TCDB is operated by the Saier Lab Bioinformatics Group

2.A.53 The Sulfate Permease (SulP) Family

The SulP family is a large and ubiquitous family with members derived from archaea, bacteria, fungi, plants and animals. Many organisms including Bacillus subtilis, Synechocystis sp, Saccharomyces cerevisiae, Arabidopsis thaliana and Caenorhabditis elegans possess multiple SulP family paralogues. Many of these proteins are functionally characterized, and most are inorganic anion uptake transporters or anion:anion exchange transporters. Some transport their substrate(s) with high affinities, while others transport it or them with relatively low affinities. Many function by SO42-:H+ symport, but SO42-:HCO3-, or more generally, anion:anion antiport has been reported for several homologues. For example the mouse homologue, Slc26a6 (TC #2.A.53.2.7), can transport sulfate, formate, oxalate, chloride and bicarbonate, exchanging any one of these anions for another (Jiang et al., 2002). A cyanobacterial homologue can transport nitrate (Maeda et al., 2006). Some members can function as channels (Ohana et al., 2011). 2.A.53.2.3 (SLC26a3) and SLC26a6 (2.A.53.2.7 and 8) can function as carriers or channels, depending on the transported anion (Ohana et al., 2011). In these porters, mutating a glutamate, also involved in transport in the CIC family (2.A.49), (E357A in SLC26a6) created a channel out of the carrier. It also changed the stoichiometry from 2Cl-/HCO3- to 1Cl-/HCO3- (Ohana et al., 2011).

The molecular principles underlying diverse functions of the SLC26 family of proteins have been reviewed (Takahashi and Homma 2024). (i) The basic residue at the anion binding site is essential for both anion antiport of SLC26A4 and motor functions of SLC26A5, and its conversion to a nonpolar residue is crucial but not sufficient for the fast uncoupled anion transport in SLC26A9; (ii) the conserved polar residues in the N- and C-terminal cytosolic domains are likely involved in dynamic hydrogen-bonding networks and are essential for anion antiport of SLC26A4 but not for motor (SLC26A5) and uncoupled anion transport (SLC26A9) functions; (iii) the hydrophobic interaction between each protomer's last transmembrane helices, TM14, is not of functional significance in SLC26A9 but crucial for the functions of SLC26A4 and SLC26A5, likely contributing to optimally orient the axis of the relative movements of the core domain with respect to the gate domains within the cell membrane (Takahashi and Homma 2024).

Some paralogs function as anion exchangers, others as anion channels, and one - prestin (SLC26A5) - represents a membrane-bound motor protein in outer hair cells of the inner ear. All SulPs appear to be assembled as dimers composed of two identical subunits (Detro-Dassen et al., 2007). Co-expression of two mutant prestins with distinct voltage-dependent capacitances results in motor proteins with novel electrical properties, indicating that the two subunits do not function independently. An evolutionarily conserved dimeric quaternary structure may represent the native and functional state of SulP transporters (Detro-Dassen et al., 2007). A low resolution structure of a bacterial SulP transporter revealed a dimeric stoichiometry, stabilized via its transmembrane core and mobile intracellular domains. The cytoplasmic STAS domain projects away from the transmembrane domain and is not involved in dimerization. The structure suggests that large movements of the STAS domain underlie the conformational changes that occur during transport.  A strikingly similar homodimeric molecular architecture for several SLC26 members, implies a shared molecular principle, yet these systems differ in function (Takahashi and Homma 2023).  (i) the basic residue at the anion binding site is essential for both anion antiport of SLC26A4 (TC# 2.A.53.2.17) and motor functions of SLC26A5 (TC# 2.A.53.2.19) and its conversion to a nonpolar residue is crucial but not sufficient for the fast uncoupled anion transport in SLC26A9 (TC# 2.A.53.2.15; (ii) the conserved polar residues in the N- and C-terminal cytosolic domains are likely involved in dynamic hydrogen-bonding networks and are essential for anion antiport of SLC26A4 but not for motor (SLC26A5) and uncoupled anion transport (SLC26A9) functions; (iii) the hydrophobic interaction between each protomer's last transmembrane helices, TM14, is not of functional significance in SLC26A9 but crucial for the functions of SLC26A4 and SLC26A5, likely contributing to optimally orient the axis of the relative movements of the core domain with respect to the gate domains within the cell membrane.

The bacterial proteins vary in size from 434 residues to 573 residues with only a few exceptions. The eukaryotic proteins vary in size from 611 residues to 893 residues with a few exceptions. Thus, the eukaryotic proteins are usually larger than the prokaryotic homologues. These proteins exhibit 10-13 putative transmembrane α-helical spanners (TMSs) depending on the protein. One of the distant SulP homologues has been shown to be a bicarbonate:Na+ symporter (TC#2.A.53.5.1) (Price et al., 2004). Bioinformatic work has identified additional homologues with fused domains (Felce and Saier, 2005). Some of these fused proteins have SulP homologues fused to carbonic anhydrase homologues (TC #2.A.53.3.8). These are also presumed to be bicarbonate uptake permeases (Felce and Saier, 2005). Another has SulP fused to Rhodanese, a sulfate:cyanide sulfotransferase (TC #2.A.53.4.3). This SulP homologue is presumably a sulfate transporter.

One member of the SulP family, SLC26a3, has been knocked out in mice (Schweinfest et al., 2006). Apical membrane chloride/base exchange activity was sharply reduced, and luminal content was more acidic in slc26a3-null mouse colon. The epithelial cells in the colon displayed unique adaptive regulation of ion transporters; NHE3 expression was enhanced in the proximal and distal colon, whereas colonic H,K-ATPase and the epithelial sodium channel showed massive up-regulation in the distal colon. Plasma aldosterone was increased in slc26a3-null mice. Thus, slc26a3 is the major apical chloride/base exchanger and is essential for the absorption of chloride in the colon. In addition, slc26a3 regulates colonic crypt proliferation. Deletion of slc26a3 results in chloride-rich diarrhea and is associated with compensatory adaptive up-regulation of ion-absorbing transporters.

