TCDB is operated by the Saier Lab Bioinformatics Group

2.A.4 The Cation Diffusion Facilitator (CDF) Family

The CDF (ZnT) family is a ubiquitous family, members of which are found in bacteria, archaea and eukaryotes (Paulsen and Saier, 1997). They transport heavy metals including cobalt, cadmium, iron, zinc and possibly nickel, copper and mercuric ions. There are 9 mammalian paralogues, ZnT1 - 8 and 10 (Cousins et al., 2006; Kambe 2012). Most members of the CDF family possess six putative transmembrane spanners with N- and C-termini on the cytoplasmic side of the membrane, but MSC2 of S. cerevisiae (TC #2.A.4.4.1) and Znt5 and hZTL1 (2.A.4.4.3) of H. sapiens exhibit 15 and 12 putative TMSs, respectively (Cragg et al., 2002). The homologs of this family exhibit an unusual degree of sequence divergence and size variation (300-750 residues). Eukaryotic proteins exhibit differences in cell localization. Some catalyze heavy metal uptake from the cytoplasm into various intracellular eukaryotic organelles (ZnT2-7) while others (e.g., ZnT1) catalyze efflux from the cytoplasm across the plasma membrane into the extracellular medium. Thus, some are found in plasma membranes while others are in organellar membranes such as vacuoles of plants and yeast and the golgi of animals (Chao and Fu, 2004b; Haney et al., 2005; MacDiarmid et al., 2003). They catalyze cation:proton antiport, have a single essential zinc-binding site within the transmembrane domains of each monomer within the dimer, and have a binuclear zinc-sensing and binding site in the cytoplamsic C-terminal region (Kambe 2012). Most CDF proteins contain two domains, the cation transporting transmembrane domain and the regulatory cytoplasmic C-terminal domain (CTD) (Barber-Zucker et al. 2016). Mutation of the CTD fold is critical for CDF proteins' proper function, supporting a role of the CDF cytoplasmic domain as a CDF regulatory element (Barber-Zucker et al. 2016).  CDF or ZnT zinc transporters include ten family members in mammals such as Homo sapiens. They show a unique architecture characterized by a Y-shaped conformation and a large cytoplasmic domain (Bin et al. 2018). There are 10 ZnT (CDF) and 15 Zip (TC#2.A.5) transporters in humans. They appear to play opposite roles in cellular zinc homeostasis. CDF transporters reduce intracellular zinc availability by promoting zinc efflux from cells or into intracellular vesicles, while Zip transporters increase intracellular zinc availability by promoting extracellular zinc uptake and, perhaps, vesicular zinc release into the cytoplasm. Both the ZnT and Zip transporter families exhibit unique tissue-specific expression, differential responsiveness to dietary zinc deficiency and excess, and differential responsiveness to physiologic stimuli via hormones and cytokines (Liuzzi and Cousins 2004).

Montanini et al (2007) have conducted phylogenetic analysis of CDF family members. Their analysis revealed three major and two minor phylogenetic groups. They suggest that the three major groups segregated according to metal ion specificity: (1) Mn2+ , (2) Fe2+  and Zn2+  as well as other metal ions, and (3) Zn2+  plus other metals, but not Iron. CDF proteins have 6 TMSs with three 2 TMSs repeats. They are related to CRAC Ca2+  channels (TC#1.A.52) which has 4 TMSs (Matias et al., 2010). Members of this family have the YiiP fold (Ferrada and Superti-Furga 2022). In eucalyptus, there are many CDF metal-tolerance proteins that antiport Me2+ in vacuoles, H+ and K+, and these antiporters protect against Mn2+, Zn2+, Cd2+ and Cu2+ (Shirazi et al. 2023).

At least two metal binding sites have been identified in the E. coli paralogue, YiiP (TC #2.A.4.1.5), and one plays a role in H+ binding as well (Chao and Fu, 2004b). The two Zn2+/Cd2+  binding sites consist of two interacting conserved aspartyl residues (Asp-157 and Asp-49), both in 2 fold symmetry-related TMS 5 and TMS 2, respectively, at the dimer interface of the homodimer (Wei and Fu, 2006). The (Asp-49 and Asp-157) may form a bimetal binding center. Two bound Cd2+  were transported cooperatively with sigmoidal dependency on the Cd2+  concentration. A translocation pathway for metal ions at the dimer interface has been proposed (Wei and Fu, 2006). CDF family members may generally be homodimeric (Haney et al., 2005; Wei et al., 2004). ZNT sequences include a cytosolic His-rich loop between TMSs IV and V and histidyl residues in the cytosolic N-terminus, but neither is required for transport activity (Fukue et al. 2018).

