TCDB is operated by the Saier Lab Bioinformatics Group

 2.A.28 The Bile Acid:Na+ Symporter (BASS) Family

Functionally characterized members of the BASS family catalyze Na :bile acid symport. These systems have been identified in intestinal, liver and kidney tissues of animals, and at least three isoforms are present in a single species such as humans. The BASS family is also called the Solute Carrier Family 10 (Claro da Silva et al. 2013).This family has been reported to have the NhaA fold (Ferrada and Superti-Furga 2022).

A BASS in the apical membrane of the human ileal intestine catalyzes the electrogenic uptake of bile acids with a stoichiometry of bile acid:Na of 1:2. This protein is associated with the 16 kDa subunit c of the vacuolar proton pump (Sun et al., 2004). This may account for its apical location. Thus, the vacuolar proton pump associated apical sorting machinery may be used to sort the apical Na :bile symporter.

Proteins of the BASS family vary in size from about 340 to 480 amino acyl residues and possess 7 to 10 putative transmembrane spanners (TMSs). The bile acid binding site appears to be localized to the last TMS (last 60 residues) (Kramer et al., 2001). The BASS family belongs to the BART superfamily (Mansour et al., 2007)

These symporters exhibit broad specificity, taking up a variety of non bile organic compounds as well as taurocholate and other bile salts. Homologues are found in plants, yeast, archaea and bacteria. For example, functionally uncharacterized homologues are present in Synechocystis (292 aas; gbD90911) and Bacillus subtilis (283 aas; spP55190; Z99104). The bacterial homologues exhibit 6-10 putative TMSs. Because the family is represented in widely divergent organisms, it is probably ubiquitous.

The rat liver Na /taurocholate cotransporter is subject to elaborate regulation in response to cyclic AMP and cell swelling (McConkey et al., 2004; Webster et al., 2000). It has two N-terminal, N-linked carbohydrate sites and two Tyr-based basolateral sorting motifs at its carboxyl terminus (YEKI and YKAA). The former targets the protein to the apical membrane in the absence of the latter, but the latter overrides the former, targeting the protein to the basolateral membrane (Sun et al., 2001). The ileal homologue has a 14-residue cytoplasmic tail with a β-turn structure that targets the protein to the apical membrane (Sun et al., 2003).

The human orthologue of the rat Na taurocholate symporter (TC #2.A.28.1.1) (NTCP; SLC10A1) exhibits multiple single nucleotide polymorphisms in populations of European, African, Chinese and Hispanic people (Ho et al., 2004). Four nonsynonymous single nucleotide polymorphisms are associated with significant loss of transport function or change in substrate specificity. One form, found in Chinese Americans does not catalyze bile acid uptake but is normal for estrone sulfate uptake. This transporter is responsible for maintenance of enterohepatic recirculation of bile acids (Ho et al., 2004).

High cholesterol levels greatly increase the risk of cardiovascular disease. About 50 per cent of cholesterol is eliminated from the body by its conversion into bile acids. However, bile acids released from the bile duct are constantly recycled, being reabsorbed in the intestine by the apical sodium-dependent bile acid transporter (ASBT, also known as SLC10A2). It has been shown that plasma cholesterol levels are considerably lowered by specific inhibitors of ASBT. Hu et al. (2011) reported the crystal structure of a bacterial homologue of ASBT from Neisseria meningitidis (ASBT(NM)) at 2.2 Å (3ZUY). ASBT(NM) contains two inverted structural repeats of five transmembrane helices. A core domain of six helices harbours two sodium ions, and the remaining four helices pack in a row to form a flat, 'panel'-like domain. Overall, the architecture of the protein is similar to that of the sodium/proton antiporter NhaA. The ASBT(NM) structure was captured with the substrate taurocholate present, bound between the core and panel domains in a large, inward-facing, hydrophobic cavity. Residues near this cavity have been shown to affect the binding of specific inhibitors of human ASBT.

