, H.A., A. Pham, H. Hald, J.S. Kastrup, M. Rahman, and O. Mirza. (2009). Ligand binding analyses of the putative peptide transporter YjdL from E. coli display a significant selectivity towards dipeptides. Biochem. Biophys. Res. Commun. 389: 112-116. 19703419
Fan, X., H. Feng, Y. Tan, Y. Xu, Q. Miao, and G. Xu. (2015). A putative 6 trans-membrane nitrate transporter OsNRT1.1b plays a key role in rice under low nitrogen. J Integr Plant Biol. [Epub: Ahead of Print] 26220694
Fang, G., W.N. Konings, and B. Poolman. (2000). Kinetics and substrate specificity of membrane-reconstituted peptide transporter DtpT of Lactococcus lactis. J. Bacteriol. 182: 2530-2535. 10762255
Fei, Y.J., T. Fujita, D.F. Lapp, V. Ganapathy, and F.H. Leibach. (1998). Two oligopeptide transporters from Caenorhabditis elegans: molecular cloning and functional expression. Biochem. J. 332(Pt2): 565-572. 9601088
Frommer, W.B., S. Hummel, and D. Rentsch. (1994). Cloning of an Arabidopsis histidine transporting protein related to nitrate and peptide transporters. FEBS Lett. 347: 185-189. 8033999
Gabrielsen, M., F. Kroner, I. Black, N.W. Isaacs, A.J. Roe, and K. McLuskey. (2011). High-throughput identification of purification conditions leads to preliminary crystallization conditions for three inner membrane proteins. Mol. Membr. Biol. 28: 445-453. 22034843
Ganapathy, V. and S. Miyauchi. (2005). Transport systems for opioid peptides in mammalian tissues. AAPS J 7: E852-856. 16594637
Geissler, S., M. Zwarg, I. Knütter, F. Markwardt, and M. Brandsch. (2010). The bioactive dipeptide anserine is transported by human proton-coupled peptide transporters. FEBS J. 277: 790-795. 20067523
Groneberg, D.A., A. Fischer, K.F. Chung, and H. Daniel. (2004). Molecular mechanisms of pulmonary peptidomimetic drug and peptide transport. Am J Respir Cell Mol Biol 30: 251-260. 14969997
Gu, L., F.Q. Wang, M.J. Li, M.G. Lin, J.M. Wang, F.J. Wang, and Z.Y. Zhang. (2021). [Identification and expression analysis of NRT1 family genes in Rehmannia glutinosa]. Zhongguo Zhong Yao Za Zhi 46: 2788-2797. 34296577
Guettou, F., E.M. Quistgaard, L. Trésaugues, P. Moberg, C. Jegerschöld, L. Zhu, A.J. Jong, P. Nordlund, and C. Löw. (2013). Structural insights into substrate recognition in proton-dependent oligopeptide transporters. EMBO Rep 14: 804-810. 23867627
Hagting, A., E.R.S. Kunji, K.J. Leenhouts, B. Poolman, and W.N. Konings. (1994). The di- and tripeptide transport protein of Lactococcus lactis. J. Biol. Chem. 269: 11391-11399. 8157671
Hagting, A., J.v.d. Velde, B. Poolman and W.N. Konings (1997). Membrane topology of the di- and tripeptide transport protein of Lactococcus lactis. Biochemistry 36: 6777-6785. 9184160
Harder, D., J. Stolz, F. Casagrande, P. Obrdlik, D. Weitz, D. Fotiadis, and H. Daniel. (2008). DtpB (YhiP) and DtpA (TppB, YdgR) are prototypical proton-dependent peptide transporters of Escherichia coli. FEBS J. 275: 3290-3298. 18485005
Hauser, M., S. Kauffman, F. Naider, and J.M. Becker. (2013). Substrate preference is altered by mutations in the fifth transmembrane domain of Ptr2p, the di/tri-peptide transporter of Saccharomyces cerevisiae. Mol. Membr. Biol. 22: 215-227. 16096264
Ishimaru, Y., K. Washiyama, T. Oikawa, S. Hamamoto, N. Uozumi, and M. Ueda. (2017). Dimerization of GTR1 regulates their plasma membrane localization. Plant Signal Behav 0. [Epub: Ahead of Print] 28594299