Lu and Fu (2007) have reported the x-ray structure of YiiP of E. coli (2.A.4.7.1) in complex with zinc at 3.8 angstrom resolution. YiiP is a homodimer held together in a parallel orientation through four Zn2+  ions at the interface of the cytoplasmic domains.  The two transmembrane domains swing out to yield a Y-shaped structure. In each protomer, the cytoplasmic domain adopts a metallochaperone-like protein fold. The transmembrane domain features a bundle of six transmembrane helices and a tetrahedral Zn2+  binding site located in a cavity that is open to both the membrane outer leaflet and the periplasm. The structural bases for zinc transport through ZIP and ZnT porters, including the molecular mechanisms of zinc binding and transport, have been reviewed (Yin et al. 2022).

Coudray et al. (2013) used cryoelectron microscopy to determine a 13-Å resolution structure of a YiiP homolog from Shewanella oneidensis within a lipid bilayer in the absence of Zn2+. Starting from the X-ray structure in the presence of Zn2+, they used molecular dynamic flexible fitting to build a model. Comparison of the structures suggested a conformational change that involves pivoting of a transmembrane, four-helix bundle (M1, M2, M4, and M5) relative to the M3-M6 helix pair. Although accessibility of transport sites in the X-ray model indicates that it represents an outward-facing state, their model was consistent with an inward-facing state, suggesting that the conformational change is relevant to the alternating access mechanism for transport. They speculated that the dimer may coordinate rearrangement of the transmembrane helices,

Involved in metal tolerance/resistance by efflux, most CDF proteins share a two-modular architecture consisting of a transmembrane domain (TMD) and a C-terminal domain (CTD) that protrudes into the cytoplasm. A Zn2+ and Cd2+ CDF transporter from the marine bacterium, Maricaulis maris, that does not possess the CTD is a member of a new, CTD-lacking subfamily of CDFs. TMEM163 proteins are members of the CDF family (see 2.A.4.8.3 (Styrpejko and Cuajungco 2021)). Wheat (Triticum urartu) has nine CDF porters, three Zn-CDFs, two Fe/Zn-CDFs, and four Mn-CDFs (Wang et al. 2021).

The generalized transport reaction for CDF family members is:

Me2+  (in) H+ (out) ± K+ (out) → Me2+  (out) H+ (in) ± K+ (in)

References associated with 2.A.4 family:

Anton, A., A. Weltrowski, C.J. Haney, S. Franke, G. Grass, C. Rensing, and D.H. Nies. (2004). Characteristics of zinc transport by two bacterial cation diffusion facilitators from Ralstonia metallidurans CH34 and Escherichia coli. J. Bacteriol. 186: 7499-7507. 15516561
Balesaria, S. and C. Hogstrand. (2006). Identification, cloning and characterization of a plasma membrane zinc efflux transporter, TrZnT-1, from fugu pufferfish (Takifugu rubripes). Biochem. J. 394: 485-493. 16212555
Barber-Zucker, S., J. Hall, A. Froes, S. Kolusheva, F. MacMillan, and R. Zarivach. (2020). The cation diffusion facilitator protein MamM''s cytoplasmic domain exhibits metal-type dependent binding modes and discriminates against Mn. J. Biol. Chem. 295: 16614-16629. 33453898
Barber-Zucker, S., J. Hall, A. Froes, S. Kolusheva, F. MacMillan, and R. Zarivach. (2020). The cation diffusion facilitator protein MamM''s cytoplasmic domain exhibits metal-type dependent binding modes and discriminates against Mn. J. Biol. Chem. [Epub: Ahead of Print] 32967967
Barber-Zucker, S., R. Uebe, G. Davidov, Y. Navon, D. Sherf, J.H. Chill, I. Kass, R. Bitton, D. Schüler, and R. Zarivach. (2016). Disease-Homologous Mutation in the Cation Diffusion Facilitator Protein MamM Causes Single-Domain Structural Loss and Signifies Its Importance. Sci Rep 6: 31933. 27550551
Ben Yosef, T.E., R. Zarivach, and A. Moran. (2023). Characterizing Mammalian Zinc Transporters Using an In Vitro Zinc Transport Assay. J Vis Exp. 37335097