The SLC10 family includes seven genes containing 1-12 exons that encode proteins in humans with sequence lengths of 348-477 amino acids (Döring et al. 2012). Only three out of seven (i.e. SLC10A1, SLC10A2, and SLC10A6) show sodium-dependent uptake of organic substrates across the cell membrane. These include the uptake of bile salts, sulfated steroids, sulfated thyroidal hormones, and certain statin drugs by SLC10A1 (Na+-taurocholate cotransporting polypeptide (NTCP; TC# 2..A.28.1.9)), the uptake of bile salts by SLC10A2 (apical sodium-dependent bile acid transporter (ASBT; TC#2.A.28.1.2)), and uptake of sulfated steroids and sulfated taurolithocholate by SLC10A6 (sodium-dependent organic anion transporter (SOAT; TC# 2.A.28.1.4)). Other members of the family are orphan carriers not all localized in the cell membrane. NTCP and ASBT are carriers for bile salts that establish their enterohepatic circulation. Information is available concerning their 2D and 3D membrane topologies, structure-transport relationships, and ligand and sodium-binding sites. The putative 3D structures have been deduced from the crystal structure of a bacterial homolog, ASBT(NM) (Döring et al. 2012). Knowledge about bile acid synthesis, bile acid hormonal functions, and individual members of the family in terms of expression, localization, substrate pattern, and protein topologies with emphasis on the three functional SLC10 carrier members is presented by (Döring et al. 2012).

Liraglutide, a glucagon-like peptide 1 analog used to treat type 2 diabetes and obesity, provides a potential new treatment modality for bile acid (BA) diarrhea. Nonogaki and Kaji 2024 showed that administration of liraglutide significantly decreased total BAs, especially the primary BAs, including cholic acid, chenodeoxycholic acid, taurocholic acid, taurochenodeoxycholic acid, glycocholic acid, and β-muricholic acid, in the liver and feces. In addition, liraglutide significantly decreased tryptophan metabolites, including L-tryptophan, serotonin, 5-hydroxy indole-3-acetic acid, L-kynurenine, and xanthurenic acid, in the colon, whereas it significantly increased indole-3-propionic acid. Moreover, the administration of liraglutide decreased the expression of the apical sodium-dependent bile acid transporter, which mediates BA uptake across the apical brush border member in the ileum, ileal BA binding protein, and fibroblast growth factor 15 in association with decreased expression of the BA-activated nuclear receptor farnesoid X receptor and the heteromeric organic solute transporter Ostα/β, which induces BA excretion, in the ileum. Liraglutide acutely decreased body weight and blood glucose levels in association with decreases in plasma insulin and serotonin levels in food-deprived mice. These findings suggest the potential of liraglutide as a novel inhibitor of primary BAs and serotonin in the colon (Nonogaki and Kaji 2024).

The generalized transport reaction catalyzed by members of the BASS family is:

organic acid (out) + Na+ (out) → organic acid (in) + Na+ (in)

This family belongs to the: IT Superfamily.

References associated with 2.A.28 family:

Abe, T., Y. Kanemitu, M. Nakasone, I. Kawahata, T. Yamakuni, A. Nakajima, N. Suzuki, M. Nishikawa, T. Hishinuma, and Y. Tomioka. (2013). SLC10A4 is a protease-activated transporter that transports bile acids. J Biochem 154: 93-101. 23589386
Ashikov, A., N. Abu Bakar, X.Y. Wen, M. Niemeijer, G. Rodrigues Pinto Osorio, K. Brand-Arzamendi, L. Hasadsri, H. Hansikova, K. Raymond, D. Vicogne, N. Ondruskova, M.E.H. Simon, R. Pfundt, S. Timal, R. Beumers, C. Biot, R. Smeets, M. Kersten, K. Huijben, , P.T.A. Linders, G. van den Bogaart, S.A.F.T. van Hijum, R. Rodenburg, L.P. van den Heuvel, F. van Spronsen, T. Honzik, F. Foulquier, M. van Scherpenzeel, D.J. Lefeber, , W. Mirjam, B. Han, M. Helen, M. Helen, V.H. Peter, V.K. Jiddeke, M. Diego, M. Lars, B.H. Katja, H. Jozef, A. Majid, C. Kevin, and T.W.N. Johann. (2018). Integrating glycomics and genomics uncovers SLC10A7 as essential factor for bone mineralization by regulating post-Golgi protein transport and glycosylation. Hum Mol Genet 27: 3029-3045. 29878199
Ayewoh, E.N., L.C. Czuba, T.T. Nguyen, and P.W. Swaan. (2020). S-acylation status of bile acid transporter hASBT regulates its function, metabolic stability, membrane expression, and phosphorylation state. Biochim. Biophys. Acta. Biomembr 183510. [Epub: Ahead of Print] 33189717
Banerjee, A. and P.W. Swaan. (2006). Membrane topology of human ASBT (SLC10A2) determined by dual label epitope insertion scanning mutagenesis. New evidence for seven transmembrane domains. Biochemistry 45: 943-953. 16411770
Chen, Y.H., D.J. Tsuei, M.W. Lai, W.H. Wen, C.L. Chiang, J.F. Wu, H.L. Chen, H.Y. Hsu, Y.H. Ni, and M.H. Chang. (2022). Genetic variants of NTCP gene and hepatitis B vaccine failure in Taiwanese children of hepatitis B e antigen positive mothers. Hepatol Int 16: 789-798. 35635688
Claro da Silva, T., J.E. Polli, and P.W. Swaan. (2013). The solute carrier family 10 (SLC10): beyond bile acid transport. Mol Aspects Med 34: 252-269. 23506869
da Silva, T.C., N. Hussainzada, C.M. Khantwal, J.E. Polli, and P.W. Swaan. (2011). Transmembrane helix 1 contributes to substrate translocation and protein stability of bile acid transporter SLC10A2. J. Biol. Chem. 286: 27322-27332. 21646357
Dai, F., W.G. Yoo, Y. Lu, J.H. Song, J.Y. Lee, Y. Byun, J.H. Pak, W.M. Sohn, and S.J. Hong. (2020). Sodium-bile acid co-transporter is crucial for survival of a carcinogenic liver fluke Clonorchis sinensis in the bile. PLoS Negl Trop Dis 14: e0008952. 33284789
Döring, B., T. Lütteke, J. Geyer, and E. Petzinger. (2012). The SLC10 carrier family: transport functions and molecular structure. Curr Top Membr 70: 105-168. 23177985
Dubail, J., C. Huber, S. Chantepie, S. Sonntag, B. Tüysüz, E. Mihci, C.T. Gordon, E. Steichen-Gersdorf, J. Amiel, B. Nur, I. Stolte-Dijkstra, A.M. van Eerde, K.L. van Gassen, C.C. Breugem, A. Stegmann, C. Lekszas, R. Maroofian, E.G. Karimiani, A. Bruneel, N. Seta, A. Munnich, D. Papy-Garcia, M. De La Dure-Molla, and V. Cormier-Daire. (2018). SLC10A7 mutations cause a skeletal dysplasia with amelogenesis imperfecta mediated by GAG biosynthesis defects. Nat Commun 9: 3087. 30082715