MOT1 from Arabidopsis thaliana (TC# 2.A.53.5.1, 456aas; 8-10 TMSs), a distant homologue of the SulP and BenE (2.A.46) families, is expressed in both roots and shoots, and is localized to plasma membranes and intracellular vesicles. MOT1 is required for efficient uptake and translocation of molybdate as well as for normal growth under conditions of limited molybdate supply. Kinetic studies in yeast revealed that the Km value of MOT1 for molybdate is approximately 20 nM. Mo uptake by MOT1 in yeast is not affected by the presence of sulfate. MOT1 did not complement a sulfate transporter-deficient yeast mutant strain (Tomatsu et al., 2007). MOT1 is thus specific for molybdate. The high affinity of MOT1 allows plants to obtain scarce Mo from soil when its concentration is about 10nM.

SLC26 proteins function as anion exchangers and Cl- channels. Ousingsawat et al. (2012) examined the functional interaction between CFTR and SLC26A9 in polarized airway epithelial cells and in non-polarized HEK293 cells expressing CFTR and SLC26A9 (see TC#s 2.A.53.2.10 and 2.A.53.2.15). They found that SLC26A9 provides a constitutively active basal Cl- conductance in polarized grown CFTR-expressing CFBE airway epithelial cells, but not in cells expressing F508del-CFTR. In polarized CFTR-expressing cells. SLC26A9 also contributes to both Ca2+ - and CFTR-activated Cl- secretion. In contrast in non-polarized HEK293 cells co-expressing CFTR/SLC26A9, the baseline Cl- conductance provided by SLC26A9 was inhibited during activation of CFTR. Thus, SLC26A9 and CFTR behave differentially in polarized and non-polarized cells, explaining earlier conflicting data.

3-d structural data confirmed primary sequence analyses that came to the conclusion that the SulP family is a member of the APC superfamily (Vastermark et al. 2014), and this conclusion has been further verified (Chang and Geertsma 2017).  N-glycosylation plays three roles in the functional expression of SLC26 proteins: 1) to retain mis-folded proteins in the ER, 2) to stabilize the protein at the cell surface, and 3) to maintain the transport protein in a functional state (Rapp et al. 2018).  A structural basis for functional interactions in dimers of SLC26 transporters has been reported (Chang et al. 2019).  Takahashi and Homma 2023 characterized common vs. distinct molecular mechanisms among the SLC26 proteins using both naturally occurring and artificial missense changes introduced to SLC26A4, SLC26A5, and SLC26A9. They found: (i) the basic residue at the anion binding site is essential for both anion antiport of SLC26A4 and motor functions of SLC26A5, and its conversion to a nonpolar residue is crucial but not sufficient for the fast uncoupled anion transport in SLC26A9; (ii) the conserved polar residues in the N- and C-terminal cytosolic domains are likely involved in dynamic hydrogen-bonding networks and are essential for anion antiport of SLC26A4 but not for motor (SLC26A5) and uncoupled anion transport (SLC26A9) functions; (iii) the hydrophobic interaction between each protomer's last TMS, TMS14, is not of functional significance in SLC26A9 but is crucial for the functions of SLC26A4 and SLC26A5, likely contributing to optimally orient the axis of the relative movements of the core domain with respect to the gate domains within the cell membrane (Takahashi and Homma 2023).

Sulfate Transport Anti-Sigma antagonist domains (Pfam01740) are found in all branches of life, from eubacteria to mammals, as a conserved fold encoded by highly divergent amino acid sequences. These domains are present as parts of larger SLC26/SulP anion transporters, where the STAS domain is associated with transmembrane anchoring of the larger multidomain protein. Moy and Seshu 2021 noted that STAS Domain Only Proteins (SDoPs) in eubacteria were initially described as part of the Bacillus subtilis Regulation of Sigma B (RSB) regulatory system. SDoPs are involved in the regulation of sigma factors through partner-switching mechanisms in various bacteria such as Mycobacterium tuberculosis, Listeria monocytogenes, Vibrio fischeri and Bordetella bronchiseptica, among others. In addition to playing a canonical role in partner-switching with an anti-sigma factor to affect the availability of a sigma factor, several eubacterial SDoPs show additional regulatory roles compared to the original RSB system of B. subtilis (Moy and Seshu 2021). 

(i) The basic residue at the anion binding site is essential for both anion antiport of SLC26A4 and motor functions of SLC26A5, and its conversion to a nonpolar residue is crucial but not sufficient for the fast uncoupled anion transport in SLC26A9. (ii) The conserved polar residues in the N- and C-terminal cytosolic domains are likely involved in dynamic hydrogen-bonding networks and are essential for anion antiport of SLC26A4 but not for motor (SLC26A5) and uncoupled anion transport (SLC26A9) functions. (iii) The hydrophobic interaction between each protomer's last transmembrane helix, TM14, is not of functional significance in SLC26A9 but is crucial for the functions of SLC26A4 and SLC26A5, likely contributing to the optimal orientation of the axis of the relative movements of the core domain with respect to the gate domains within the cell membrane (Takahashi and Homma 2023).

The generalized transport reactions catalyzed by SulP family proteins are:

(1) SO42- (out) + nH+ (out) → SO42- (in) + nH+ (in)

(2) SO42- (out) + nHCO3- (in) ⇌ SO42- (in) + nHCO3- (out)

(3) I- and other anions (out) ⇌ I- and other anions (in)

(4) HCO3- (out) + nH+ (out) → HCO3- (in) + nH+ (in)

(5) HPO4-2 (out) + nH+ (out) → HPO4-2 (in) + nH+ (in)

This family belongs to the: APC Superfamily.