Bin, B.H., J. Seo, and S.T. Kim. (2018). Function, Structure, and Transport Aspects of ZIP and ZnT Zinc Transporters in Immune Cells. J Immunol Res 2018: 9365747. 30370308
Bui, H.B., S. Watanabe, N. Nomura, K. Liu, T. Uemura, M. Inoue, A. Tsutsumi, H. Fujita, K. Kinoshita, Y. Kato, S. Iwata, M. Kikkawa, and K. Inaba. (2023). Cryo-EM structures of human zinc transporter ZnT7 reveal the mechanism of Zn uptake into the Golgi apparatus. Nat Commun 14: 4770. 37553324
Burré, J., H. Zimmermann, and W. Volknandt. (2007). Identification and characterization of SV31, a novel synaptic vesicle membrane protein and potential transporter. J Neurochem 103: 276-287. 17623043
Catapano, M.C., D.S. Parsons, R. Kotuniak, P. Mladěnka, W. Bal, and W. Maret. (2021). Probing the Structure and Function of the Cytosolic Domain of the Human Zinc Transporter ZnT8 with Nickel(II) Ions. Int J Mol Sci 22:. 33799326
Chao, Y. and D. Fu. (2004a). Kinetic study of the antiport mechanism of an Escherichia coli zinc transporter, ZitB. J. Biol. Chem. 279: 12043-12050. 14715669
Chao, Y. and D. Fu. (2004b). Thermodynamic studies of the mechanism of metal binding to the Escherichia coli zinc transporter YiiP. J. Biol. Chem. 279: 17173-17180. 14960568
Chen, X., J. Li, L. Wang, G. Ma, and W. Zhang. (2016). A mutagenic study identifying critical residues for the structure and function of rice manganese transporter OsMTP8.1. Sci Rep 6: 32073. 27555514
Cherezov, V., N. Höfer, D.M. Szebenyi, O. Kolaj, J.G. Wall, R. Gillilan, V. Srinivasan, C.P. Jaroniec, and M. Caffrey. (2008). Insights into the mode of action of a putative zinc transporter CzrB in Thermus thermophilus. Structure 16: 1378-1388. 18786400
Chu, H.H., S. Car, A.L. Socha, M.N. Hindt, T. Punshon, and M.L. Guerinot. (2017). The Arabidopsis MTP8 transporter determines the localization of manganese and iron in seeds. Sci Rep 7: 11024. 28887568
Clemens, S., T. Bloss, C. Vess, D. Neumann, D.H. Nies, and U. zur Nieden. (2002). A transporter in the endoplasmic reticulum of Schizosaccharomyces pombe cells mediates zinc storage and differentially affects transition metal tolerance. J. Biol. Chem. 277: 18215-18221. 11886869
Cotrim, C.A., R.J. Jarrott, A.E. Whitten, H.G. Choudhury, D. Drew, and J.L. Martin. (2021). Heterologous Expression and Biochemical Characterization of the Human Zinc Transporter 1 (ZnT1) and Its Soluble C-Terminal Domain. Front Chem 9: 667803. 33996761
Coudray, N., S. Valvo, M. Hu, R. Lasala, C. Kim, M. Vink, M. Zhou, D. Provasi, M. Filizola, J. Tao, J. Fang, P.A. Penczek, I. Ubarretxena-Belandia, and D.L. Stokes. (2013). Inward-facing conformation of the zinc transporter YiiP revealed by cryoelectron microscopy. Proc. Natl. Acad. Sci. USA 110: 2140-2145. 23341604
Cousins, R.J., J.P. Liuzzi, and L.A. Lichten. (2006). Mammalian zinc transport, trafficking, and signals. J. Biol. Chem. 281: 24085-24089. 16793761
Cragg, R.A., G.R. Christie, S.R. Phillips, R.M. Russi, S. Kury, J.C. Mathers, P.M. Taylor, and D. Ford. (2002). A novel zinc-regulated human zinc transporter, hZTL1, is localized to the enterocyte apical membrane. J. Biol. Chem. 277: 22789-22797. 11937503
Cuajungco MP., Basilio LC., Silva J., Hart T., Tringali J., Chen CC., Biel M. and Grimm C. (2014). Cellular zinc levels are modulated by TRPML1-TMEM163 interaction. Traffic. 15(11):1247-65. 25130899
Cuajungco, M.P. and K. Kiselyov. (2017). The mucolipin-1 (TRPML1) ion channel, transmembrane-163 (TMEM163) protein, and lysosomal zinc handling. Front Biosci (Landmark Ed) 22: 1330-1343. 28199205
Daniels, M.J., M. Jagielnicki, and M. Yeager. (2020). Structure/Function Analysis of human ZnT8 (SLC30A8): A Diabetes Risk Factor and Zinc Transporter. Curr Res Struct Biol 2: 144-155. 34235474
