TCDB is operated by the Saier Lab Bioinformatics Group

2.A.23 The Dicarboxylate/Amino Acid:Cation (Na+ or H+) Symporter (DAACS) Family

The members of the DAACS family catalyze Na+ and/or H+ symport together with (a) a Krebs cycle dicarboxylate (malate, succinate, or fumarate), (b) a dicarboxylic amino acid (glutamate or aspartate), (c) a small, semipolar, neutral amino acid (Ala, Ser, Cys, Thr), (d) both neutral and acidic amino acids or (e) most zwitterionic and dibasic amino acids. The bacterial members are of about 450 (420-491) amino acyl residues while the mammalian proteins are of about 550 (503-574) residues in length. These proteins possess between ten and twelve hydrophobic segments per polypeptide chain. Two of them, human EAAT2 (TC #2.A.23.2.2) and E. coli GltP (TC #2.A.23.1.1) have been shown to be homotrimers (Gendreau et al., 2004). A specific topological model in which 7 α-helical TMSs are followed by a reentrant loop-pore structure followed by one final TMS is presented in Slotboom et al. (1999) and Leighton et al. (2002). Possibly, the transporter consists of eight TMSs, and one or two pore-loop structures that dip into the membrane (one between TMSs 6 and 7, the other between TMSs 7 and 8) in a fashion reminiscent of pore-loop structures found in VIC family ion channels (TC#1.A.1) (Grunewald et al., 2002).  This family of transporters has been reviewed (Grewer et al. 2013). Functional up-regulation of GluTs may provide a pharmacotherapeutic approach for the management of chronic pain using pyridazine derivatives and beta-lactams (Gegelashvili and Bjerrum 2019). VGLUTs (TC# 2.A.1.14) and EAATs (TC# 2.A.23.2) may be targets for the treatment of Parkinson's Disease (PD). VGLUTs and EAATs can be used as clinical drug targets to achieve better efficacy (Li et al. 2021).

All of the bacterial proteins cluster together on the phylogenetic tree as do the mammalian proteins. The mammalian permeases that transport neutral amino acids cluster separately from those that are specific for the acidic amino acids. Among the mammalian proteins are neuronal excitatory amino acid neurotransmitter permeases. One of these (the GLT-1 L-glutamate/L-aspartate/D-aspartate transporter) has been shown to cotransport the neurotransmitter with 3 Na+ and 1 H+ and to countertransport 1 K+. The EAAT3 carrier (also called the EAAC1 carrier) uses Arg-447 to bind dicarboxylic amino acids in the presence of K+ but not monocarboxylic amino acids (Bendahan et al., 2001). Larsson et al. (2010) have identified the 3rd Na+ binding site and provided evidence for the mechanism of transport. Glutamate and Na+ binding activates an uncoupled chloride conductance in EAAT proteins, showing that they can function both as carriers and channels, and the two functions may arise from separate transmembrane domains (Ryan and Vandenberg 2006).

Some members of the DAACS family from animals, such as EAAT1, EAAT2, EAAT3 and EAAT4, can apparently be induced to function in a 'channel mode' wherein the transporter allows ion passage without being coupled to substrate translocation. This effect may involve a chloride-permeable, anion-selective channel. Some evidence suggests that the N- and C-termini of EAAT3 as well as two histidyl residues (in EAAT4) in the extracellular loop between TMSs 3 and 4 play a role in conversion to the channel mode (Li et al., 2000). The loop between TMSs 3 and 4 functions to allow regulation of this current by Zn2+ (Mitrovic et al., 2001). Distinct conformational states mediate carrier versus channel function, and a dynamic equilibrium exists between the two forms (Borre et al., 2002; Ryan et al., 2002). It is possible to isolate anion permeability mutants in TMS2 that show no change in glutamate transport (Ryan et al., 2004). EAAT4 but not EAAT2 anion channels display voltage-dependent gating that is modified by glutamate (Melzer et al., 2003). Possibly the channel activity is related to their trimeric structures (Gendreau et al., 2004). Torres-Salazar and Fahlke (2007) have reported that neuronal glutamate transporters (EAATs) vary in substrate transport rate but not in unitary anion channel conductance.

The 3-D structure of a member of the DAACS family has been determined (Boudker et al., 2007; Yernool et al., 2004) (see 2.A.23.1.5). The putative transporter is a bowl-shaped trimer with a solvent-filled extracellular basin extending halfway across the membrane bilayer. Each protomer harbors 8 TMSs and two reentrant helical hairpins. At the bottom of the basin are three independent binding sites, each cradled by two helical hairpins, reaching from opposite sides of the membrane. There are 3 independent translocation pathways. The first six transmembrane segments form a distorted 'amino-terminal cylinder' and provide all interprotomer contacts, whereas transmembrane segments TM7 and TM8, together with hairpins HP1 and HP2, coalesce to form a highly conserved core within the amino-terminal cylinder. It is proposed that transport of aspartate or glutamate is achieved by movements of the hairpins that allow alternating access to either side of the membrane. Helical hairpin 2 is the extracellular gate that controls access of aspartate and the ions to the internal binding site (Boudker et al., 2007). Molecular simulations have provided evidence for the substrate translocation pathway (Gu et al., 2009). The central cavity in trimeric glutamate transporters restricts ligand diffusion (Leary et al., 2011). 