References associated with 2.A.53 family:

Babu, M., J.F. Greenblatt, A. Emili, N.C. Strynadka, R.A. Reithmeier, and T.F. Moraes. (2010). Structure of a SLC26 anion transporter STAS domain in complex with acyl carrier protein: implications for E. coli YchM in fatty acid metabolism. Structure 18: 1450-1462. 21070944
Bai, J.P., A. Surguchev, S. Montoya, P.S. Aronson, J. Santos-Sacchi, and D. Navaratnam. (2009). Prestin's anion transport and voltage-sensing capabilities are independent. Biophys. J. 96: 3179-3186. 19383462
Bassot, C., G. Minervini, E. Leonardi, and S.C. Tosatto. (2016). Mapping pathogenic mutations suggests an innovative structural model for the pendrin (SLC26A4) transmembrane domain. Biochimie. [Epub: Ahead of Print] 27771369
Baxter, I., B. Muthukumar, H.C. Park, P. Buchner, B. Lahner, J. Danku, K. Zhao, J. Lee, M.J. Hawkesford, M.L. Guerinot, and D.E. Salt. (2008). Variation in molybdenum content across broadly distributed populations of Arabidopsis thaliana is controlled by a mitochondrial molybdenum transporter (MOT1). PLoS Genet 4: e1000004. 18454190
Biji, I.K., S. Yadav, S. Kulshrestha, R. Saxena, S. Kohli, I.C. Verma, B. Kumar, and R.D. Puri. (2022). Computational biology insights into genotype-clinical phenotype-protein phenotype relationships between novel SLC26A2 variants identified in inherited skeletal dysplasias. Eur J Med Genet 65: 104595. [Epub: Ahead of Print] 36007841
Bissig, M., B. Hagenbuch, B. Stieger, T. Koller, and P.J. Meier. (1994). Functional expression cloning of the canalicular sulfate transport system of rat hepatocytes. J. Biol. Chem. 269: 3017-3021. 8300633
Butan, C., Q. Song, J.P. Bai, W.J.T. Tan, D. Navaratnam, and J. Santos-Sacchi. (2022). Single particle cryo-EM structure of the outer hair cell motor protein prestin. Nat Commun 13: 290. 35022426
Chang, M.H., C. Plata, K. Zandi-Nejad, A. Sindić, C.R. Sussman, A. Mercado, V. Broumand, V. Raghuram, D.B. Mount, and M.F. Romero. (2009). Slc26a9--anion exchanger, channel and Na+ transporter. J. Membr. Biol. 228: 125-140. 19365592
Chang, Y.N. and E.R. Geertsma. (2017). The novel class of seven transmembrane segment inverted repeat carriers. Biol Chem 398: 165-174. 27865089
Chang, Y.N., E.A. Jaumann, K. Reichel, J. Hartmann, D. Oliver, G. Hummer, B. Joseph, and E.R. Geertsma. (2019). Structural basis for functional interactions in dimers of SLC26 transporters. Nat Commun 10: 2032. 31048734
Chen AP., Chang MH. and Romero MF. (2012). Functional analysis of nonsynonymous single nucleotide polymorphisms in human SLC26A9. Hum Mutat. 33(8):1275-84. 22544634
Chernova, M.N., L. Jiang, D.J. Friedman, R.B. Darman, H. Lohi, J. Kere, D.H. Vandorpe, and S.L. Alper. (2005). Functional comparison of mouse Slc26a6 anion exchanger with human SLC26A6 polypeptide variants. Differences in anion selectivity, regulation, and electrogenicity. J. Biol. Chem. 280: 8564-8580. 15548529
Clark, J.S., D.H. Vandorpe, M.N. Chernova, J.F. Heneghan, A.K. Stewart, and S.L. Alper. (2008). Species differences in Cl- affinity and in electrogenicity of SLC26A6-mediated oxalate/Cl- exchange correlate with the distinct human and mouse susceptibilities to nephrolithiasis. J. Physiol. 586: 1291-1306. 18174209
Compton, E.L., E. Karinou, J.H. Naismith, F. Gabel, and A. Javelle. (2011). Low resolution structure of a bacterial SLC26 transporter reveals dimeric stoichiometry and mobile intracellular domains. J. Biol. Chem. 286: 27058-27067. 21659513
Costanzi, E., A. Coletti, B. Zambelli, A. Macchiarulo, M. Bellanda, and R. Battistutta. (2021). Calmodulin binds to the STAS domain of SLC26A5 prestin with a calcium-dependent, one-lobe, binding mode. J Struct Biol 213: 107714. [Epub: Ahead of Print] 33667636
Dawson, P.A., P. Sim, D.W. Mudge, and D. Cowley. (2013). Human SLC26A1 Gene Variants: A Pilot Study. ScientificWorldJournal 2013: 541710. 24250268
Detro-Dassen, S., M. Schänzler, H. Lauks, I. Martin, S.M. zu Berstenhorst, D. Nothmann, D. Torres-Salazar, P. Hidalgo, G. Schmalzing, and C. Fahlke. (2008). Conserved dimeric subunit stoichiometry of SLC26 multifunctional anion exchangers. J. Biol. Chem. 283(7): 4177-4188. 18073211
Do, D.C., Y. Zhang, W. Tu, X. Hu, X. Xiao, J. Chen, H. Hao, Z. Liu, J. Li, S.K. Huang, M. Wan, and P. Gao. (2021). Type II alveolar epithelial cell-specific loss of RhoA exacerbates allergic airway inflammation through SLC26A4. JCI Insight 6:. 34101619
Dorwart, M.R., N. Shcheynikov, J.M. Baker, J.D. Forman-Kay, S. Muallem, and P.J. Thomas. (2008). Congenital chloride-losing diarrhea causing mutations in the STAS domain result in misfolding and mistrafficking of SLC26A3. J. Biol. Chem. 283: 8711-8722. 18216024