Dechen, K., C.D. Richards, J.C. Lye, J.E. Hwang, and R. Burke. (2015). Compartmentalized zinc deficiency and toxicities caused by ZnT and Zip gene over expression result in specific phenotypes in Drosophila. Int J Biochem. Cell Biol. 60: 23-33. 25562517
Desbrosses-Fonrouge, A.G., K. Voigt, A. Schröder, S. Arrivault, S. Thomine, and U. Krämer. (2005). Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation. FEBS Lett. 579: 4165-4174. 16038907
Ellis, C.D., C.W. Macdiarmid, and D.J. Eide. (2005). Heteromeric protein complexes mediate zinc transport into the secretory pathway of eukaryotic cells. J. Biol. Chem. 280: 28811-28818. 15961382
Escobar, A., D.J. Styrpejko, S. Ali, and M.P. Cuajungco. (2022). Transmembrane 163 (TMEM163) protein interacts with specific mammalian SLC30 zinc efflux transporter family members. Biochem Biophys Rep 32: 101362. 36204728
Ferrada, E. and G. Superti-Furga. (2022). A structure and evolutionary-based classification of solute carriers. iScience 25: 105096. 36164651
Fu, X.Z., Y.H. Tong, X. Zhou, L.L. Ling, C.P. Chun, L. Cao, M. Zeng, and L.Z. Peng. (2017). Genome-wide identification of sweet orange (Citrus sinensis) metal tolerance proteins and analysis of their expression patterns under zinc, manganese, copper, and cadmium toxicity. Gene 629: 1-8. 28760553
Fujiwara T., Kawachi M., Sato Y., Mori H., Kutsuna N., Hasezawa S. and Maeshima M. (2015). A high molecular mass zinc transporter MTP12 forms a functional heteromeric complex with MTP5 in the Golgi in Arabidopsis thaliana. FEBS J. 282(10):1965-79. 25732056
Fukue, K., N. Itsumura, N. Tsuji, K. Nishino, M. Nagao, H. Narita, and T. Kambe. (2018). Evaluation of the roles of the cytosolic N-terminus and His-rich loop of ZNT proteins using ZNT2 and ZNT3 chimeric mutants. Sci Rep 8: 14084. 30237557
Fukunaka, A., T. Suzuki, Y. Kurokawa, T. Yamazaki, N. Fujiwara, K. Ishihara, H. Migaki, K. Okumura, S. Masuda, Y. Yamaguchi-Iwai, M. Nagao, and T. Kambe. (2009). Demonstration and characterization of the heterodimerization of ZnT5 and ZnT6 in the early secretory pathway. J. Biol. Chem. 284: 30798-30806. 19759014
Grass, G., M. Otto, B. Fricke, C.J. Haney, C. Rensing, D.H. Nies, and D. Munkelt. (2005). FieF (YiiP) from Escherichia coli mediates decreased cellular accumulation of iron and relieves iron stress. Arch. Microbiol. 183: 9-18. 15549269
Grover, A. and R. Sharma. (2006). Identification and characterization of a major Zn(II) resistance determinant of Mycobacterium smegmatis. J. Bacteriol. 188: 7026-7032. 16980506
Guffanti, A.A., Y. Wei, S.V. Rood, and T.A. Krulwich. (2002). An antiport mechanism for a member of the cation diffusion facilitator family: divalent cations efflux in exchange for K+ and H+. Mol. Microbiol. 45: 145-153. 12100555
Gupta, S., J. Chai, J. Cheng, R. D'Mello, M.R. Chance, and D. Fu. (2014). Visualizing the kinetic power stroke that drives proton-coupled zinc(II) transport. Nature 512: 101-104. 25043033
Haney, C.J., G. Grass, S. Franke, and C. Rensing. (2005). New developments in the understanding of the cation diffusion facilitator family. J. Ind. Microbiol. Biotechnol. 32: 215-226. 15889311
Hložková, K., J. Suman, H. Strnad, T. Ruml, V. Paces, and P. Kotrba. (2013). Characterization of pbt genes conferring increased Pb2+ and Cd2+ tolerance upon Achromobacter xylosoxidans A8. Res. Microbiol. 164: 1009-1018. 24125695
Höfer, N., O. Kolaj, H. Li, V. Cherezov, R. Gillilan, J.G. Wall, and M. Caffrey. (2007). Crystallization and preliminary X-ray diffraction analysis of a soluble domain of the putative zinc transporter CzrB from Thermus thermophilus. Acta Crystallogr Sect F Struct Biol Cryst Commun 63: 673-677. 17671365
Huang L., Gitschier J. (1997). A novel gene involved in zinc transport is deficient in the lethal milk mouse. Nat. Genet. 17: 292-297. 9354792