Excitatory amino acid transporters (EAATs) are essential for terminating glutamatergic synaptic transmission. They are not only coupled glutamate/Na+/H+/K+ transporters but also function as anion-selective channels. EAAT anion channels regulate neuronal excitability, and gain-of-function mutations in these proteins result in ataxia and epilepsy. Machtens et al. 2015 examined the prokaryotic homolog GltPh (TC# 2.A.23.1.5) and mammalian EAATs to determine how these transporters conduct anions. Whereas outward- and inward-facing GltPh conformations are nonconductive, lateral movement of the glutamate transport domain from intermediate transporter conformations results in formation of an anion-selective conduction pathway. Entry of anions into this pathway, and mutations of homologous pore-forming residues had analogous effects on GltPh simulations and EAAT2/EAAT4 measurements of single-channel currents and anion/cation selectivities. These findings provide a mechanistic framework of how neurotransmitter transporters can operate as anion-selective and ligand-gated ion channels (Machtens et al. 2015).

As noted above, EAATs couple the transport of glutamate to the co-transport of three Na+ ions and one H+ ion into the cell, and the counter-transport of one K+ ion out of the cell. The EAAT Cl- channel is activated by the binding of glutamate and Na+, but is thermodynamically uncoupled from glutamate transport and involves molecular determinants distinct from those responsible for glutamate transport (Qu et al. 2019).

Several O-Benzylated l-threo-beta-hydroxyaspartate derivatives have been developed as highly potent inhibitors of EAATs with TFB-TBOA ((2S,3S)-2-amino 3-((3-(4-(trifluoromethyl)benzamido)benzyl)oxy)succinic acid) standing out as a low-nanomolar inhibitor (Leuenberger et al. 2016).


The generalized transport reaction catalyzed by members of the DAACS family is:

substrate (dicarboxylate or amino acid) (out) + 4 M+ [M+ =1  H+ and 3 Na+] (out) + K+ (in) →
substrate (in) + 4M+ (in) +K+ (out)

References associated with 2.A.23 family:

Akyuz, N., R.B. Altman, S.C. Blanchard, and O. Boudker. (2013). Transport dynamics in a glutamate transporter homologue. Nature 502: 114-118. 23792560
Almilaji, A., C. Munoz, T. Pakladok, I. Alesutan, M. Feger, M. Föller, U.E. Lang, E. Shumilina, and F. Lang. (2013). Klotho Sensitivity of the Excitatory Amino Acid Transporters EAAT3 and EAAT4. PLoS One 8: e70988. 23923038
Antony, J.M., K.K. Ellestad, R. Hammond, K. Imaizumi, F. Mallet, K.G. Warren, and C. Power. (2007). The human endogenous retrovirus envelope glycoprotein, syncytin-1, regulates neuroinflammation and its receptor expression in multiple sclerosis: a role for endoplasmic reticulum chaperones in astrocytes. J Immunol 179: 1210-1224. 17617614
Arkhipova, V., G. Trinco, T.W. Ettema, S. Jensen, D.J. Slotboom, and A. Guskov. (2019). Binding and transport of D-aspartate by the glutamate transporter homolog Glt. Elife 8:. 30969168
Arriza, J.L., M.P. Kavanaugh, W.A. Fairman, Y.N. Wu, G.H. Murdoch, R.A. North, and S.G. Amara. (1993). Cloning and expression of a human neutral amino acid transporter with structural similarity to the glutamate transporter gene family. J. Biol. Chem. 268: 15329-15332. 8101838
Bartolomé-Martín, D., I. Ibáñez, D. Piniella, E. Martínez-Blanco, S.G. Pelaz, and F. Zafra. (2019). Identification of potassium channel proteins Kv7.2/7.3 as common partners of the dopamine and glutamate transporters DAT and GLT-1. Neuropharmacology. [Epub: Ahead of Print] 30885609
Bendahan, A., A. Armon, N. Madani, M.P. Kavanaugh, and B.I. Kanner. (2001). Arginine 447 plays a pivotal role in substrate interactions in a neuronal glutamate transporter. J. Biol. Chem. 275: 37436-37442. 10978338
Besson, M.T., D.B. Ré, M. Moulin, and S. Birman. (2005). High affinity transport of taurine by the Drosophila aspartate transporter dEAAT2. J. Biol. Chem. 280: 6621-6626. 15611131