Eller, C., L. Heydmann, C.C. Colpitts, E.R. Verrier, C. Schuster, and T.F. Baumert. (2018). The functional role of sodium taurocholate cotransporting polypeptide NTCP in the life cycle of hepatitis B, C and D viruses. Cell Mol Life Sci 75: 3895-3905. 30097692
Ferrada, E. and G. Superti-Furga. (2022). A structure and evolutionary-based classification of solute carriers. iScience 25: 105096. 36164651
Furumoto, T. (2016). Pyruvate transport systems in organelles: future directions in C4 biology research. Curr. Opin. Plant Biol. 31: 143-148. 27153467
Furumoto, T., T. Yamaguchi, Y. Ohshima-Ichie, M. Nakamura, Y. Tsuchida-Iwata, M. Shimamura, J. Ohnishi, S. Hata, U. Gowik, P. Westhoff, A. Bräutigam, A.P. Weber, and K. Izui. (2011). A plastidial sodium-dependent pyruvate transporter. Nature 476: 472-475. 21866161
Geyer J., B. Doring, K. Meerkamp, B. Ugele, N. Bakhiya, C.F. Fernandes, J.R. Godoy, H. Glatt, E. Petzinger. (2007). Cloning and functional characterization of human sodium-dependent organic anion transporter (SLC10A6). J. Biol. Chem. 2007 282: 19728-19741. 17491011
Geyer J., J.R. Godoy, E. Petzinger. (2004). Identification of a sodium-dependent organic anion transporter from rat adrenal gland. Biochem. Biophys. Res. Commun. 316: 300-306. 15020217
Geyer, J., C.F. Fernandes, B. Döring, S. Burger, J.R. Godoy, S. Rafalzik, T. Hübschle, R. Gerstberger, and E. Petzinger. (2008). Cloning and molecular characterization of the orphan carrier protein Slc10a4: expression in cholinergic neurons of the rat central nervous system. Neuroscience 152: 990-1005. 18355966
Gigolashvili, T., R. Yatusevich, I. Rollwitz, M. Humphry, J. Gershenzon, and U.I. Flügge. (2009). The plastidic bile acid transporter 5 is required for the biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana. Plant Cell 21: 1813-1829. 19542295
Godoy, J.R., C. Fernandes, B. Döring, K. Beuerlein, E. Petzinger, and J. Geyer. (2007). Molecular and phylogenetic characterization of a novel putative membrane transporter (SLC10A7), conserved in vertebrates and bacteria. Eur J. Cell Biol. 86: 445-460. 17628207
González, P.M., N. Hussainzada, P.W. Swaan, A.D. Mackerell, Jr, and J.E. Polli. (2012). Putative irreversible inhibitors of the human sodium-dependent bile acid transporter (hASBT; SLC10A2) support the role of transmembrane domain 7 in substrate binding/translocation. Pharm Res 29: 1821-1831. 22354836
Hagenbuch, B. (1997). Molecular properties of hepatic uptake systems for bile acids and organic acids. J. Membr. Biol. 160: 1-8. 9351887
Ho, R.H., B.F. Leake, R.L. Roberts, W. Lee, and R.B. Kim. (2004). Ethnicity-dependent polymorphism in Na+-taurocholate cotransporting polypeptide (SLC10A1) reveals a domain critical for bile acid substrate recognition. J. Biol. Chem. 279: 7213-7222. 14660639
Hu, N.J., S. Iwata, A.D. Cameron, and D. Drew. (2011). Crystal structure of a bacterial homologue of the bile acid sodium symporter ASBT. Nature 478: 408-411. 21976025
Javitt, N.B. (2020). Hepatic bile formation: bile acid transport and water flow into the canalicular conduit. Am. J. Physiol. Gastrointest Liver Physiol 319: G609-G618. 32935994
Khantwal, C.M. and P.W. Swaan. (2008). Cytosolic half of transmembrane domain IV of the human bile acid transporter hASBT (SLC10A2) forms part of the substrate translocation pathway. Biochemistry 47: 3606-3614. 18311924