Huffman, D.L., L. Abrami, R. Sasik, J. Corbeil, F.G. van der Goot, and R.V. Aroian. (2004). Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins. Proc. Natl. Acad. Sci. USA 101: 10995-11000. 15256590
Ibuot, A., A.P. Dean, and J.K. Pittman. (2020). Multi-genomic analysis of the cation diffusion facilitator transporters from algae. Metallomics. [Epub: Ahead of Print] 32195517
Ishihara, K., T. Yamazaki, Y. Ishida, T. Suzuki, K. Oda, M. Nagao, Y. Yamaguchi-Iwai, and T. Kambe. (2006). Zinc transport complexes contribute to the homeostatic maintenance of secretory pathway function in vertebrate cells. J. Biol. Chem. 281: 17743-17750. 16636052
Jakubovics, N.S. and R.A. Valentine. (2009). A new direction for manganese homeostasis in bacteria: identification of a novel efflux system in Streptococcus pneumoniae. Mol. Microbiol. 72: 1-4. 19226325
Kambe, T. (2012). Molecular architecture and function of ZnT transporters. Curr Top Membr 69: 199-220. 23046652
Kambe, T., H. Narita, Y. Yumaguchi-Iwa, J. Hirose, T. Amano, N. Sugiura, R. Sasaki, K. Mori. T. Iwanaga, and M. Nagano. Cloning and characterization of a novel mammalian J. Biol. Chem. 277: 19049-1955. 11904301
Kawachi M., Kobae Y., Kogawa S., Mimura T., Kramer U. and Maeshima M. (2012). Amino acid screening based on structural modeling identifies critical residues for the function, ion selectivity and structure of Arabidopsis MTP1. FEBS J. 279(13):2339-56. 22520078
Kawachi, M., Y. Kobae, T. Mimura, and M. Maeshima. (2008). Deletion of a histidine-rich loop of AtMTP1, a vacuolar Zn2+/H+ antiporter of Arabidopsis thaliana, stimulates the transport activity. J. Biol. Chem. 283: 8374-8383. 18203721
Kolaj-Robin, O., D. Russell, K.A. Hayes, J.T. Pembroke, and T. Soulimane. (2015). Cation Diffusion Facilitator family: Structure and function. FEBS Lett. 589: 1283-1295. 25896018
Lee, S.M., G. Grass, C.J. Haney, B. Fan, B.P. Rosen, A. Anton, D.H. Nies, and C. Rensing. (2002). Functional analysis of the Escherichia coli zinc transporter ZitB. FEMS Microbiol. Lett. 215: 273-278. 12399046
Levy, M., N. Elkoshi, S. Barber-Zucker, E. Hoch, R. Zarivatch, M. Hershfinkel, and I. Sekler. (2019). Zinc transporter 10 (ZnT10)-dependent extrusion of cellular Mn2+ is driven by an active Ca2+-coupled exchange. J. Biol. Chem. [Epub: Ahead of Print] 30755481
Li, L. and J. Kaplan. (2001). The yeast gene MSC2, a member of the cation diffusion facilitator family, affects the cellular distribution of zinc. J. Biol. Chem. 276: 5036-5043. 11058603
Lin H., Burton D., Li L., Warner DE., Phillips JD., Ward DM. and Kaplan J. (2009). Gain-of-function mutations identify amino acids within transmembrane domains of the yeast vacuolar transporter Zrc1 that determine metal specificity. Biochem J. 422(2):273-83. 19538181
Lin, H., A. Kumánovics, J.M. Nelson, D.E. Warner, D.M. Ward, and J. Kaplan. (2008). A single amino acid change in the yeast vacuolar metal transporters ZRC1 and COT1 alters their substrate specificity. J. Biol. Chem. 283: 33865-33873. 18930916
Lisher, J.P., K.A. Higgins, M.J. Maroney, and D.P. Giedroc. (2013). Physical characterization of the manganese-sensing pneumococcal surface antigen repressor from Streptococcus pneumoniae. Biochemistry 52: 7689-7701. 24067066
Liuzzi, J.P. and R.J. Cousins. (2004). Mammalian zinc transporters. Annu. Rev. Nutr. 24: 151-172. 15189117
Lopez, V. and S.L. Kelleher. (2009). Zinc transporter-2 (ZnT2) variants are localized to distinct subcellular compartments and functionally transport zinc. Biochem. J. 422: 43-52. 19496757
Lu, M. and D. Fu. (2007). Structure of the zinc transporter YiiP. Science 317: 1746-1748. 17717154
Lye, J.C., C.D. Richards, K. Dechen, C.G. Warr, and R. Burke. (2013). In vivo zinc toxicity phenotypes provide a sensitized background that suggests zinc transport activities for most of the Drosophila Zip and ZnT genes. J Biol Inorg Chem 18: 323-332. 23322169