Eleftheriadou, A.M., S. Mehl, K. Renko, R.H. Kasim, J.A. Schaefer, W.B. Minich, and L. Schomburg. (2020). Re-visiting autoimmunity to sodium-iodide symporter and pendrin in thyroid disease. Eur J Endocrinol 183: 571-580. 33055303
Felce, J. and M.H. Saier, Jr. (2005). Carbonic anhydrases fused to anion transporters of the SulP family: evidence for a novel type of bicarbonate transporter. J. Mol. Microbiol. Biotechnol. 8: 169-176. 16088218
Fitzpatrick, K.L., S.D. Tyerman, and B.N. Kaiser. (2008). Molybdate transport through the plant sulfate transporter SHST1. FEBS Lett. 582: 1508-1513. 18396170
Garnett, J.P., E. Hickman, R. Burrows, P. Hegyi, L. Tiszlavicz, A.W. Cuthbert, P. Fong, and M.A. Gray. (2011). Novel role for pendrin in orchestrating bicarbonate secretion in cystic fibrosis transmembrane conductance regulator (CFTR)-expressing airway serous cells. J. Biol. Chem. 286: 41069-41082. 21914796
Gasber, A., S. Klaumann, O. Trentmann, A. Trampczynska, S. Clemens, S. Schneider, N. Sauer, I. Feifer, F. Bittner, R.R. Mendel, and H.E. Neuhaus. (2011). Identification of an Arabidopsis solute carrier critical for intracellular transport and inter-organ allocation of molybdate. Plant Biol (Stuttg) 13: 710-718. 21815974
Ge, J., J. Elferich, S. Dehghani-Ghahnaviyeh, Z. Zhao, M. Meadows, H. von Gersdorff, E. Tajkhorshid, and E. Gouaux. (2021). Molecular mechanism of prestin electromotive signal amplification. Cell 184: 4669-4679.e13. 34390643
Geertsma, E.R., Y.N. Chang, F.R. Shaik, Y. Neldner, E. Pardon, J. Steyaert, and R. Dutzler. (2015). Structure of a prokaryotic fumarate transporter reveals the architecture of the SLC26 family. Nat Struct Mol Biol 22: 803-808. 26367249
Gorbunov, D., M. Sturlese, F. Nies, M. Kluge, M. Bellanda, R. Battistutta, and D. Oliver. (2014). Molecular architecture and the structural basis for anion interaction in prestin and SLC26 transporters. Nat Commun 5: 3622. 24710176
Guntupalli, V., R. Wan, L. Liu, W. Gu, S. Xie, and P. Gao. (2024). Solute Carrier Family 26 Member 4 (SLC26A4), A Potential Therapeutic Target for Asthma. J Respir Biol Transl Med 1:. 39100210
Hastbacka, J., A. De La Chapelle, M.M. Mahtani, G. Clines, M.P. Reeve-Daly, M. Daly, B.A. Hamilton, K. Kusumi, B. Trivedi, A. Weaver, A. Coloma, M. Lovett, A. Buckler, I. Kaitila, and E.S. Landers. (1994). The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell 78: 1073-1087. 7923357
Hastbacka, J., A. Superti-Furga, W.R. Wilcox, D.L. Rimoin, D.H. Cohn, and E.S. Landers. (1996) Atelosteogenesis type II is caused by mutations in the diastrophic dysplasia sulfate-transporter gene (DTDST): evidence for a phenotypic series involving three chondrodysplasias. Am. J. Hum. Genet. 58: 255-262.
Hayashi, H., K. Suruga, and Y. Yamashita. (2009). Regulation of intestinal Cl-/HCO3- exchanger SLC26A3 by intracellular pH. Am. J. Physiol. Cell Physiol. 296: C1279-1290. 19321737
He DZ., Lovas S., Ai Y., Li Y. and Beisel KW. (2014). Prestin at year 14: progress and prospect. Hear Res. 311:25-35. 24361298
Honda, K. and A.J. Griffith. (2022). Genetic architecture and phenotypic landscape of SLC26A4-related hearing loss. Hum Genet 141: 455-464. 34345941
Huang, Z., T. Hu, S. Yang, X. Tian, and Z. Wu. (2023). Genetic responses to adding nitrates to improve hydrophilic yellow pigment in Monascus fermentation. Appl. Microbiol. Biotechnol. 107: 1341-1359. 36705673
Ide, Y., M. Kusano, A. Oikawa, A. Fukushima, H. Tomatsu, K. Saito, M.Y. Hirai, and T. Fujiwara. (2011). Effects of molybdenum deficiency and defects in molybdate transporter MOT1 on transcript accumulation and nitrogen/sulphur metabolism in Arabidopsis thaliana. J Exp Bot 62: 1483-1497. 21131548
Ishihara, K., S. Okuyama, S. Kumano, K. Iida, H. Hamana, M. Murakoshi, T. Kobayashi, S. Usami, K. Ikeda, Y. Haga, K. Tsumoto, H. Nakamura, N. Hirasawa, and H. Wada. (2010). Salicylate restores transport function and anion exchanger activity of missense pendrin mutations. Hear Res 270: 110-118. 20826203
Jiang, Z., I.I. Grichtchenko, W.F. Boron, and P.S. Aronson. (2002). Specificity of anion exhange mediated by mouse Slc26a6. J. Biol. Chem. 277: 33963-33967. 12119287
Jo, S., R. Centeio, J. Park, J. Ousingsawat, D.K. Jeon, K. Talbi, R. Schreiber, K. Ryu, K. Kahlenberg, V. Somoza, L. Delpiano, M.A. Gray, M.D. Amaral, V. Railean, J.M. Beekman, L.W. Rodenburg, W. Namkung, and K. Kunzelmann. (2022). The SLC26A9 inhibitor S9-A13 provides no evidence for a role of SLC26A9 in airway chloride secretion but suggests a contribution to regulation of ASL pH and gastric proton secretion. FASEB J. 36: e22534. 36183361