Kramer, W., F. Girbig, H. Glombik, D. Corsiero, S. Stengelin, and C. Weyland. (2001). Identification of a ligand-binding site in the Na+/bile acid cotransporting protein from rabbit ileum. J. Biol. Chem. 276: 36020-36027. 11447228
Larhammar, M., K. Patra, M. Blunder, L. Emilsson, C. Peuckert, E. Arvidsson, D. Rönnlund, J. Preobraschenski, C. Birgner, C. Limbach, J. Widengren, H. Blom, R. Jahn, &.#.1.9.7.;. Wallén-Mackenzie, and K. Kullander. (2015). SLC10A4 is a vesicular amine-associated transporter modulating dopamine homeostasis. Biol Psychiatry 77: 526-536. 25176177
Liu, X., L. Yuan, L. Zhang, Y. Mu, X. Li, C. Liu, P. Lv, Y. Zhang, T. Cheng, Q. Yuan, N. Xia, X. Chen, and G. Liu. (2018). Bioinspired Artificial Nanodecoys for Hepatitis B Virus. Angew Chem Int Ed Engl 57: 12499-12503. 30088325
Mareninova, O., J.M. Shin, O. Vagin, S. Turdikulova, S. Hallen, and G. Sachs. (2005). Topography of the membrane domain of the liver Na+-dependent bile acid transporter. Biochemistry 44: 13702-13712. 16229460
Margolles, A., J.A. Moreno, D. van Sinderen, and C.G. de Los Reyes-Gavilán. (2005). Macrolide resistance mediated by a Bifidobacterium breve membrane protein. Antimicrob. Agents Chemother. 49: 4379-4381. 16189127
McConkey, M., H. Gillin, C.R.L. Webster, and M.S. Anwer. (2004). Cross-talk between protein kinases Cζ and B in cyclic AMP-mediated sodium taurocholate co-transporting polypeptide translocation in hepatocytes. J. Biol. Chem. 279: 20882-20888. 15007074
Melief, E.J., J.T. Gibbs, X. Li, R.G. Morgan, C.D. Keene, T.J. Montine, R.D. Palmiter, and M. Darvas. (2016). Characterization of cognitive impairments and neurotransmitter changes in a novel transgenic mouse lacking Slc10a4. Neuroscience 324: 399-406. 27001174
Muthusamy S., Malhotra P., Hosameddin M., Dudeja AK., Borthakur S., Saksena S., Gill RK., Dudeja PK. and Alrefai WA. (2015). N-glycosylation is essential for ileal ASBT function and protection against proteases. Am J Physiol Cell Physiol. 308(12):C964-71. 25855079
Nonogaki, K. and T. Kaji. (2024). The GLP-1 Receptor Agonist Liraglutide Decreases Primary Bile Acids and Serotonin in the Colon Independently of Feeding in Mice. Int J Mol Sci 25:. 39063026
Palatini, M., S.F. Müller, K.A.A.T. Lowjaga, S. Noppes, J. Alber, F. Lehmann, N. Goldmann, D. Glebe, and J. Geyer. (2021). Mutational Analysis of the GXXXG/A Motifs in the Human Na/Taurocholate Co-Transporting Polypeptide NTCP on Its Bile Acid Transport Function and Hepatitis B/D Virus Receptor Function. Front Mol Biosci 8: 699443. 34239896
Park, J.H., M. Iwamoto, J.H. Yun, T. Uchikubo-Kamo, D. Son, Z. Jin, H. Yoshida, M. Ohki, N. Ishimoto, K. Mizutani, M. Oshima, M. Muramatsu, T. Wakita, M. Shirouzu, K. Liu, T. Uemura, N. Nomura, S. Iwata, K. Watashi, J.R.H. Tame, T. Nishizawa, W. Lee, and S.Y. Park. (2022). Structural insights into the HBV receptor and bile acid transporter NTCP. Nature 606: 1027-1031. 35580630
Patra, K., D.J. Lyons, P. Bauer, M.M. Hilscher, S. Sharma, R.N. Leão, and K. Kullander. (2015). A role for solute carrier family 10 member 4, or vesicular aminergic-associated transporter, in structural remodelling and transmitter release at the mouse neuromuscular junction. Eur J. Neurosci. 41: 316-327. 25410831