MacDiarmid, C.W., M.A. Milanick, and D.J. Eide. (2003). Induction of the ZRC1 metal tolerance gene in zinc-limited yeast confers resistance to zinc shock. J. Biol. Chem. 278: 15065-15072. 12556516
Martin, J.E. and D.P. Giedroc. (2016). Functional determinants of metal ion transport and selectivity in paralogous cation diffusion facilitator transporters CzcD and MntE in Streptococcus pneumoniae. J. Bacteriol. [Epub: Ahead of Print] 26787764
Matias, M.G., K.M. Gomolplitinant, D.G. Tamang, and M.H. Saier, Jr. (2010). Animal Ca2+ release-activated Ca2+ (CRAC) channels appear to be homologous to and derived from the ubiquitous cation diffusion facilitators. BMC Res Notes 3: 158. 20525303
Migocka, M., A. Kosieradzka, A. Papierniak, E. Maciaszczyk-Dziubinska, E. Posyniak, A. Garbiec, and S. Filleur. (2015). Two metal-tolerance proteins, MTP1 and MTP4, are involved in Zn homeostasis and Cd sequestration in cucumber cells. J Exp Bot 66: 1001-1015. 25422498
Mihelj, P., I. Abreu, T. Moreyra, M. González-Guerrero, and D. Raimunda. (2023). Functional Characterization of the Co Transporter AitP in Sinorhizobium meliloti: A New Player in Fe Homeostasis. Appl. Environ. Microbiol. e0190122. [Epub: Ahead of Print] 36853042
Mitchell, R.K., M. Hu, P.L. Chabosseau, M.C. Cane, G. Meur, E.A. Bellomo, R. Carzaniga, L.M. Collinson, W.H. Li, D.J. Hodson, and G.A. Rutter. (2016). Molecular Genetic Regulation of Slc30a8/ZnT8 Reveals a Positive Association With Glucose Tolerance. Mol Endocrinol 30: 77-91. 26584158
Montanini B., D. Blaudez, S. Jeandroz, D. Sanders, M. Chalot. (2007). Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity. BMC Genomics. 8: 107. 17448255
Moskovskich, A., U. Goldmann, F. Kartnig, S. Lindinger, J. Konecka, G. Fiume, E. Girardi, and G. Superti-Furga. (2019). The transporters SLC35A1 and SLC30A1 play opposite roles in cell survival upon VSV virus infection. Sci Rep 9: 10471. 31320712
Munkelt, D., G. Grass, and D.H. Nies. (2004). The chromosomally encoded cation diffusion facilitator proteins DmeF and FieF from Wautersia metallidurans CH34 are transporters of broad metal specificity. J. Bacteriol. 186: 8036-8043. 15547276
Nies, D.H. and S. Silver. (1995). Ion efflux systems involved in bacterial metal resistances. J. Industr. Microbiol. 14: 186-199. 7766211
Nishito, Y. and T. Kambe. (2019). Zinc transporter 1 (ZNT1) expression on the cell surface is elaborately controlled by cellular zinc levels. J. Biol. Chem. [Epub: Ahead of Print] 31471319
Nishito, Y., N. Tsuji, H. Fujishiro, T.A. Takeda, T. Yamazaki, F. Teranishi, F. Okazaki, A. Matsunaga, K. Tuschl, R. Rao, S. Kono, H. Miyajima, H. Narita, S. Himeno, and T. Kambe. (2016). Direct Comparison of Manganese Detoxification/Efflux Proteins and Molecular Characterization of ZnT10 as a Manganese Transporter. J. Biol. Chem. [Epub: Ahead of Print] 27226609
Parsons, D.S., C. Hogstrand, and W. Maret. (2018). The C-terminal cytosolic domain of the human zinc transporter ZnT8 and its diabetes risk variant. FEBS J. [Epub: Ahead of Print] 29430817
Paulsen, I.T. and M.H. Saier, Jr. (1997). A novel family of ubiquitous heavy metal ion transport proteins. J. Membr. Biol. 156: 99-103. 9075641
Peiter E., B. Montanini, A. Gobert, P. Pedas, S. Husted, F.J. Maathuis, D. Blaudez, M. Chalot, D. Sanders. (2007). A secretory pathway-localized cation diffusion facilitator confers plant manganese tolerance. Proc. Natl. Acad. Sci. U.S.A. 104: 8532-8537. 17494768
Perez, Y., Z. Shorer, K. Liani-Leibson, P. Chabosseau, R. Kadir, M. Volodarsky, D. Halperin, S. Barber-Zucker, H. Shalev, R. Schreiber, L. Gradstein, E. Gurevich, R. Zarivach, G.A. Rutter, D. Landau, and O.S. Birk. (2017). SLC30A9 mutation affecting intracellular zinc homeostasis causes a novel cerebro-renal syndrome. Brain. [Epub: Ahead of Print] 28334855