Jensen JM., Aduri NG., Prabhala BK., Jahnsen R., Franzyk H. and Mirza O. (2014). Critical role of a conserved transmembrane lysine in substrate recognition by the proton-coupled oligopeptide transporter YjdL. Int J Biochem Cell Biol. 55:311-7. 25261786
Jiang, D., J. Lei, B. Cao, S. Wu, G. Chen, and C. Chen. (2019). Molecular Cloning and Characterization of Three Glucosinolate Transporter (GTR) Genes from Chinese Kale. Genes (Basel) 10:. 30857170
Kanno, Y., Y. Kamiya, and M. Seo. (2013). Nitrate does not compete with abscisic acid as a substrate of AtNPF4.6/NRT1.2/AIT1 in Arabidopsis. Plant Signal Behav 8: e26624. 24084651
Karim, S., D. Lundh, K.O. Holmström, A. Mandal, and M. Pirhonen. (2005). Structural and functional characterization of AtPTR3, a stress-induced peptide transporter of Arabidopsis. J Mol Model 11: 226-236. 15889294
Karim, S., K.O. Holmström, A. Mandal, P. Dahl, S. Hohmann, G. Brader, E.T. Palva, and M. Pirhonen. (2007). AtPTR3, a wound-induced peptide transporter needed for defence against virulent bacterial pathogens in Arabidopsis. Planta 225: 1431-1445. 17143616
Knütter, I., B. Hartrodt, G. Tóth, A. Keresztes, G. Kottra, C. Mrestani-Klaus, I. Born, H. Daniel, K. Neubert, and M. Brandsch. (2007). Synthesis and characterization of a new and radiolabeled high-affinity substrate for H+/peptide cotransporters. FEBS J. 274(22):5905-5914. 17944948
Kobayashi, T., S. Shimabukuro-Demoto, R. Yoshida-Sugitani, K. Furuyama-Tanaka, H. Karyu, Y. Sugiura, Y. Shimizu, T. Hosaka, M. Goto, N. Kato, T. Okamura, M. Suematsu, S. Yokoyama, and N. Toyama-Sorimachi. (2014). The histidine transporter SLC15A4 coordinates mTOR-dependent inflammatory responses and pathogenic antibody production. Immunity 41: 375-388. 25238095
Komarova NY., Meier S., Meier A., Grotemeyer MS. and Rentsch D. (2012). Determinants for Arabidopsis peptide transporter targeting to the tonoplast or plasma membrane. Traffic. 13(8):1090-105. 22537078
Komarova, N.Y., K. Thor, A. Gubler, S. Meier, D. Dietrich, A. Weichert, M. Suter Grotemeyer, M. Tegeder, and D. Rentsch. (2008). AtPTR1 and AtPTR5 transport dipeptides in planta. Plant Physiol. 148: 856-869. 18753286
Kottra, G., A. Stamfort, and H. Daniel. (2002). PEPT1 as a paradigm for membrane carriers that mediate electrogenic bidirectional transport of anionic, cationic, and neutral substrates. J. Biol. Chem. 277: 32683-32691. 12082113
Kumar, A., N. Sandhu, P. Kumar, G. Pruthi, J. Singh, S. Kaur, and P. Chhuneja. (2022). Genome-wide identification and in silico analysis of NPF, NRT2, CLC and SLAC1/SLAH nitrate transporters in hexaploid wheat (Triticum aestivum). Sci Rep 12: 11227. 35781289
Leibach, F.H. and V. Ganapathy. (1996). Peptide transporters in the intestine and the kidney. Annu. Rev. Nutr. 16: 99-119. 8839921
Li, C., Z. Yue, S. Newstead, and G.A. Voth. (2022). Proton coupling and the multiscale kinetic mechanism of a peptide transporter. Biophys. J. [Epub: Ahead of Print] 35614850
Liu, K.H. and Y.F. Tsay. (2003). Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. EMBO. J. 22: 1005-1013. 12606566
Liu, X.H., J.F. Zhao, T. Wang, and M.B. Wu. (2018). Design, identification, antifungal evaluation and molecular modeling of chlorotetaine derivatives as new anti-fungal agents. Nat Prod Res 1-9. [Epub: Ahead of Print] 30417659
M Jensen J., A Ernst H., Wang X., Hald H., C Ditta A., Ismat F., Rahman M. and Mirza O. (2012). Functional Investigation of Conserved Membrane-Embedded Glutamate Residues in the Proton-Coupled Peptide Transporter YjdL. Protein Pept Lett. 19(3):282-7. 21933132