Rabus, R., D.L. Jack, D.J. Kelly and M.H. Saier, Jr. (1999). TRAP transporters: an ancient family of extracytoplasmic solute-receptor-dependent secondary active transporters. Microbiology 145: 3431-3445. 10627041
Rao, A., J. Haywood, A.L. Craddock, M.G. Belinsky, G.D. Kruh, and P.A. Dawson. (2008). The organic solute transporter α-beta, Ostα-Ostbeta, is essential for intestinal bile acid transport and homeostasis. Proc. Natl. Acad. Sci. USA 105: 3891-3896. 18292224
Reizer, J., A. Reizer and M.H. Saier, Jr. (1994). A functional superfamily of sodium/solute symporters. Biochim. Biophys. Acta 1197: 133-166. 8031825
Ruggiero, M.J., S. Malhotra, A.W. Fenton, L. Swint-Kruse, J. Karanicolas, and B. Hagenbuch. (2022). Structural Plasticity Is a Feature of Rheostat Positions in the Human Na/Taurocholate Cotransporting Polypeptide (NTCP). Int J Mol Sci 23:. 35328632
Russell, D.W. (1999). Nuclear orphan receptors control cholesterol catabolism. Cell 97: 539-542. 10367881
Sabit H., Mallajosyula SS., MacKerell AD Jr. and Swaan PW. (2013). Transmembrane domain II of the human bile acid transporter SLC10A2 coordinates sodium translocation. J Biol Chem. 288(45):32394-404. 24045943
Saier, M.H., Jr., B.H. Eng, S. Fard, J. Garg, D.A. Haggerty, W.J. Hutchinson, D.L. Jack, E.C. Lai, H.J. Liu, D.P. Nusinew, A.M. Omar, S.S. Pao, I.T. Paulsen, J.A. Quan, M. Sliwinski, T.-T. Tseng, S. Wachi, and G.B. Young. (1999). Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochim. Biophys. Acta 1422: 1-56. 10082980
Slijepcevic, D. and S.F. van de Graaf. (2017). Bile Acid Uptake Transporters as Targets for Therapy. Dig Dis 35: 251-258. 28249291
Sreedharan, S., O. Stephansson, H.B. Schiöth, and R. Fredriksson. (2011). Long evolutionary conservation and considerable tissue specificity of several atypical solute carrier transporters. Gene 478: 11-18. 21044875
Sun, A.-Q., M.A. Arrese, L. Zeng, I. Swaby, M.-M. Zhou, and F.J. Suchy. (2001). The rat liver Na+/bile acid cotransporter: importance of the cytoplasmic tail to funtion and plasma membrane targeting. J. Biol. Chem. 276: 6825-6833. 11112779
Sun, A.-Q., N. Balasubramaniyan, C.-J. Liu, M. Shahid, and F.J. Suchy. (2004). Association of the 16-kDa subunit c of vacuolar proton pump with the ileal Na+-dependent bile acid transporter. Protein-protein interaction and intracellular trafficking. J. Biol. Chem. 279: 16295-16300. 14752118
Sun, A.-Q., R. Salkar, Sachchidanand, S. Xu, L. Zeng, M.-M. Zhou, and F.J. Suchy. (2003). A 14-amino acid sequence with a β-turn structure is required for apical membrane sorting of the rat ileal bile acid transporter. J. Biol. Chem. 278: 4000-4009. 12435749
Sun, A.Q., N. Balasubramaniyan, H. Chen, M. Shahid, and F.J. Suchy. (2006). Identification of functionally relevant residues of the rat ileal apical sodium-dependent bile acid cotransporter. J. Biol. Chem. 281: 16410-16418. 16608845
Takemori, T., A. Sugimoto-Ishige, H. Nishitsuji, Y. Futamura, M. Harada, T. Kimura-Someya, T. Matsumoto, T. Honma, M. Tanaka, M. Yaguchi, K. Isono, H. Koseki, H. Osada, D. Miki, T. Saito, T. Tanaka, T. Fukami, T. Goto, M. Shirouzu, K. Shimotohno, and K. Chayama. (2022). Establishment of a Monoclonal Antibody against Human NTCP That Blocks Hepatitis B Virus Infection. J. Virol. 96: e0168621. 34985994