Podar, D., J. Scherer, Z. Noordally, P. Herzyk, D. Nies, and D. Sanders. (2012). Metal selectivity determinants in a family of transition metal transporters. J. Biol. Chem. 287: 3185-3196. 22139846
Rahman, M., S.G. Patching, F. Ismat, P.J. Henderson, R.B. Herbert, S.A. Baldwin, and M.J. McPherson. (2008). Probing metal ion substrate-binding to the E. coli ZitB exporter in native membranes by solid state NMR. Mol. Membr. Biol. 25: 683-690. 19039702
Raimunda, D. and G. Elso-Berberián. (2014). Functional characterization of the CDF transporter SMc02724 (SmYiiP) in Sinorhizobium meliloti: Roles in manganese homeostasis and nodulation. Biochim. Biophys. Acta. 1838: 3203-3211. 25242380
Rege, J., S. Bandulik, K. Nanba, C. Kosmann, A.R. Blinder, A. Plain, P. Vats, C. Kumar-Sinha, A.M. Lerario, T. Else, Y. Yamazaki, F. Satoh, H. Sasano, T.J. Giordano, T.A. Williams, M. Reincke, A.F. Turcu, A.M. Udager, R. Warth, and W.E. Rainey. (2023). Somatic SLC30A1 mutations altering zinc transporter ZnT1 cause aldosterone-producing adenomas and primary aldosteronism. Nat. Genet. [Epub: Ahead of Print] 37709865
Roh, H.C., S. Collier, K. Deshmukh, J. Guthrie, J.D. Robertson, and K. Kornfeld. (2013). ttm-1 encodes CDF transporters that excrete zinc from intestinal cells of C. elegans and act in a parallel negative feedback circuit that promotes homeostasis. PLoS Genet 9: e1003522. 23717214
Rosch, J.W., G. Gao, G. Ridout, Y.D. Wang, and E.I. Tuomanen. (2009). Role of the manganese efflux system mntE for signalling and pathogenesis in Streptococcus pneumoniae. Mol. Microbiol. 72: 12-25. 19226324
Roschzttardtz, H., G. Conéjéro, C. Curie, and S. Mari. (2009). Identification of the endodermal vacuole as the iron storage compartment in the Arabidopsis embryo. Plant Physiol. 151: 1329-1338. 19726572
Sácký, J., T. Leonhardt, and P. Kotrba. (2016). Functional analysis of two genes coding for distinct cation diffusion facilitators of the ectomycorrhizal Zn-accumulating fungus Russula atropurpurea. Biometals 29: 349-363. 26906559
Sala, D., A. Giachetti, and A. Rosato. (2019). An atomistic view of the YiiP structural changes upon zinc(II) binding. Biochim. Biophys. Acta. Gen Subj. [Epub: Ahead of Print] 31176764
Sala, D., A. Giachetti, and A. Rosato. (2021). Insights into the Dynamics of the Human Zinc Transporter ZnT8 by MD Simulations. J Chem Inf Model. [Epub: Ahead of Print] 33508935
Sanchez, V.B., S. Ali, A. Escobar, and M.P. Cuajungco. (2019). Transmembrane 163 (TMEM163) protein effluxes zinc. Arch Biochem Biophys 677: 108166. 31697912
Sharma, G. and K.M. Merz. (2022). Mechanism of Zinc Transport through the Zinc Transporter YiiP. J Chem Theory Comput. [Epub: Ahead of Print] 35226479
Shirazi, Z., F. Khakdan, F. Rafiei, M.Y. Balalami, and M. Ranjbar. (2023). Genome-wide identification and expression profile analysis of metal tolerance protein gene family in Eucalyptus grandis under metal stresses. BMC Plant Biol 23: 240. 37149585
Sindreu, C., R.D. Palmiter, and D.R. Storm. (2011). Zinc transporter ZnT-3 regulates presynaptic Erk1/2 signaling and hippocampus-dependent memory. Proc. Natl. Acad. Sci. USA 108: 3366-3370. 21245308
Smalley, M.D., G.K. Marinov, L.E. Bertani, and G. DeSalvo. (2015). Genome Sequence of Magnetospirillum magnetotacticum Strain MS-1. Genome Announc 3:. 25838488
Sreedharan, S., O. Stephansson, H.B. Schiöth, and R. Fredriksson. (2011). Long evolutionary conservation and considerable tissue specificity of several atypical solute carrier transporters. Gene 478: 11-18. 21044875
Steel, D.B.D., F.R. Danti, M. Abunada, B. Kamien, S. Malhotra, M. Topf, M. Kaliakatsos, J. Valentine, A.H. Nemeth, S. Jayawant, K.M. Reid, K. Mankad, S. Sudhakar, H. Ben-Pazi, K. Barwick, and M.A. Kurian. (2023). Clinical Phenotype in Individuals With Birk-Landau-Perez Syndrome Associated With Biallelic Pathogenic Variants. Neurology 100: e2214-e2223. 37041080