Martín, Y., F.J. Navarro, and J.M. Siverio. (2008). Functional characterization of the Arabidopsis thaliana nitrate transporter CHL1 in the yeast Hansenula polymorpha. Plant Mol. Biol. 68: 215-224. 18563586
Meredith, D. (2004). Site-directed mutation of arginine 282 to glutamate uncouples the movement of peptides and protons by the rabbit proton-peptide cotransporter PepT1. J. Biol. Chem. 279: 15795-15798. 14715671
Miyamoto, K.-I., T. Shiraga, K. Morita, H. Yamamoto, H. Haga, Y. Taketani, I. Tamai, Y. Sai, A. Tsuji, and E. Takeda. (1996). Sequence, tissue distribution and developmental changes in rat intestinal oligopeptide transporter. Biochim. Biophys. Acta 1305: 34-38. 8605246
Mori, A., T. Masuda, S. Ito, and S. Ohtsuki. (2022). Human Hepatic Transporter Signature Peptides for Quantitative Targeted Absolute Proteomics: Selection, Digestion Efficiency, and Peptide Stability. Pharm Res. [Epub: Ahead of Print] 36131112
Newstead, S., D. Drew, A.D. Cameron, V.L. Postis, X. Xia, P.W. Fowler, J.C. Ingram, E.P. Carpenter, M.S. Sansom, M.J. McPherson, S.A. Baldwin, and S. Iwata. (2011). Crystal structure of a prokaryotic homologue of the mammalian oligopeptide-proton symporters, PepT1 and PepT2. EMBO. J. 30: 417-426. 21131908
Nour-Eldin, H.H., T.G. Andersen, M. Burow, S.R. Madsen, M.E. Jørgensen, C.E. Olsen, I. Dreyer, R. Hedrich, D. Geiger, and B.A. Halkier. (2012). NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds. Nature 488: 531-534. 22864417
Oppermann, H., M. Heinrich, C. Birkemeyer, J. Meixensberger, and F. Gaunitz. (2019). The proton-coupled oligopeptide transporters PEPT2, PHT1 and PHT2 mediate the uptake of carnosine in glioblastoma cells. Amino Acids 51: 999-1008. 31073693
Paulsen, I.T. and R.A. Skurray. (1994). The POT family of transport proteins. Trends in Biochem. Sci. 18: 404. 7817396
Pieri, M., C. Gan, P. Bailey, and D. Meredith. (2009). The transmembrane tyrosines Y56, Y91 and Y167 play important roles in determining the affinity and transport rate of the rabbit proton-coupled peptide transporter PepT1. Int J Biochem. Cell Biol. 41: 2204-2213. 19389486
Quistgaard, E.M., M. Martinez Molledo, and C. Löw. (2017). Structure determination of a major facilitator peptide transporter: Inward facing PepTSt from Streptococcus thermophilus crystallized in space group P3121. PLoS One 12: e0173126. 28264013
Rentsch, D., M. Laloi, I. Rouhara, E. Schmelzer, S. Delrot, and W.B. Frommer. (1995). NTR1 encodes a high affinity oligopeptide transporter in Arabidopsis. FEBS Lett. 370: 264-268. 7656990
Romano, A., G. Kottra, A. Barca, N. Tiso, M. Maffia, F. Argenton, H. Daniel, C. Storelli, and T. Verri. (2005). High-affinity peptide transporter PEPT2 (SLC15A2) of the zebrafish Danio rerio: functional properties, genomic organization, and expression analysis. Physiol Gen. 24: 207-217. 16317081
Rubio-Aliaga, I., M. Boll, and H. Daniel. (2000). Cloning and Characterization of the Gene Encoding the Mouse Peptide Transporter PEPT2. Biochem. and Biophys. Research Communications 276: 734-741. 11027540
Rühl, A., S. Hoppe, I. Frey, H. Daniel, and M. Schemann. (2005). Functional expression of the peptide transporter PEPT2 in the mammalian enteric nervous system. J Comp Neurol 490: 1-11. 16041713