Karinou, E., E.L. Compton, M. Morel, and A. Javelle. (2013). The Escherichia coli SLC26 homologue YchM (DauA) is a C(4)-dicarboxylic acid transporter. Mol. Microbiol. 87: 623-640. 23278959
Kawano-Kawada, M., H. Ichimura, S. Ohnishi, Y. Yamamoto, Y. Kawasaki, and T. Sekito. (2021). Ygr125w/Vsb1-dependent accumulation of basic amino acids into vacuoles of Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. [Epub: Ahead of Print] 33704406
Ketter, J.S., G. Jarai, Y.H. Fu, and G.A. Marzluf. (1991). Nucleotide sequence, messenger RNA stability, and DNA recognition elements of cys-14, the structural gene for sulfate permease II in Neurospora crassa. J. Biochem. 30: 1780-1787. 1825178
Kim, K.H., N. Shcheynikov, Y. Wang, and S. Muallem. (2005). SLC26A7 is a Cl- channel regulated by intracellular pH. J. Biol. Chem. 280: 6463-6470. 15591059
Kiriya, M., A. Kawashima, Y. Fujiwara, Y. Tanimura, A. Yoshihara, Y. Nakamura, K. Tanigawa, T. Kondo, and K. Suzuki. (2022). Thyroglobulin regulates the expression and localization of the novel iodide transporter solute carrier family 26 member 7 (SLC26A7) in thyrocytes. Endocr J 69: 1217-1225. 35644541
Knauf, F., C.L. Yang, R.B. Thomson, S.A. Mentone, G. Giebisch, and P.S. Aronson. (2001). Identification of a chloride-formate exchanger expressed on the brush border membrane of renal proximal tubule cells. Proc. Natl. Acad. Sci. USA 98: 9425-9430. 11459928
Kravtsov, D.V., M.K. Ahsan, V. Kumari, S.C. van Ijzendoorn, M. Reyes-Mugica, A. Kumar, T. Gujral, P.K. Dudeja, and N.A. Ameen. (2016). Identification of intestinal ion transport defects in microvillus inclusion disease. Am. J. Physiol. Gastrointest Liver Physiol 311: G142-155. 27229121
Krusell, L., K. Krause, T. Ott, G. Desbrosses, U. Krämer, S. Sato, Y. Nakamura, S. Tabata, E.K. James, N. Sandal, J. Stougaard, M. Kawaguchi, A. Miyamoto, N. Suganuma, and M.K. Udvardi. (2005). The sulfate transporter SST1 is crucial for symbiotic nitrogen fixation in Lotus japonicus root nodules. Plant Cell 17: 1625-1636. 15805486
Kunzelmann, K., J. Ousingsawat, A. Kraus, J.H. Park, T. Marquardt, R. Schreiber, and B. Buchholz. (2023). Pathogenic Relationships in Cystic Fibrosis and Renal Diseases: CFTR, SLC26A9 and Anoctamins. Int J Mol Sci 24:. 37686084
Lee, A., L. Beck, and D. Markovich. (2003). The mouse sulfate anion transporter gene Sat1 (Slc26a1): cloning, tissue distribution, gene structure, functional characterization, and transcriptional regulation thyroid hormone. DNA Cell Biol 22: 19-31. 12590734
Lee, D. and J.H. Hong. (2024). Chloride/Multiple Anion Exchanger SLC26A Family: Systemic Roles of SLC26A4 in Various Organs. Int J Mol Sci 25:. 38673775
Lenz, D. and D. Oliver. (2021). Progress in understanding the structural mechanism underlying prestin''s electromotile activity. Hear Res 108423. [Epub: Ahead of Print] 34987017
Liberman, M.C., J. Gao, D.Z.Z. He, X. Wu, S. Jia, and J. Zuo. (2002). Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature 419: 300-304. 12239568
Lin, X., P. Haller, N. Bavi, N. Faruk, E. Perozo, and T.R. Sosnick. (2023). Folding of Prestin''s Anion-Binding Site and the Mechanism of Outer Hair Cell Electromotility. bioRxiv. 36909622
Ljungholm, P.L., A. Ermund, M.M. Söderlund Garsveden, V.L. Pettersson, and J.K. Gustafsson. (2024). The anion exchanger slc26a3 regulates colonic mucus expansion during steady state and in response to prostaglandin E, while Cftr regulates de novo mucus release in response to carbamylcholine. Pflugers Arch 476: 1209-1219. 38829391
Lohi, H., M. Kujala, S. Mäkela, E. Lehtonen, M. Kestilä, U. Saarialho-Kere, D. Markovich, and J. Kere. (2002). Functional characterization of three novel tissue-specific anion exchangers SLC26A7, -A8, and -A9. J. Biol. Chem. 277: 14246-14254. 11834742
Lovas S., He DZ., Liu H., Tang J., Pecka JL., Hatfield MP. and Beisel KW. (2015). Glutamate transporter homolog-based model predicts that anion-pi interaction is the mechanism for the voltage-dependent response of prestin. J Biol Chem. 290(40):24326-39. 26283790
Ludwig, J., D. Oliver, G. Frank, N. Klöcker, A.W. Gummer, and B. Fakler. (2001). Reciprocal electromechanical properties of rat prestin: the motor molecule from rat outer hair cells. Proc. Natl. Acad. Sci. USA 98: 4178-4183. 11274441
Luo, S., S. Rollins, K. Schmitz-Abe, A. Tam, Q. Li, J. Shi, J. Lin, R. Wang, and P.B. Agrawal. (2024). The solute carrier family 26 member 9 modifies rapidly progressing cystic fibrosis associated with homozygous F508del CFTR mutation. Clin Chim Acta 561: 119765. 38852790