Styrpejko, D.J. and M.P. Cuajungco. (2021). Transmembrane 163 (TMEM163) Protein: A New Member of the Zinc Efflux Transporter Family. Biomedicines 9:. 33670071
Sui, L., Q. Du, A. Romer, Q. Su, P.L. Chabosseau, Y. Xin, J. Kim, S. Kleiner, G.A. Rutter, and D. Egli. (2023). ZnT8 Loss of Function Mutation Increases Resistance of Human Embryonic Stem Cell-Derived Beta Cells to Apoptosis in Low Zinc Condition. Cells 12:. 36980244
Tanaka, N., M. Kawachi, T. Fujiwara, and M. Maeshima. (2013). Zinc-binding and structural properties of the histidine-rich loop of Arabidopsis thaliana vacuolar membrane zinc transporter MTP1. FEBS Open Bio 3: 218-224. 23772397
Uebe, R., K. Junge, V. Henn, G. Poxleitner, E. Katzmann, J.M. Plitzko, R. Zarivach, T. Kasama, G. Wanner, M. Pósfai, L. Böttger, B. Matzanke, and D. Schüler. (2011). The cation diffusion facilitator proteins MamB and MamM of Magnetospirillum gryphiswaldense have distinct and complex functions, and are involved in magnetite biomineralization and magnetosome membrane assembly. Mol. Microbiol. 82: 818-835. 22007638
Ullah, R., A. Shehzad, M.A. Shah, M. March, F. Ismat, M. Iqbal, S. Onesti, M. Rahman, and M.J. McPherson. (2020). C-Terminal Domain of the Human Zinc Transporter hZnT8 Is Structurally Indistinguishable from Its Disease Risk Variant (R325W). Int J Mol Sci 21:. 32023808
Valentine, R. A., K. A. Jackson, G. R. Christie, J. C. Mathers, P. M. Taylor, and D. Ford. (2007). ZnT5 Variant B Is a Bidirectional Zinc Transporter and Mediates Zinc Uptake in Human Intestinal Caco-2 Cells. J. Biol. Chem. 282: 14389-14393 17355957
Wang, F.H., K. Qiao, Y.H. Shen, H. Wang, and T.Y. Chai. (2021). Characterization of the gene family encoding metal tolerance proteins in Triticum urartu: Phylogenetic, transcriptional, and functional analyses. Metallomics 13:. 34160615
Wei, Y. and D. Fu. (2006). Binding and transport of metal ions at the dimer interface of the Escherichia coli metal transporter YiiP. J. Biol. Chem. 281: 23492-23502. 16790427
Wei, Y., L. Huilin, and F. Dax. (2004). Oligomeric state of the Escherichia coli metal transporter YiiP. J. Biol. Chem. 279: 39251-39259. 15258151
Weijers, R.N. (2010). Three-dimensional structure of β-cell-specific zinc transporter, ZnT-8, predicted from the type 2 diabetes-associated gene variant SLC30A8 R325W. Diabetol Metab Syndr 2: 33. 20525392
Xiong, A. and R.K. Jayaswal. (1998). Molecular characterization of a chromosomal determinant conferring resistance to zinc and cobalt ions in Staphylococcus aureus. J. Bacteriol. 180: 4024-4029. 9696746
Xue, J., T. Xie, W. Zeng, Y. Jiang, and X.C. Bai. (2020). Cryo-EM structures of human ZnT8 in both outward- and inward-facing conformations. Elife 9:. 32723473
Yin, S., M. Duan, B. Fang, G. Zhao, X. Leng, and T. Zhang. (2022). Zinc homeostasis and regulation: Zinc transmembrane transport through transporters. Crit Rev Food Sci Nutr 1-11. [Epub: Ahead of Print] 35258351
Yuan, Y., T. Liu, X. Huang, Y. Chen, W. Zhang, T. Li, L. Yang, Q. Chen, Y. Wang, A. Wei, and W. Li. (2021). A zinc transporter, transmembrane protein 163 (TMEM163), is critical for the biogenesis of platelet dense granules. Blood. [Epub: Ahead of Print] 33513603
Zhang, S., C. Fu, Y. Luo, Q. Xie, T. Xu, Z. Sun, Z. Su, and X. Zhou. (2023). Cryo-EM structure of a eukaryotic zinc transporter at a low pH suggests its Zn-releasing mechanism. J Struct Biol 215: 107926. 36464198
Zogzas, C.E. and S. Mukhopadhyay. (2018). Putative metal binding site in the transmembrane domain of the manganese transporter SLC30A10 is different from that of related zinc transporters. Metallomics. [Epub: Ahead of Print] 29989630
Zogzas, C.E., M. Aschner, and S. Mukhopadhyay. (2016). Structural elements in the transmembrane and cytoplasmic domains of the metal transporter SLC30A10 are required for its manganese efflux activity. J. Biol. Chem. [Epub: Ahead of Print] 27307044