van der Mark, V.A., D.R. de Waart, K.S. Ho-Mok, M.M. Tabbers, H.W. Voogt, R.P. Oude Elferink, A.S. Knisely, and C.C. Paulusma. (2014). The lipid flippase heterodimer ATP8B1-CDC50A is essential for surface expression of the apical sodium-dependent bile acid transporter (SLC10A2/ASBT) in intestinal Caco-2 cells. Biochim. Biophys. Acta. 1842: 2378-2386. 25239307
Wang, L., Q. Liu, X. Hu, C. Zhou, Y. Ma, X. Wang, Y. Tang, K. Chen, X. Wang, and Y. Liu. (2022). Enhanced Oral Absorption and Liver Distribution of Polymeric Nanoparticles through Traveling the Enterohepatic Circulation Pathways of Bile Acid. ACS Appl Mater Interfaces 14: 41712-41725. 36069201
Wawrzycka, D., K. Markowska, E. Maciaszczyk-Dziubinska, M. Migocka, and R. Wysocki. (2016). Transmembrane topology of the arsenite permease Acr3 from Saccharomyces cerevisiae. Biochim. Biophys. Acta. 1859: 117-125. [Epub: Ahead of Print] 27836640
Webster, C.R., C.J. Blanch, J. Phillips, and M.S. Anwer. (2000). Cell swelling-induced translocation of rat liver Na+/taurocholate cotransport polypeptide is mediated via the phosphoinositide 3-kinase signaling pathway. J. Biol. Chem. 275: 29754-29760. 10889198
Weinman, S.A., M.W. Carruth, and P.A. Dawson. (1998). Bile acid uptake via the human apical sodium-bile acid cotransporter is electrogenic. J. Biol. Chem. 273: 34691-34695. 9856990
Wu, M.R., Y.Y. Huang, and J.K. Hsiao. (2020). Role of Sodium Taurocholate Cotransporting Polypeptide as a New Reporter and Drug-Screening Platform: Implications for Preventing Hepatitis B Virus Infections. Mol Imaging Biol 22: 313-323. 31140111
Yan, H., G. Zhong, G. Xu, W. He, Z. Jing, Z. Gao, Y. Huang, Y. Qi, B. Peng, H. Wang, L. Fu, M. Song, P. Chen, W. Gao, B. Ren, Y. Sun, T. Cai, X. Feng, J. Sui, and W. Li. (2012). Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. elife 1: e00049. 23150796
Zakrzewicz, D. and J. Geyer. (2023). Interactions of Na/taurocholate cotransporting polypeptide with host cellular proteins upon hepatitis B and D virus infection: novel potential targets for antiviral therapy. Biol Chem. [Epub: Ahead of Print] 37103224
Zhang J., Fu LL., Tian M., Liu HQ., Li JJ., Li Y., He J., Huang J., Ouyang L., Gao HY. and Wang JH. (2015). Design and synthesis of a novel candidate compound NTI-007 targeting sodium taurocholate cotransporting polypeptide [NTCP]-APOA1-HBx-Beclin1-mediated autophagic pathway in HBV therapy. Bioorg Med Chem. 23(5):976-84. 25650312
Zhang, E.Y., M.A. Phelps, A. Banerjee, C.M. Khantwal, C. Chang, F. Helsper, and P.W. Swaan. (2004). Topology scanning and putative three-dimensional structure of the extracellular binding domains of the apical sodium-dependent bile acid transporter (SLC10A2). Biochemistry 43: 11380-11392. 15350125
Zhao, Y., X. Ai, M. Wang, L. Xiao, and G. Xia. (2016). A putative pyruvate transporter TaBASS2 positively regulates salinity tolerance in wheat via modulation of ABI4 expression. BMC Plant Biol 16: 109. 27160076
Zhou, X., E.J. Levin, Y. Pan, J.G. McCoy, R. Sharma, B. Kloss, R. Bruni, M. Quick, and M. Zhou. (2014). Structural basis of the alternating-access mechanism in a bile acid transporter. Nature 505: 569-573. 24317697