Borre, L. and B.I. Kanner. (2001). Coupled, but not uncoupled, fluxes in a neuronal glutamate transporter can be activated by lithium ions. J. Biol. Chem. 276: 40396-40401. 11479303
Borre, L., M.P. Kavanaugh, and B.I. Kanner. (2002). Dynamic equilibrium between coupled and uncoupled modes of a neuronal glutamate transporter. J. Biol. Chem. 277: 13501-13507. 11823462
Boudker, O., R.M. Ryan, D. Yernool, K. Shimamoto, and E. Gouaux. (2007). Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature 445: 387-393. 17230192
Bröer, S. (2008). Amino acid transport across mammalian intestinal and renal epithelia. Physiol. Rev. 88: 249-286. 18195088
Bröer, S. (2008). Apical transporters for neutral amino acids: physiology and pathophysiology. Physiology (Bethesda) 23: 95-103. 18400692
Burguière, P., S. Auger, M.-F. Hullo, A. Danchin, and I. Martin-Verstraete. (2004). Three different systems particpate in L-cystine uptake in Bacillus subtilis. J. Bacteriol. 186: 4875-4884. 15262924
Choi, K.D., J.C. Jen, S.Y. Choi, J.H. Shin, H.S. Kim, H.J. Kim, J.S. Kim, and J.H. Choi. (2016). Late-onset episodic ataxia associated with SLC1A3 mutation. J Hum Genet. [Epub: Ahead of Print] 27829685
Colucci, E., Z.R. Anshari, M.F. Patiño-Ruiz, M. Nemchinova, J. Whittaker, D.J. Slotboom, and A. Guskov. (2023). Mutation in glutamate transporter homologue GltTk provides insights into pathologic mechanism of episodic ataxia 6. Nat Commun 14: 1799. 37002226
Dashper, S.G., L. Brownfield, N. Slakeski, P.S. Zilm, A.H. Rogers, and E.C. Reynolds. (2001). Sodium ion-driven serine/threonine transport in Porphyromonas gingivalis. J. Bacteriol. 183: 4142-4148. 11418553
Demura, S., E. Hinoi, N. Kawakami, M. Handa, N. Yokogawa, M. Hiraiwa, S. Kato, K. Shinmura, T. Shimizu, N. Oku, R. Annen, M. Kobayashi, Y. Yamada, S. Nagatani, T. Iezaki, Y. Taniguchi, and H. Tsuchiya. (2022). The L-type Amino Acid Transporter (LAT1) Expression in Patients with Scoliosis. Spine Surg Relat Res 6: 402-407. 36051676
Deutch, C.E., I. Spahija, and C.E. Wagner. (2014). Susceptibility of Escherichia coli to the toxic L-proline analogue L-selenaproline is dependent on two L-cystine transport systems. J Appl Microbiol 117: 1487-1499. 25139244
Dong, Y., J. Wang, R.A. Garibsingh, K. Hutchinson, Y. Shi, G. Eisenberg, X. Yu, A. Schlessinger, and C. Grewer. (2023). Conserved allosteric inhibition mechanism in SLC1 transporters. Elife 12:. [Epub: Ahead of Print] 36856089
Estrach S., Lee SA., Boulter E., Pisano S., Errante A., Tissot FS., Cailleteau L., Pons C., Ginsberg MH. and Feral CC. (2014). CD98hc (SLC3A2) loss protects against ras-driven tumorigenesis by modulating integrin-mediated mechanotransduction. Cancer Res. 74(23):6878-89. 25267066
Fang, H., Y. Huang, and Z. Zuo. (2006). Enhancement of substrate-gated Cl- currents via rat glutamate transporter EAAT4 by PMA. Am. J. Physiol. Cell Physiol. 290: C1334-1340. 16601148
Focke, P.J., P. Moenne-Loccoz, and H.P. Larsson. (2011). Opposite movement of the external gate of a glutamate transporter homolog upon binding cotransported sodium compared with substrate. J. Neurosci. 31: 6255-6262. 21508248
Geertsma ER., Chang YN., Shaik FR., Neldner Y., Pardon E., Steyaert J. and Dutzler R. (2015). Structure of a prokaryotic fumarate transporter reveals the architecture of the SLC26 family. Nat Struct Mol Biol. 22(10):803-8. 26367249
Gegelashvili, G. and O.J. Bjerrum. (2019). Glutamate Transport System as a Key Constituent of Glutamosome: Molecular Pathology and Pharmacological Modulation in Chronic Pain. Neuropharmacology. [Epub: Ahead of Print] 31047920
Gendreau, S., S. Voswinkel, D. Torres-Salazar, N. Lang, H. Heidtmann, S. Detro-Dassen, G. Schmalzing, P. Hidalgo, and C. Fahlke. (2004). A trimeric quaternary structure is conserved in bacterial and human glutamate transporters. J. Biol. Chem. 279: 39505-39512. 15265858
Grewer C., Gameiro A. and Rauen T. (2014). SLC1 glutamate transporters. Pflugers Arch. 466(1):3-24. 24240778