Lv, X., Q. Li, X. Deng, S. Ding, R. Sun, S. Chen, W. Yun, C. Dai, and B. Luo. (2024). Fulvic acid application increases rice seedlings performance under low phosphorus stress. BMC Plant Biol 24: 703. 39054445
Maeda, S., Sugita, C., Sugita, M., and Omata, T. (2006). Latent nitrate transport activity of a novel sulfate permease-like protein of the cyanobacterium Synechococcus elongatus. J. Biol Chem. 281: 5869-5876. 16407232
Mariani, N.A.P., J.V. Silva, M. Fardilha, and E.J.R. Silva. (2023). Advances in non-hormonal male contraception targeting sperm motility. Hum Reprod Update. [Epub: Ahead of Print] 37141450
McGuire, R.M., J.J. Silberg, F.A. Pereira, and R.M. Raphael. (2011). Selective cell-surface labeling of the molecular motor protein prestin. Biochem. Biophys. Res. Commun. 410: 134-139. 21651892
Melvin, J.E., K. Park, L. Richardson, P.J. Schultheis, and G.E. Shull. (1999). Mouse down-regulated in adenoma (DRA) is an intestinal Cl-/HCO3- exchanger and is up-regulated in colon of mice lacking the NHE3 Na+/H+ exchanger. J. Biol. Chem. 274: 22855-22861. 10428871
Moraes, T.F. and R.A. Reithmeier. (2012). Membrane transport metabolons. Biochim. Biophys. Acta. 1818: 2687-2706. 22705263
Moseley, R.H., P. Höglund, G.D. Wu, D.G. Silberg, S. Haila, A. de la Chapelle, C. Holmberg, and J. Kere. (1999). Downregulated in adenoma gene encodes a chloride transporter defective in congenital chloride diarrhea. Am. J. Physiol. 276: G185-192. 9886994
Moy, B.E. and J. Seshu. (2021). STAS Domain Only Proteins in Bacterial Gene Regulation. Front Cell Infect Microbiol 11: 679982. 34235094
Murakoshi, M., Y. Koike, S. Koyama, S. Usami, K. Kamiya, K. Ikeda, Y. Haga, K. Tsumoto, H. Nakamura, N. Hirasawa, K. Ishihara, and H. Wada. (2022). Effects of salicylate derivatives on localization of p.H723R allele product of SLC26A4. Auris Nasus Larynx. [Epub: Ahead of Print] 35305848
Needham, P.G., J.L. Goeckeler-Fried, C. Zhang, Z. Sun, A.R. Wetzel, C.A. Bertrand, and J.L. Brodsky. (2021). SLC26A9 is selected for endoplasmic reticulum associated degradation (ERAD) via Hsp70-dependent targeting of the soluble STAS domain. Biochem. J. 478: 4203-4220. 34821356
Nishio, A., T. Ito, H. Cheng, T.S. Fitzgerald, P. Wangemann, and A.J. Griffith. (2016). Slc26a4 expression prevents fluctuation of hearing in a mouse model of large vestibular aqueduct syndrome. Neuroscience 329: 74-82. 27155149
Ohana E., Shcheynikov N., Park M. and Muallem S. (2012). Solute Carrier Family 26 Member a2 (Slc26a2) Protein Functions as an Electroneutral SOFormula/OH-/Cl- Exchanger Regulated by Extracellular Cl-. J Biol Chem. 287(7):5122-32. 22190686
Ohana E., Yang D., Shcheynikov N. and Muallem S. (2009). Diverse transport modes by the solute carrier 26 family of anion transporters. J Physiol. 587(Pt 10):2179-85. 19015189
Ohana, E., N. Shcheynikov, D. Yang, I. So, and S. Muallem. (2011). Determinants of coupled transport and uncoupled current by the electrogenic SLC26 transporters. J Gen Physiol 137: 239-251. 21282402
Oliver, D., D.Z.Z. He, N. Klöcker, J. Ludwig, U. Schulte, S. Waldegger, J.P. Ruppersberg, P. Dallos, and B. Fakler. (2001). Intracellular anions as the voltage sensor of prestin, the outer hair cell motor protein. Science 292: 2340-2343. 11423665
Omori, S., Y. Hanazono, H. Nishi, and K. Kinoshita. (2024). The role of the STAS domain in SLC26A9 for chloride ion transporter function. Biophys. J. 123: 1751-1762. 38773769
Ousingsawat, J., R. Schreiber, and K. Kunzelmann. (2012). Differential contribution of SLC26A9 to Cl- conductance in polarized and non-polarized epithelial cells. J Cell Physiol 227: 2323-2329. 21809345
Pasqualetto, E., R. Aiello, L. Gesiot, G. Bonetto, M. Bellanda, and R. Battistutta. (2010). Structure of the cytosolic portion of the motor protein prestin and functional role of the STAS domain in SLC26/SulP anion transporters. J. Mol. Biol. 400: 448-462. 20471983
Pedemonte, N., E. Caci, E. Sondo, A. Caputo, K. Rhoden, U. Pfeffer, M. Di Candia, R. Bandettini, R. Ravazzolo, O. Zegarra-Moran, and L.J. Galietta. (2007). Thiocyanate transport in resting and IL-4-stimulated human bronchial epithelial cells: role of pendrin and anion channels. J Immunol 178: 5144-5153. 17404297
Pfau, A., K.I. López-Cayuqueo, N. Scherer, M. Wuttke, A. Wernstedt, D. González Fassrainer, D.E. Smith, J.M. van de Kamp, K. Ziegeler, K.U. Eckardt, F.C. Luft, P.S. Aronson, A. Köttgen, T.J. Jentsch, and F. Knauf. (2023). SLC26A1 is a major determinant of sulfate homeostasis in humans. J Clin Invest 133:. 36719378
Price, G.D. and S.M. Howitt. (2014). Topology mapping to characterize cyanobacterial bicarbonate transporters: BicA (SulP/SLC26 family) and SbtA. Mol. Membr. Biol. 31: 177-182. 25222859
