TCDB is operated by the Saier Lab Bioinformatics Group

2.A.20 The Inorganic Phosphate Transporter (PiT) Family

The proteins of the PiT family are derived from Gram-negative and Gram-positive bacteria, archaea, and eukaryotes. Functionally-characterized members of the family appear to catalyze inorganic phosphate (Pi) or inorganic sulfate uptake either by H+ or Na+ symport. Both PitA and PitB of E. coli probably catalyze metal ion·phosphate:H+ symport, where Mg2+, Ca2+ or Zn2+ (and probably other divalent cations) can complex Pi. The mammalian proteins have been reported to function as viral receptors, but they undoubtedly function as transport proteins as well.  For numerous gammaretroviruses, such as the gibbon ape leukemia virus, woolly monkey virus, feline leukemia virus subgroup B, feline leukemia virus subgroup T, and 10A1 murine leukemia virus, this receptor is the human type III sodium-dependent inorganic phosphate transporter, SLC20A1, also known as PiT1 (Farrell et al. 2009). Members of this family have the PiT fold (Ferrada and Superti-Furga 2022).

The molecular sizes of Pit family members are reported to vary from 354 to 681 residues (10-12 TMSs) with the mammalian and Plasmodium proteins exhibiting the largest sizes. The sulfate permease of B. subtilis, CysP, is of 354 residues with 11 putative TMSs (Mansilla and de Mendoza, 2000).

Phylogenetic grouping of the phosphate transport proteins generally correlates with organismal phylogeny. Thus the fungal, plant, animal and archaeal proteins each cluster separately (Saier et al., 1999). However, the tree exhibits two clusters of bacterial phosphate transport proteins. One bacterial cluster is distant from the eukaryotic proteins while the other cluster is close to the plant proteins. Both clusters include proteins from Gram-negative and Gram-positive bacteria. The sulfate permease, CysP, is distantly related to the phosphate permeases.

Members of the PiT family arose by a tandem internal gene duplication event. Surprisingly, TopPred predicts a 12 TMS topology for the yeast Pho89 protein, but the homologous regions are not predicted to show similar topological features. Thus, for example TMS 1 is homologous to TMS 9, and TMS 4 is predicted to correspond to the loop between TMSs 11 and 12 (Persson et al., 1998, 1999).

The malaria parasite, Plasmodium falciparum, grows within its host erythrocyte and induces an increase in the permeability of the erythrocyte membrane to a range of solutes including Na+ and K+. This results in a progressive increase in the concentration of Na+ in the erythrocyte cytosol. The parasite cytosol has a relatively low Na+ concentration, generating a large inward Na+ gradient across the parasite plasma membrane. Saliba et al. (2006) showed that the parasite exploits the Na+ electrochemical gradient to energize the uptake of inorganic phosphate (Pi) with a stoichiometry of 2Na+:1Pi and with an apparent preference for the monovalent over the divalent form of Pi (see TC #2.A.20.2.5).

The generalized transport reactions possibly catalyzed by members of the PiT family are:

(1) HPO42- (out) + [nH+ or Na+] (out) → HPO42- (in) + [nH+ or Na+] (in)

(2) Me2+ · HPO42- (out) + nH+ (out) → Me2+ · HPO42- (in) + nH+ (in)

(3) SO42- (out) + nH+ (out) → SO42- (in) + nH+ (in)

References associated with 2.A.20 family:

Aguilar-Barajas E., Diaz-Perez C., Ramirez-Diaz MI., Riveros-Rosas H. and Cervantes C. (2011). Bacterial transport of sulfate, molybdate, and related oxyanions. Biometals. 24(4):687-707. 21301930
Ahn, J., J. Hong, M. Park, H. Lee, E. Lee, C. Kim, J. Lee, E.S. Choi, J.K. Jung, and H. Lee. (2009). Phosphate-responsive promoter of a Pichia pastoris sodium phosphate symporter. Appl. Environ. Microbiol. 75: 3528-3534. 19329662
Asady, B., C.F. Dick, K. Ehrenman, T. Sahu, J.D. Romano, and I. Coppens. (2020). A single Na+-Pi cotransporter in Toxoplasma plays key roles in phosphate import and control of parasite osmoregulation. PLoS Pathog 16: e1009067. [Epub: Ahead of Print] 33383579
Beard, S.J., R. Hashim, G. Wu, M.R. Binet, M.N. Hughes, and R.K. Poole. (2000). Evidence for the transport of zinc(II) ions via the pit inorganic phosphate transport system in Escherichia coli. FEMS Microbiol. Lett. 184: 231-235. 10713426
Borghese, R., L. Canducci, F. Musiani, M. Cappelletti, S. Ciurli, R.J. Turner, and D. Zannoni. (2016). On the role of a specific insert in acetate permeases (ActP) for tellurite uptake in bacteria: Functional and structural studies. J Inorg Biochem 163: 103-109. 27421695
Bøttger, P. and L. Pedersen. (2011). Mapping of the minimal inorganic phosphate transporting unit of human PiT2 suggests a structure universal to PiT-related proteins from all kingdoms of life. BMC Biochem 12: 21. 21586110
Bøttger, P., S.E. Hede, M. Grunnet, B. Høyer, D.A. Klaerke, and L. Pedersen. (2006). Characterization of transport mechanisms and determinants critical for Na+-dependent Pi symport of the PiT family paralogs human PiT1 and PiT2. Am. J. Physiol. Cell Physiol. 291: C1377-1387. 16790504
Cui, J., X. Yang, J. Yang, R. Jia, Y. Feng, and B. Shen. (2022). A Coccidia-Specific Phosphate Transporter Is Essential for the Growth of Toxoplasma gondii Parasites. Microbiol Spectr e0218622. [Epub: Ahead of Print] 36094254
Daram, P., S. Brunner, C. Rausch, C. Steiner, N. Amrhein and M. Bucher (1999). Pht2;1 encodes a low-affinity phosphate transporter from Arabidopsis. Plant Cell 11: 2153-2166. 10559441
Elías, A.O., M.J. Abarca, R.A. Montes, T.G. Chasteen, J.M. Pérez-Donoso, and C.C. Vásquez. (2012). Tellurite enters Escherichia coli mainly through the PitA phosphate transporter. Microbiologyopen 1: 259-267. 23189244
Farrell, K.B., G.E. Tusnady, and M.V. Eiden. (2009). New structural arrangement of the extracellular regions of the phosphate transporter SLC20A1, the receptor for gibbon ape leukemia virus. J. Biol. Chem. 284: 29979-29987. 19717569
Feng, H., X. Li, D. Sun, Y. Chen, G. Xu, Y. Cao, and L.Q. Ma. (2021). Expressing Phosphate Transporter PvPht2;1 Enhances P Transport to the Chloroplasts and Increases Arsenic Tolerance in. Environ Sci Technol. [Epub: Ahead of Print] 33497189
Ferrada, E. and G. Superti-Furga. (2022). A structure and evolutionary-based classification of solute carriers. iScience 25: 105096. 36164651
Harris, R.M., D.C. Webb, S.M. Howitt and G.B. Cox (2001). Characterization of PitA and PitB from Escherichia coli. J. Bacteriol. 183: 5008-5014. 11489853
Jackson, R.J., M.R. Binet, L.J. Lee, R. Ma, A.I. Graham, C.W. McLeod, and R.K. Poole. (2008). Expression of the PitA phosphate/metal transporter of Escherichia coli is responsive to zinc and inorganic phosphate levels. FEMS Microbiol. Lett. 289: 219-224. 19054109
Kim, S., T.D. Lieberman, and R. Kishony. (2014). Alternating antibiotic treatments constrain evolutionary paths to multidrug resistance. Proc. Natl. Acad. Sci. USA 111: 14494-14499. 25246554
Li, J., W. Dong, Z. Li, H. Wang, H. Gao, and Y. Zhang. (2019). Impact of SLC20A1 on the Wnt/β‑catenin signaling pathway in somatotroph adenomas. Mol Med Rep. [Epub: Ahead of Print] 31432167
Li, S.H., B.B. Xia, C. Zhang, J. Cao, and L.H. Bai. (2012). Cloning and characterization of a phosphate transporter gene in Dunaliella salina. J Basic Microbiol 52: 429-436. 22052620
Li, Y., X. Lin, M. Zhu, J. Li, Z. Yuan, and H. Xu. (2020). Whole‑exome sequencing identifies a novel mutation of SLC20A2 (c.C1849T) as a possible cause of hereditary multiple exostoses in a Chinese family. Mol Med Rep 22: 2469-2477. 32705272
Maheshwari, U., J.M. Mateos, U. Weber-Stadlbauer, R. Ni, V. Tamatey, S. Sridhar, A. Restrepo, P.A. de Jong, S.F. Huang, J. Schaffenrath, S.A. Stifter, F. Szeri, M. Greter, H.L. Koek, and A. Keller. (2023). Inorganic phosphate exporter heterozygosity in mice leads to brain vascular calcification, microangiopathy, and microgliosis. Brain Pathol. [Epub: Ahead of Print] 37505935