Groeneveld M. and Slotboom DJ. (2010). Na(+):aspartate coupling stoichiometry in the glutamate transporter homologue Glt(Ph). Biochemistry. 49(17):3511-3. 20349989
Groeneveld M., Weme RG., Duurkens RH. and Slotboom DJ. (2010). Biochemical characterization of the C4-dicarboxylate transporter DctA from Bacillus subtilis. J Bacteriol. 192(11):2900-7. 20363944
Grunewald, M., D. Menaker, and B.I. Kanner. (2002). Cysteine-scanning mutagenesis reveals a conformationally sensitive reentrant pore-loop in the glutamate transporter GLT-1. J. Biol. Chem. 277: 26074-26080. 11994293
Gu, Y., I.H. Shrivastava, S.G. Amara, and I. Bahar. (2009). Molecular simulations elucidate the substrate translocation pathway in a glutamate transporter. Proc. Natl. Acad. Sci. USA 106: 2589-2594. 19202063
Guimaraes, E.L., D.O. Dias, W.F. Hau, A. Julien, D. Holl, M. Garcia-Collado, S. Savant, E. Vågesjö, M. Phillipson, L. Jakobsson, and C. Göritz. (2024). Corpora cavernosa fibroblasts mediate penile erection. Science 383: eade8064. 38330107
Han, L., J. Zhou, L. Li, X. Wu, Y. Shi, W. Cui, S. Zhang, Q. Hu, J. Wang, H. Bai, H. Liu, C. Guo, H. Cao, M. Chao, Y. Hu, Y. Mou, Y. Jiao, D. Feng, L. Wang, and Y. Qu. (2022). SLC1A5 enhances malignant phenotypes through modulating ferroptosis status and immune microenvironment in glioma. Cell Death Dis 13: 1071. 36566214
Heimer G., Marek-Yagel D., Eyal E., Barel O., Oz Levi D., Hoffmann C., Ruzzo EK., Ganelin-Cohen E., Lancet D., Pras E., Rechavi G., Nissenkorn A., Anikster Y., Goldstein DB. and Ben Zeev B. (2015). SLC1A4 mutations cause a novel disorder of intellectual disability, progressive microcephaly, spasticity and thin corpus callosum. Clin Genet. 88(4):327-35. 26138499
Heo, S., G. Jung, T. Beuk, H. Höger, and G. Lubec. (2012). Hippocampal glutamate transporter 1 (GLT-1) complex levels are paralleling memory training in the Multiple T-maze in C57BL/6J mice. Brain Struct Funct 217: 363-378. 22113856
Hotzy J., Machtens JP. and Fahlke C. (2012). Neutralizing aspartate 83 modifies substrate translocation of excitatory amino acid transporter 3 (EAAT3) glutamate transporters. J Biol Chem. 287(24):20016-26. 22532568
Huttunen, K.M., M. Gynther, J. Huttunen, E. Puris, J.A. Spicer, and W.A. Denny. (2016). A Selective and Slowly Reversible Inhibitor of l-Type Amino Acid Transporter 1 (LAT1) Potentiates Antiproliferative Drug Efficacy in Cancer Cells. J Med Chem. [Epub: Ahead of Print] 27253989
Iwama, K., A. Iwata, M. Shiina, S. Mitsuhashi, S. Miyatake, A. Takata, N. Miyake, K. Ogata, S. Ito, T. Mizuguchi, and N. Matsumoto. (2017). A novel mutation in SLC1A3 causes episodic ataxia. J Hum Genet. [Epub: Ahead of Print] 29208948
Jensen, S., A. Guskov, S. Rempel, I. Hänelt, and D.J. Slotboom. (2013). Crystal structure of a substrate-free aspartate transporter. Nat Struct Mol Biol 20: 1224-1226. 24013209
Jiang, J., I.H. Shrivastava, S.D. Watts, I. Bahar, and S.G. Amara. (2011). Large collective motions regulate the functional properties of glutamate transporter trimers. Proc. Natl. Acad. Sci. USA 108: 15141-15146. 21876140
Jiang, X., F. Yang, E. Brailoiu, H. Jakubowski, N.J. Dun, A.I. Schafer, X. Yang, W. Durante, and H. Wang. (2007). Differential regulation of homocysteine transport in vascular endothelial and smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 27: 1976-1983. 17715404
Koch, H.P., J.M. Hubbard, and H.P. Larsson. (2007). Voltage-independent sodium-binding events reported by the 4B-4C loop in the human glutamate transporter excitatory amino acid transporter 3. J. Biol. Chem. 282: 24547-24553. 17588938
Krause, G. and K.M. Hinz. (2017). Thyroid hormone transport across L-type amino acid transporters: What can molecular modelling tell us? Mol. Cell Endocrinol. [Epub: Ahead of Print] 28341457
Kumar, A., S. Kim, Y. Su, M. Sharma, P. Kumar, S. Singh, J. Lee, C.M. Furdui, R. Singh, F.C. Hsu, J. Kim, C.T. Whitlow, M.A. Nader, and G. Deep. (2021). Brain cell-derived exosomes in plasma serve as neurodegeneration biomarkers in male cynomolgus monkeys self-administrating oxycodone. EBioMedicine 63: 103192. 33418508