Saier, M.H., Jr., B.H. Eng, S. Fard, J. Garg, D.A. Haggerty, W.J. Hutchinson, D.L. Jack, E.C. Lai, H.J. Liu, D.P. Nusinew, A.M. Omar, S.S. Pao, I.T. Paulsen, J.A. Quan, M. Sliwinski, T.-T. Tseng, S. Wachi, and G.B. Young. (1999). Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochim. Biophys. Acta 1422: 1-56. 10082980
Santin, A., M.T. Russo, L.M. de Los Ríos, M. Chiurazzi, M.R. d''Alcalà, B. Lacombe, M.I. Ferrante, and A. Rogato. (2023). The tonoplast localized protein PtNPF1 participates in the regulation of nitrogen response in diatoms. New Phytol. [Epub: Ahead of Print] 38084038
Schniers, B.K., D. Rajasekaran, K. Korac, T. Sniegowski, V. Ganapathy, and Y.D. Bhutia. (2021). PEPT1 is essential for the growth of pancreatic cancer cells: a viable drug target. Biochem. J. 478: 3757-3774. 34569600
Segonzac, C., J.C. Boyer, E. Ipotesi, W. Szponarski, P. Tillard, B. Touraine, N. Sommerer, M. Rossignol, and R. Gibrat. (2007). Nitrate efflux at the root plasma membrane: identification of an Arabidopsis excretion transporter. Plant Cell. 19: 3760-3777. 17993627
Sharma, N., N.G. Aduri, A. Iqbal, B.K. Prabhala, and O. Mirza. (2016). Peptide Selectivity of the Proton-Coupled Oligopeptide Transporter from Neisseria meningitidis. J. Mol. Microbiol. Biotechnol. 26: 312-319. 27438044
Shen, J., M. Hu, X. Fan, Z. Ren, C. Portioli, X. Yan, M. Rong, and M. Zhou. (2022). Extracellular domain of PepT1 interacts with TM1 to facilitate substrate transport. Structure. [Epub: Ahead of Print] 35580608
Shimizu, T., Y. Kanno, H. Suzuki, S. Watanabe, and M. Seo. (2021). Arabidopsis NPF4.6 and NPF5.1 Control Leaf Stomatal Aperture by Regulating Abscisic Acid Transport. Genes (Basel) 12:. 34201150
Solcan N., Kwok J., Fowler PW., Cameron AD., Drew D., Iwata S. and Newstead S. (2012). Alternating access mechanism in the POT family of oligopeptide transporters. EMBO J. 31(16):3411-21. 22659829
Song, F., Y. Hu, Y. Wang, D.E. Smith, and H. Jiang. (2018). Functional Characterization of Human Peptide/Histidine Transporter 1 in Stably Transfected MDCK Cells. Mol Pharm 15: 385-393. 29224352
Song, J.T., H.S. Seo, S.I. Song, J.S. Lee, and Y.D. Choi. (2000). NTR1 encodes a floral nectary-specific gene in Brassica campestris L. ssp. pekinensis. Plant Mol. Biol. 42: 647-655. 10809010
Sreedharan, S., O. Stephansson, H.B. Schiöth, and R. Fredriksson. (2011). Long evolutionary conservation and considerable tissue specificity of several atypical solute carrier transporters. Gene 478: 11-18. 21044875
Steiner, H.-Y., F. Naider, and J.M. Becker. (1995). The PTR family: a new group of peptide transporters. Mol. Microbiol. 16: 825-834. 7476181
Steiner, H.-Y., W. Song, L. Zhang, F. Naider, J.M. Becker, and G. Stacey. (1994). An arabidopsis peptide transporter is a member of a new class of membrane transport proteins. Plant Cell 6: 1289-1299. 7919993
Sugiura, M., M.N. Georgescu, and M. Takahashi. (2007). A nitrite transporter associated with nitrite uptake by higher plant chloroplasts. Plant Cell Physiol. 48: 1022-1035. 17566055
Sun, J. and N. Zheng. (2015). Molecular Mechanism Underlying the Plant NRT1.1 Dual-Affinity Nitrate Transporter. Front Physiol 6: 386. 26733879
Søndergaard, H.B., B. Brodin, and C.U. Nielsen. (2008). HPEPT1 is responsible for uptake and transport of Gly-Sar in the human bronchial airway epithelial cell-line Calu-3. Pflugers Arch 456(3): 611-622. 18094991
Tsay, Y.-F., J.I. Schroeder, K.A. Feldmann, and N.M. Crawford. (1993). The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 72: 705-713. 8453665