Price, G.D., F.J. Woodger, M.R. Badger, S.M. Howitt, and L. Tucker. (2004). Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. Proc. Natl. Acad. Sci. USA 101: 18228-18233. 15596724
Rapp, C.L., J. Li, K.E. Badior, D.B. Williams, J.R. Casey, and R.A.F. Reithmeier. (2018). Role of N-glycosylation in the expression of human SLC26A2 and A3 anion transport membrane glycoproteins. Biochem. Cell Biol. [Epub: Ahead of Print] 30462520
Regeer, R.R., A. Lee, and D. Markovich. (2003). Characterization of the human sulfate anion transporter (hsat-1) protein and gene (SAT1; SLC26A1). DNA Cell Biol 22: 107-117. 12713736
Rouached, H., M. Wirtz, R. Alary, R. Hell, A.B. Arpat, J.C. Davidian, P. Fourcroy, and P. Berthomieu. (2008). Differential Regulation of the Expression of Two High-Affinity Sulfate Transporters, SULTR1.1 and SULTR1.2, in Arabidopsis. Plant Physiol. 147: 897-911. 18400935
Royaux, I.E., S.M. Wall, L.P. Karniski, L.A. Everett, K. Suzuki, M.A. Knepper, and E.D. Green. (2001). Pendrin, encoded by the Pendred syndrome gene, resides in the apical region of renal intercalated cells and mediates bicarbonate secretion. Proc. Natl. Acad. Sci. USA 98: 4221-4226. 11274445
Saier, M.H., Jr., B.H. Eng, S. Fard, J. Garg, D.A. Haggerty, W.J. Hutchinson, D.L. Jack, E.C. Lai, H.J. Liu, D.P. Nusinew, A.M. Omar, S.S. Pao, I.T. Paulsen, J.A. Quan, M. Sliwinski, T.-T. Tseng, S. Wachi, and G.B. Young. (1999). Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochim. Biophys. Acta 1422: 1-56. 10082980
Sala-Rabanal, M., Z. Yurtsever, K.N. Berry, and T.J. Brett. (2015). Novel Roles for Chloride Channels, Exchangers, and Regulators in Chronic Inflammatory Airway Diseases. Mediators Inflamm 2015: 497387. 26612971
Sarthi, J.B., A.M. Trumbull, S.M. Abazari, V. van Unen, J.E. Chan, Y. Jiang, J. Gammons, M.O. Anderson, O. Cil, C.J. Kuo, and Z.M. Sellers. (2024). DRA involvement in linaclotide-stimulated bicarbonate secretion during loss of CFTR function. JCI Insight 9:. 38869953
Schaechinger, T.J., and D. Oliver. (2007). Nonmammalian orthologs of prestin (SLC26A5) are electrogenic divalent/chloride anion exchangers. Proc. Natl. Acad. Sci. U.S.A. 104: 7693-7698. 17442754
Schaechinger, T.J., D. Gorbunov, C.R. Halaszovich, T. Moser, S. Kügler, B. Fakler, and D. Oliver. (2011). A synthetic prestin reveals protein domains and molecular operation of outer hair cell piezoelectricity. EMBO. J. 30: 2793-2804. 21701557
Schweinfest, C.W., D.D. Spyropoulos, K.W. Henderson, J.H. Kim, J.M Chapman, S. Barone, R.T. Worrell, Z. Wang, and M. Soleimani. (2006). slc26a3 (dra)-deficient mice display chloride-losing diarrhea, enhanced colonic proliferation, and distinct up-regulation of ion transporters in the colon. J. Biol. Chem. 281: 37962-37971. 17001077
Sharma, A.K., L. Ye, C.E. Baer, K. Shanmugasundaram, T. Alber, S.L. Alper, and A.C. Rigby. (2011). Solution structure of the guanine nucleotide-binding STAS domain of SLC26-related SulP protein Rv1739c from Mycobacterium tuberculosis. J. Biol. Chem. 286: 8534-8544. 21190940
Sharma, A.K., L. Ye, S.L. Alper, and A.C. Rigby. (2012). Guanine nucleotides differentially modulate backbone dynamics of the STAS domain of the SulP/SLC26 transport protein Rv1739c of Mycobacterium tuberculosis. FEBS J. 279: 420-436. 22118659
Shcheynikov, N., Y. Wang, M. Park, S.B. Ko, M. Dorwart, S. Naruse, P.J. Thomas, and S. Muallem. (2006). Coupling modes and stoichiometry of Cl- -/HCO3- exchange by slc26a3 and slc26a6. J Gen Physiol 127: 511-24. 16606687
Shelden, M.C., S.M. Howitt, and G.D. Price. (2010). Membrane topology of the cyanobacterial bicarbonate transporter, BicA, a member of the SulP (SLC26A) family. Mol. Membr. Biol. 27: 12-23. 19951076
Shibagaki, N. and A.R. Grossman. (2006). The role of the STAS domain in the function and biogenesis of a sulfate transporter as probed by random mutagenesis. J. Biol. Chem. 281: 22964-22973. 16754669
Shibagaki, N. and A.R. Grossman. (2010). Binding of cysteine synthase to the STAS domain of sulfate transporter and its regulatory consequences. J. Biol. Chem. 285: 25094-25102. 20529854
Smith, F.W., M.J. Hawkesford, I.M. Prosser, and D.T. Clarkson. (1995). Isolation of cDNA from Saccharomyces cerevisiae that encodes a high affinity sulfate transporter at the plasma membrane. Mol. Gen. Genet. 247: 709-715. 7616962
Smith, F.W., P.M. Ealing, M.J. Hawkesford, and D.T. Clarkson. (1995). Plant members of a family of sulfate transporters reveal functional subtypes. Proc. Natl. Acad. Sci. USA 92: 9373-9377. 7568135