Larsson, H.P., X. Wang, B. Lev, I. Baconguis, D.A. Caplan, N.P. Vyleta, H.P. Koch, A. Diez-Sampedro, and S.Y. Noskov. (2010). Evidence for a third sodium-binding site in glutamate transporters suggests an ion/substrate coupling model. Proc. Natl. Acad. Sci. USA 107: 13912-13917. 20634426
Leary, G.P., D.C. Holley, E.F. Stone, B.R. Lyda, L.V. Kalachev, and M.P. Kavanaugh. (2011). The central cavity in trimeric glutamate transporters restricts ligand diffusion. Proc. Natl. Acad. Sci. USA 108: 14980-14985. 21873219
Leighton, B.H., R.P. Seal, K. Shimamoto, and S.G. Amara. (2002). A hydrophobic domain in glutamate transporters forms an extracellular helix associated with the permeation pathway for substrates. J. Biol. Chem. 277: 29847-29855. 12015317
Leighton, B.H., R.P. Seal, S.D. Watts, M.O. Skyba, and S.G. Amara. (2006). Structural rearrangements at the translocation pore of the human glutamate transporter, EAAT1. J. Biol. Chem. 281: 29788-29796. 16877378
Leinenweber, A., J.P. Machtens, B. Begemann, and C. Fahlke. (2011). Regulation of glial glutamate transporters by C-terminal domains. J. Biol. Chem. 286: 1927-1937. 21097502
Leuenberger, M., A. Ritler, A. Simonin, M.A. Hediger, and M. Lochner. (2016). Concise Asymmetric Synthesis and Pharmacological Characterization of All Stereoisomers of Glutamate Transporter Inhibitor TFB-TBOA and Synthesis of EAAT Photoaffinity Probes. ACS Chem Neurosci. [Epub: Ahead of Print] 26918289
Li, J., J. Fei, F. Huang, L.H. Guo, and W. Schwarz. (2000). Functional significance of N- and C-terminus of the amino acid transporters EAAC1 and ASCT1: characterization of chimeric transporters. Biochim. Biophys. Acta 1467: 338-346. 11030592
Machtens, J.P., D. Kortzak, C. Lansche, A. Leinenweber, P. Kilian, B. Begemann, U. Zachariae, D. Ewers, B.L. de Groot, R. Briones, and C. Fahlke. (2015). Mechanisms of anion conduction by coupled glutamate transporters. Cell 160: 542-553. 25635461
Mai, D., R. Chen, J. Wang, J. Zheng, X. Zhang, and S. Qu. (2021). Critical amino acids in the TM2 of EAAT2 are essential for membrane-bound localization, substrate binding, transporter function and anion currents. J Cell Mol Med. [Epub: Ahead of Print] 33523598
Matin, T.R., G.R. Heath, G.H.M. Huysmans, O. Boudker, and S. Scheuring. (2020). Millisecond dynamics of an unlabeled amino acid transporter. Nat Commun 11: 5016. 33024106
McIlwain BC., Vandenberg RJ. and Ryan RM. (2015). Transport rates of a glutamate transporter homologue are influenced by the lipid bilayer. J Biol Chem. 290(15):9780-8. 25713135
Melzer, N., A. Biela, and C. Fahlke. (2003). Glutamate modifies ion conduction and voltage-dependent gating of excitatory amino acid transporter-associated anion channels. J. Biol. chem. 278: 50112-50119. 14506254
Mitrovic, A.D., F. Plesko, and R.J. Vandenberg. (2001). Zn2+ inhibits the anion conductance of the glutamate transporter EAAT4. J. Biol. Chem. 276: 26071-26076. 11352900
Mortensen OV., Liberato JL., Coutinho-Netto J., Dos Santos WF. and Fontana AC. (2015). Molecular determinants of transport stimulation of EAAT2 are located at interface between the trimerization and substrate transport domains. J Neurochem. 133(2):199-210. 25626691
Myles-Worsley, M., J. Tiobech, S.R. Browning, J. Korn, S. Goodman, K. Gentile, N. Melhem, W. Byerley, S.V. Faraone, and F.A. Middleton. (2013). Deletion at the SLC1A1 glutamate transporter gene co-segregates with schizophrenia and bipolar schizoaffective disorder in a 5-generation family. Am J Med Genet B Neuropsychiatr Genet 162: 87-95. 23341099
Nam, H.S., A.J. Anderson, K.Y. Yang, B.H. Cho, and Y.C. Kim. (2006). The dctA gene of Pseudomonas chlororaphis O6 is under RpoN control and is required for effective root colonization and induction of systemic resistance. FEMS Microbiol. Lett. 256: 98-104. 16487325