Verri, T., A. Barca, P. Pisani, B. Piccinni, C. Storelli, and A. Romano. (2016). Di- and tripeptide transport in vertebrates: the contribution of teleost fish models. J Comp Physiol B. [Epub: Ahead of Print] 27803975
Viennois, E., A. Pujada, J. Zen, and D. Merlin. (2018). Function, Regulation, and Pathophysiological Relevance of the POT Superfamily, Specifically PepT1 in Inflammatory Bowel Disease. Compr Physiol 8: 731-760. 29687900
Vizcaíno, J.A., R.E. Cardoza, M. Hauser, R. Hermosa, M. Rey, A. Llobell, J.M. Becker, S. Gutiérrez, and E. Monte. (2006). ThPTR2, a di/tri-peptide transporter gene from Trichoderma harzianum. Fungal Genet Biol 43: 234-246. 16466953
von Wittgenstein, N.J., C.H. Le, B.J. Hawkins, and J. Ehlting. (2014). Evolutionary classification of ammonium, nitrate, and peptide transporters in land plants. BMC Evol Biol 14: 11. 24438197
Wang, C., C. Chu, X. Ji, G. Luo, C. Xu, H. He, J. Yao, J. Wu, J. Hu, and Y. Jin. (2022). Biology of Peptide Transporter 2 in Mammals: New Insights into Its Function, Structure and Regulation. Cells 11:. 36139448
Wang, Y., K. Wei, L. Ruan, P. Bai, L. Wu, L. Wang, and H. Cheng. (2022). Systematic Investigation and Expression Profiles of the Nitrate Transporter 1/Peptide Transporter Family (NPF) in Tea Plant (). Int J Mol Sci 23:. 35743106
Weitz, D., D. Harder, F. Casagrande, D. Fotiadis, P. Obrdlik, B. Kelety, and H. Daniel. (2007). Functional and structural characterization of a prokaryotic peptide transporter with features similar to mammalian PEPT1. J. Biol. Chem. 282: 2832-2839. 17158458
Wu, C., Y. Xiang, P. Huang, M. Zhang, M. Fang, W. Yang, W. Li, F. Cao, L.H. Liu, W. Pu, and S. Duan. (2023). Molecular identification and physiological functional analysis of NtNRT1.1B that mediated nitrate long-distance transport and improved plant growth when overexpressed in tobacco. Front Plant Sci 14: 1078978. 36925751
Wu, J., R. Li, Y. Shen, X. Zhang, X. Wang, Z. Wang, Y. Zhao, L. Huang, L. Zhang, and B. Zhang. (2023). Candida tropicalis oligopeptide transporters assist in the transmembrane transport of the antimicrobial peptide CGA-N9. Biochem. Biophys. Res. Commun. 649: 101-109. 36764112
Wu, M., S. Tong, S. Waltersperger, K. Diederichs, M. Wang, and L. Zheng. (2013). Crystal structure of Ca2+/H+ antiporter protein YfkE reveals the mechanisms of Ca2+ efflux and its pH regulation. Proc. Natl. Acad. Sci. USA 110: 11367-11372. 23798403
Xu, L., Y. Li, I.S. Haworth, and D.L. Davies. (2010). Functional role of the intracellular loop linking transmembrane domains 6 and 7 of the human dipeptide transporter hPEPT1. J. Membr. Biol. 238: 43-49. 21104182
Zhang, H., S. Li, M. Shi, S. Wang, L. Shi, F. Xu, and G. Ding. (2020). Genome-Wide Systematic Characterization of the Family Genes and Their Transcriptional Responses to Multiple Nutrient Stresses in Allotetraploid Rapeseed. Int J Mol Sci 21:. 32824914
Zhao, Y., G. Mao, M. Liu, L. Zhang, X. Wang, and X.C. Zhang. (2014). Crystal structure of the E. coli peptide transporter YbgH. Structure 22: 1152-1160. 25066136
Zhou, J.-J., F.L. Theodoulou, I. Muldin, B. Ingemarsson, and A.J. Miller. (1998). Cloning and functional characterization of a Brassica napus transporter that is able to transport nitrate and histidine. J. Biol.Chem. 273: 12017-12023. 9575142
Zhou, X., M. Thamotharan, A. Gangopadhyay, C. Serdikoff, and S.A. Adibi. (2000). Characterization of an oligopeptide transporter in renal lysosomes. Biochim. Biophys. Acta 1466: 372-378. 10825457