Mann, B.J., B.J. Bowman, J. Grotelueschen and R.L. Metzenberg (1989). Nucleotide sequence of pho-4, encoding a phosphate-repressible phosphate permease of Neurospora crassa. Gene 83: 281-289. 2531109
Mansilla, M.C. and D. de Mendoza. (2000). The Bacillus subtilis cysP gene encodes a novel sulphate permease related to the inorganic phosphate transporter (Pit) family. Microbiology 146(Pt4): 815-821. 10784039
Martinez, P. and B.L. Persson (1998). Identification, cloning and characterization of a derepressible Na+-coupled phosphate transporter in Saccharomyces cerevisiae. Mol. Gen. Genet. 258: 628-638. 9671031
McCarthy, S., C. Ai, G. Wheaton, R. Tevatia, V. Eckrich, R. Kelly, and P. Blum. (2014). Role of an archaeal PitA transporter in the copper and arsenic resistance of Metallosphaera sedula, an extreme thermoacidophile. J. Bacteriol. 196: 3562-3570. 25092032
Monfrini, E., F. Arienti, P. Rinchetti, F. Lotti, and G.M. Riboldi. (2023). Brain Calcifications: Genetic, Molecular, and Clinical Aspects. Int J Mol Sci 24:. 37240341
Młodzińska, E. and M. Zboińska. (2016). Phosphate Uptake and Allocation - A Closer Look at Arabidopsis thaliana L. and Oryza sativa L. Front Plant Sci 7: 1198. 27574525
Naureen, Z., A. Sham, H. Al Ashram, S.A. Gilani, S. Al Gheilani, F. Mabood, J. Hussain, A. Al Harrasi, and S.F. AbuQamar. (2018). Effect of phosphate nutrition on growth, physiology and phosphate transporter expression of cucumber seedlings. Plant Physiol. Biochem 127: 211-222. [Epub: Ahead of Print] 29614440
Persson, B.L., A. Berhe, U. Fristedt, P. Martinez, J. Pattison, J. Petersson and R. Weinander (1998). Phosphate permeases of Saccharomyces cerevisiae. Biochim. Biophys. Acta 1365: 23-30. 9693717
Persson, B.L., J. Petersson, U. Fristedt, R. Weinander, A. Berhe and J. Pattison (1999). Phosphate permeases of Saccharomyces cerevisiae: structure, function and regulation. Biochim. Biophys. Acta 1422: 255-272. 10548719
Ravera, S., H. Murer, and I.C. Forster. (2013). An Externally Accessible Linker Region in the Sodium-Coupled Phosphate Transporter PiT-1 (SLC20A1) is Important for Transport Function. Cell Physiol Biochem 32: 187-199. 23899881
Ravera, S., L.V. Virkki, H. Murer, and I.C. Forster. (2007). Deciphering PiT transport kinetics and substrate specificity using electrophysiology and flux measurements. Am. J. Physiol. Cell Physiol. 293: C606-620. 17494632
Saier, M.H., Jr., B.H. Eng, S. Fard, J. Garg, D.A. Haggerty, W.J. Hutchinson, D.L. Jack, E.C. Lai, H.J. Liu, D.P. Nusinew, A.M. Omar, S.S. Pao, I.T. Paulsen, J.A. Quan, M. Sliwinski, T.-T. Tseng, S. Wachi and G.B. Young (1999). Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochim. Biophys. Acta 1422: 1-56. 10082980
Saliba, K.J., R.E. Martin, A. Broer, R.I. Henry, C.S. McCarthy, M.J. Downie, R.J. Allen, K.A. Mullin, G.I. McFadden, S. Broer, and K. Kirk. (2006). Sodium-dependent uptake of inorganic phosphate by the intracellular malaria parasite. Nature 443: 582-585. 17006451
Santos-Beneit, F., A. Rodríguez-García, E. Franco-Domínguez, and J.F. Martín. (2008). Phosphate-dependent regulation of the low- and high-affinity transport systems in the model actinomycete Streptomyces coelicolor. Microbiology 154: 2356-2370. 18667568
Sekine, S.I., K. Nishii, T. Masaka, H. Kurita, M. Inden, and I. Hozumi. (2019). SLC20A2 variants cause dysfunctional phosphate transport activity in endothelial cells induced from Idiopathic Basal Ganglia Calcification patients-derived iPSCs. Biochem. Biophys. Res. Commun. 510: 303-308. 30704756
Versaw, W.K. and R.L. Metzenberg (1995). Repressible cation-phosphate symporters in Neurospora crassa. Proc. Natl. Acad. Sci. USA 92: 3884-3887. 7732001
Wallingford MC. and Giachelli CM. (2014). Loss of PiT-1 results in abnormal endocytosis in the yolk sac visceral endoderm. Mech Dev. 133:189-202. 25138534
Wang, C., Y. Li, L. Shi, J. Ren, M. Patti, T. Wang, J.R. de Oliveira, M.J. Sobrido, B. Quintáns, M. Baquero, X. Cui, X.Y. Zhang, L. Wang, H. Xu, J. Wang, J. Yao, X. Dai, J. Liu, L. Zhang, H. Ma, Y. Gao, X. Ma, S. Feng, M. Liu, Q.K. Wang, I.C. Forster, X. Zhang, and J.Y. Liu. (2012). Mutations in SLC20A2 link familial idiopathic basal ganglia calcification with phosphate homeostasis. Nat. Genet. 44: 254-256. 22327515