Nam, H.S., M. Spencer, A.J. Anderson, B.H. Cho, and Y.C. Kim. (2003). Transcriptional regulation and mutational analysis of a dctA gene encoding an organic acid transporter protein from Pseudomonas chlororaphis O6. Gene 323: 125-131. 14659885
Napolitano L., Scalise M., Galluccio M., Pochini L., Albanese LM. and Indiveri C. (2015). LAT1 is the transport competent unit of the LAT1/CD98 heterodimeric amino acid transporter. Int J Biochem Cell Biol. 67:25-33. 26256001
Ndaru, E., R.A. Garibsingh, Y. Shi, E. Wallace, P. Zakrepine, J. Wang, A. Schlessinger, and C. Grewer. (2019). Novel alanine serine cysteine transporter 2 (ASCT2) inhibitors based on sulfonamide and sulfonic acid ester scaffolds. J Gen Physiol. [Epub: Ahead of Print] 30718375
Nicklin, P., P. Bergman, B. Zhang, E. Triantafellow, H. Wang, B. Nyfeler, H. Yang, M. Hild, C. Kung, C. Wilson, V.E. Myer, J.P. MacKeigan, J.A. Porter, Y.K. Wang, L.C. Cantley, P.M. Finan, and L.O. Murphy. (2009). Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136: 521-534. 19203585
Ogawa, W., Y.-M. Kim, T. Mizushima, and T. Tsuchiya. (1998). Cloning and expression of the gene for Na+-coupled serine transporter from Escherichia coli, and characteristics of the transporter. J. Bacteriol. 180: 6749-6752. 9852024
Ogbechi, J., H.L. Wright, S. Balint, L.M. Topping, Z. Kristina, Y.S. Huang, E. Pantazi, M. Swart, D. Windell, E. Marin, M.F. Wempe, H. Endou, A.M. Thomas, A. Filer, T.W. Stone, A.J. Clarke, M.L. Dustin, and R.O. Williams. (2023). LAT1 enables T cell activation under inflammatory conditions. J Autoimmun 138: 103031. [Epub: Ahead of Print] 37229811
Palacín, M., R. Estévez, J. Bertran, and A. Zorzano. (1998). Molecular biology of mammalian plasma membrane amino acid transporters. Physiol. Rev. 78: 969-1054. 9790568
Pan, Y., M. Han, X. Zhang, Y. He, C. Yuan, Y. Xiong, X. Li, C. Zeng, K. Lu, H. Zhu, X. Lu, Q. Liu, H. Liang, Z. Liao, Z. Ding, Z. Zhang, X. Chen, W. Zhang, and B. Zhang. (2022). Discoidin domain receptor 1 promotes hepatocellular carcinoma progression through modulation of SLC1A5 and the mTORC1 signaling pathway. Cell Oncol (Dordr) 45: 163-178. 35089546
Parkin, G.M., M. Udawela, A. Gibbons, and B. Dean. (2018). Glutamate transporters, EAAT1 and EAAT2, are potentially important in the pathophysiology and treatment of schizophrenia and affective disorders. World J Psychiatry 8: 51-63. 29988908
Pernil, R., S. Picossi, A. Herrero, E. Flores, and V. Mariscal. (2015). Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120. Life (Basel) 5: 1282-1300. 25915115
Qu, Q., J. Wang, G. Li, R. Chen, and S. Qu. (2021). The Conformationally Sensitive Spatial Distance Between the TM3-4 Loop and Transmembrane Segment 7 in the Glutamate Transporter Revealed by Paired-Cysteine Mutagenesis. Front Cell Dev Biol 9: 737629. 34621751
Qu, S., W. Zhang, S. He, and X. Zhang. (2019). Paired-Cysteine Scanning Reveals Conformationally Sensitive Proximity between the TM4b-4c Loop and TM8 of the Glutamate Transporter EAAT1. ACS Chem Neurosci. [Epub: Ahead of Print] 30802031
Radice, A.D. and S. Lustigman. (1996). Cloning and characterization of cDNAs encoding putative glutamate transporters from Caenorhabditis elegans and Onchocerca volvulus. Mol Biochem Parasitol 80: 41-53. 8885221
Rahman, M., F. Ismat, L. Jiao, J.M. Baldwin, D.J. Sharples, S.A. Baldwin, and S.G. Patching. (2016). Characterisation of the DAACS Family Escherichia coli Glutamate/Aspartate-Proton Symporter GltP Using Computational, Chemical, Biochemical and Biophysical Methods. J. Membr. Biol. [Epub: Ahead of Print] 28025687
Reizer, J., A. Reizer, and M.H. Saier, Jr. (1994). A functional superfamily of sodium/solute symporters. Biochim. Biophys. Acta 1197: 133-166. 8031825
Reyes, N., C. Ginter, and O. Boudker. (2009). Transport mechanism of a bacterial homologue of glutamate transporters. Nature 462: 880-885. 19924125
Rong, X., F. Tan, X. Wu, X. Zhang, L. Lu, X. Zou, and S. Qu. (2016). TM4 of the glutamate transporter GLT-1 experiences substrate-induced motion during the transport cycle. Sci Rep 6: 34522. 27698371