Stewart, A.K., B.E. Shmukler, D.H. Vandorpe, F. Reimold, J.F. Heneghan, M. Nakakuki, A. Akhavein, S. Ko, H. Ishiguro, and S.L. Alper. (2011). SLC26 anion exchangers of guinea pig pancreatic duct: molecular cloning and functional characterization. Am. J. Physiol. Cell Physiol. 301: C289-303. 21593449
Sun, M., N. Tao, X. Liu, Y. Yang, Y. Su, and F. Xu. (2021). Congenital chloride diarrhea in patient with SLC26A2 mutation - analysis of the clinical phenotype and differential diagnosis. Pediatr Endocrinol Diabetes Metab 27: 51-56. 33599438
Takahashi, H., N. Sasakura, M. Noji, and K. Saito. (1996). Isolation and characterization of a cDNA encoding the sulfate transporter from Arabidopsis thaliana. FEBS Lett. 392: 95-99. 8772182
Takahashi, S. and K. Homma. (2023). The molecular principles underlying diverse functions of the SLC26 family of proteins. bioRxiv. 38106153
Takahashi, S. and K. Homma. (2024). The molecular principles underlying diverse functions of the SLC26 family of proteins. J. Biol. Chem. 300: 107261. [Epub: Ahead of Print] 38582450
Tanimura, Y., M. Kiriya, A. Kawashima, H. Mori, Y. Luo, T. Kondo, and K. Suzuki. (2021). Regulation of solute carrier family 26 member 7 (Slc26a7) by thyroid stimulating hormone in thyrocytes. Endocr J 68: 691-699. 33583874
Tejada-Jiménez, M., A. Llamas, E. Sanz-Luque, A. Galván, and E. Fernández. (2007). A high-affinity molybdate transporter in eukaryotes. Proc. Natl. Acad. Sci. USA 104: 20126-20130. 18077439
Tomatsu, H., J. Takano, H. Takahashi, A. Watanabe-Takahashi, N. Shibagaki, and T. Fujiwara. (2007). An Arabidopsis thaliana high-affinity molybdate transporter required for efficient uptake of molybdate from soil. Proc. Natl. Acad. Sci. USA 104: 18807-12. 18003916
Toure, A., L. Morin, C. Pineau, F. Becq, O. Dorseuil, and G. Gacon. (2001). Tat1, a novel sulfate transporter specifically expressed in human male germ cells and potentially linked to rhogtpase signaling. J. Biol. Chem. 276: 20309-20315. 11278976
Vastermark, A., S. Wollwage, M.E. Houle, R. Rio, and M.H. Saier, Jr. (2014). Expansion of the APC superfamily of secondary carriers. Proteins 82: 2797-2811. 25043943
Velic, A., J.R. Hirsch, J. Bartel, R. Thomas, R. Schröter, H. Stegemann, B. Edemir, C. August, E. Schlatter, and G. Gabriëls. (2004). Renal transplantation modulates expression and function of receptors and transporters of rat proximal tubules. J Am Soc Nephrol 15: 967-977. 15034099
Walker NM., Simpson JE., Hoover EE., Brazill JM., Schweinfest CW., Soleimani M. and Clarke LL. (2011). Functional activity of Pat-1 (Slc26a6) Cl(-)/HCO(-) exchange in the lower villus epithelium of murine duodenum. Acta Physiol (Oxf). 201(1):21-31. 20969732
Wall, S.M., and V. Pech. (2008). The interaction of pendrin and the epithelial sodium channel in blood pressure regulation. Curr. Opin. Nephrol. Hypertens. 17: 18-24. 18090665
Wang, C., B. Sun, X. Zhang, X. Huang, M. Zhang, H. Guo, X. Chen, F. Huang, T. Chen, H. Mi, F. Yu, L.N. Liu, and P. Zhang. (2019). Structural mechanism of the active bicarbonate transporter from cyanobacteria. Nat Plants 5: 1184-1193. 31712753
Wang, L., A. Hoang, E. Gil-Iturbe, A. Laganowsky, M. Quick, and M. Zhou. (2024). Mechanism of anion exchange and small-molecule inhibition of pendrin. Nat Commun 15: 346. 38184688
Wang, L., K. Chen, and M. Zhou. (2021). Structure and function of an Arabidopsis thaliana sulfate transporter. Nat Commun 12: 4455. 34294705
Xiao, F., M. Juric, J. Li, B. Riederer, S. Yeruva, A.K. Singh, L. Zheng, S. Glage, G. Kollias, P. Dudeja, D.A. Tian, G. Xu, J. Zhu, O. Bachmann, and U. Seidler. (2012). Loss of downregulated in adenoma (DRA) impairs mucosal HCO3- secretion in murine ileocolonic inflammation. Inflamm Bowel Dis 18: 101-111. 21557395
Yamaji, N., Y. Takemoto, T. Miyaji, N. Mitani-Ueno, K.T. Yoshida, and J.F. Ma. (2017). Reducing phosphorus accumulation in rice grains with an impaired transporter in the node. Nature 541: 92-95. 28002408
Zhai, F., L. Song, J.P. Bai, C. Dai, D. Navaratnam, and J. Santos-Sacchi. (2020). Maturation of Voltage-induced Shifts in SLC26a5 (Prestin) Operating Point during Trafficking and Membrane Insertion. Neuroscience 431: 128-133. [Epub: Ahead of Print] 32061780
Zhou, J., Y. Dong, Y. Liu, Y. Huang, W. Jiang, X. Zheng, H. Zhang, N. Gong, and X. Bai. (2024). Identification and Expression Analysis of Sulfate Transporter Genes Family and Function Analysis of from Soybean. Int J Mol Sci 25:. 39201766
Zolotarev, A.S., M. Unnikrishnan, B.E. Shmukler, J.S. Clark, D.H. Vandorpe, N. Grigorieff, E.J. Rubin, and S.L. Alper. (2008). Increased sulfate uptake by E. coli overexpressing the SLC26-related SulP protein Rv1739c from Mycobacterium tuberculosis. Comp Biochem Physiol A Mol Integr Physiol 149: 255-266. 18255326