Rose, E.M., J.C. Koo, J.E. Antflick, S.M. Ahmed, S. Angers, and D.R. Hampson. (2009). Glutamate transporter coupling to Na,K-ATPase. J. Neurosci. 29: 8143-8155. 19553454
Ryan, R.M. and R.J. Vandenberg. (2002). Distinct conformational states mediate the transport and anion channel properties of the glutamate transporter EAAT-1. J. Biol. Chem. 277: 13494-13500. 11815608
Ryan, R.M. and R.J. Vandenberg. (2006). A channel in a transporter. Clin Exp Pharmacol Physiol 32: 1-6. 15730426
Ryan, R.M., A.D. Mitrovic, and R.J. Vandenberg. (2004). The chloride permeation pathway of a glutamate transporter and its proximity to the glutamate translocation pathway. J. Biol. Chem. 279: 20742-20751. 14982939
Ryan, R.M., E.L. Compton, and J.A. Mindell. (2009). Functional characterization of a Na+-dependent aspartate transporter from Pyrococcus horikoshii. J. Biol. Chem. 284: 17540-17548. 19380583
Saier, M.H., Jr., B.H. Eng, S. Fard, J. Garg, D.A. Haggerty, W.J. Hutchinson, D.L. Jack, E.C. Lai, H.J. Liu, D.P. Nusinew, A.M. Omar, S.S. Pao, I.T. Paulsen, J.A. Quan, M. Sliwinski, T.-T. Tseng, S. Wachi, and G.B. Young. (1999). Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochim. Biophys. Acta 1422: 1-56. 10082980
Sato, K., W. Otsu, Y. Otsuka, and M. Inaba. (2013). Modulatory roles of NHERF1 and NHERF2 in cell surface expression of the glutamate transporter GLAST. Biochem. Biophys. Res. Commun. 430: 839-845. 23200831
Scalise, M., L. Pochini, L. Console, M.A. Losso, and C. Indiveri. (2018). The Human SLC1A5 (ASCT2) Amino Acid Transporter: From Function to Structure and Role in Cell Biology. Front Cell Dev Biol 6: 96. 30234109
Schulte, M.L., A. Fu, P. Zhao, J. Li, L. Geng, S.T. Smith, J. Kondo, R.J. Coffey, M.O. Johnson, J.C. Rathmell, J.T. Sharick, M.C. Skala, J.A. Smith, J. Berlin, M.K. Washington, M.L. Nickels, and H.C. Manning. (2018). Pharmacological blockade of ASCT2-dependent glutamine transport leads to antitumor efficacy in preclinical models. Nat. Med. 24: 194-202. 29334372
Silverstein, N., A. Sliman, T. Stockner, and B.I. Kanner. (2018). Both reentrant loops of the sodium-coupled glutamate transporters contain molecular determinants of cation selectivity. J. Biol. Chem. 293: 14200-14209. 30026234
Slotboom, D.J., W.N. Konings, and J.S. Lolkema. (2001). The structure of glutamate transporters shows channel-like features. FEBS Lett. 492: 183-186. 11257491
Slotboom, D.J., W.N. Konings, and J.S. Lolkema. (1999). Structural features of the glutamate transporter family. Microbiol. Mol. Biol. Rev. 63: 293-307. 10357852
Štafl, K., M. Trávníček, D. Kučerová, &.#.3.1.7.;. Pecnová, V. Krchlíková, E. Gáliková, V. Stepanets, J. Hejnar, and K. Trejbalová. (2021). Heterologous avian system for quantitative analysis of Syncytin-1 interaction with ASCT2 receptor. Retrovirology 18: 15. 34158079
Stolzenberg, S., G. Khelashvili, and H. Weinstein. (2012). Structural intermediates in a model of the substrate translocation path of the bacterial glutamate transporter homologue GltPh. J Phys Chem B 116: 5372-5383. 22494242
Suslova, M., D. Kortzak, J.P. Machtens, P. Kovermann, and C. Fahlke. (2023). state pore opening as functional basis of increased EAAT anion channel activity in episodic ataxia 6. Front Physiol 14: 1147216. 37538371
Tao, Z., N. Rosental, B.I. Kanner, A. Gameiro, J. Mwaura, and C. Grewer. (2010). Mechanism of cation binding to the glutamate transporter EAAC1 probed with mutation of the conserved amino acid residue Thr101. J. Biol. Chem. 285: 17725-17733. 20378543
Tao, Z., Z. Zhang, and C. Grewer. (2006). Neutralization of the aspartic acid residue Asp-367, but not Asp-454, inhibits binding of Na+ to the glutamate-free form and cycling of the glutamate transporter EAAC1. J. Biol. Chem. 281: 10263-10272. 16478724
Teichman, S., S. Qu, and B.I. Kanner. (2009). The equivalent of a thallium binding residue from an archeal homolog controls cation interactions in brain glutamate transporters. Proc. Natl. Acad. Sci. USA 106: 14297-14302. 19706515
Teixeira, E., C. Silva, and F. Martel. (2021). The role of the glutamine transporter ASCT2 in antineoplastic therapy. Cancer Chemother Pharmacol. [Epub: Ahead of Print] 33464409
Torres-Salazar D., Jiang J., Divito CB., Garcia-Olivares J. and Amara SG. (2015). A Mutation in Transmembrane Domain 7 (TM7) of Excitatory Amino Acid Transporters Disrupts the Substrate-dependent Gating of the Intrinsic Anion Conductance and Drives the Channel into a Constitutively Open State. J Biol Chem. 290(38):22977-90. 26203187
Torres-Salazar, D. and C. Fahlke. (2007). Neuronal Glutamate Transporters Vary in Substrate Transport Rate but Not in Unitary Anion Channel Conductance. J. Biol. Chem. 282(48): 34719-34726. 17908688
Unden, G., S. Wörner, and C. Monzel. (2016). Cooperation of Secondary Transporters and Sensor Kinases in Transmembrane Signalling: The DctA/DcuS and DcuB/DcuS Sensor Complexes of Escherichia coli. Adv Microb Physiol 68: 139-167. 27134023
Vandenberg RJ., Handford CA., Campbell EM., Ryan RM. and Yool AJ. (2011). Water and urea permeation pathways of the human excitatory amino acid transporter EAAT1. Biochem J. 439(2):333-40. 21732909
Wang, H., A.M. Rascoe, D.C. Holley, E. Gouaux, and M.P. Kavanaugh. (2013). Novel dicarboxylate selectivity in an insect glutamate transporter homolog. PLoS One 8: e70947. 23951049
Wang, J., T. Albers, and C. Grewer. (2018). Energy Landscape of the Substrate Translocation Equilibrium of Plasma-Membrane Glutamate Transporters. J Phys Chem B 122: 28-39. 29218993
Wieland, H., S. Ullrich, F. Lang, and B. Neumeister. (2005). Intracellular multiplication of Legionella pneumophila depends on host cell amino acid transporter SLC1A5. Mol. Microbiol. 55: 1528-1537. 15720558
Witan J., Bauer J., Wittig I., Steinmetz PA., Erker W. and Unden G. (2012). Interaction of the Escherichia coli transporter DctA with the sensor kinase DcuS: presence of functional DctA/DcuS sensor units. Mol Microbiol. 85(5):846-61. 22780562
Wösten, M.M., C.H. van de Lest, L. van Dijk, and J.P. van Putten. (2017). Function and Regulation of the C4-Dicarboxylate Transporters in Campylobacter jejuni. Front Microbiol 8: 174. 28223978
Xiao, J., D. Wang, L. Wang, Y. Jiang, L. Xue, S. Sui, J. Wang, C. Guo, R. Wang, J. Wang, N. Li, H. Fan, and M. Lv. (2020). Increasing L-lysine production in Corynebacterium glutamicum by engineering amino acid transporters. Amino Acids 52: 1363-1374. 33021685
Yernool, D., O. Boudker, Y. Jin, and E. Gouaux. (2004). Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431: 811-818. 15483603
Yurgel, S., M.W. Mortimer, K.N. Rogers, and M.L. Kahn. (2000). New substrates for the dicarboxylate transport system of Sinorhizobium meliloti. J. Bacteriol. 182: 4216-4221. 10894729
Yurgel, S.N. and M.L. Kahn. (2005). Sinorhizobium meliloti dctA mutants with partial ability to transport dicarboxylic acids. J. Bacteriol. 187: 1161-1172. 15659691
Zarbiv, R., M. Grunewald, M.P. Kavanaugh, and B.I. Kanner. (1998). Cysteine scanning of the surroundings of an alkali-ion binding site of the glutamate transporter GLT-1 reveals a conformationally sensitive residue. J. Biol. Chem. 273: 14231-14237. 9603927
Zhang, W., X. Zhang, and S. Qu. (2019). Substrate-Induced Motion between TM4 and TM7 of the Glutamate Transporter EAAT1 Revealed by Paired Cysteine Mutagenesis. Mol Pharmacol 95: 33-42. 30348896
Zhang, Y., X. Zhang, and S. Qu. (2014). Cysteine mutagenesis reveals alternate proximity between transmembrane domain 2 and hairpin loop 1 of the glutamate transporter EAAT1. Amino Acids 46: 1697-1705. 24692063
Zhou, W., G. Trinco, D.J. Slotboom, L.R. Forrest, and J.D. Faraldo-Gómez. (2021). On the Role of a Conserved Methionine in the Na-Coupling Mechanism of a Neurotransmitter Transporter Homolog. Neurochem Res. [Epub: Ahead of Print] 33565025
Zou, S., J.D. Pita-Almenar, and A. Eskin. (2011). Regulation of glutamate transporter GLT-1 by MAGI-1. J Neurochem 117: 833-840. 21426345