TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


2.A.7.11.3
Golgi adenosine 3'-phosphate 5'-phosphosulfate (PAPS):adenosine 3'-phosphate 5'-phosphate (PAP) antiporter, PAPST1 (Maszczak-Seneczko et al. 2022). (Mutations cause human inherited disorders (orthologue of 2.A.7.11.2) (Kamiyama et al., 2003). SLC35B2 is encoded by a gene that is a susceptibility gene for rheumatoid arthritis (Mo et al. 2020). 

Accession Number:Q8TB61
Protein Name:Adenosine 3'-phospho 5'-phosphosulfate transporter 1 aka SLC35B2 aka PAPST1
Length:432
Molecular Weight:47515.00
Species:Homo sapiens (Human) [9606]
Number of TMSs:9
Location1 / Topology2 / Orientation3: Golgi apparatus membrane1 / Multi-pass membrane protein2
Substrate

Cross database links:

RefSeq: NP_835361.1   
Entrez Gene ID: 347734   
Pfam: PF08449   
OMIM: 610788  gene
KEGG: hsa:347734    hsa:347734   

Gene Ontology

GO:0000139 C:Golgi membrane
GO:0016021 C:integral to membrane
GO:0046964 F:3'-phosphoadenosine 5'-phosphosulfate trans...
GO:0004871 F:signal transducer activity
GO:0046963 P:3'-phosphoadenosine 5'-phosphosulfate trans...
GO:0043123 P:positive regulation of I-kappaB kinase/NF-k...
GO:0055085 P:transmembrane transport
GO:0046964 F:3'-phosphoadenosine 5'-phosphosulfate transmembrane transporter activity
GO:0043123 P:positive regulation of I-kappaB kinase/NF-kappaB cascade

References (22)

[1] “Molecular cloning and identification of 3'-phosphoadenosine 5'-phosphosulfate transporter.”  Kamiyama S.et.al.   12716889
[2] “Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways.”  Matsuda A.et.al.   12761501
[3] “Signal sequence and keyword trap in silico for selection of full-length human cDNAs encoding secretion or membrane proteins from oligo-capped cDNA libraries.”  Otsuki T.et.al.   16303743
[4] “The DNA sequence and analysis of human chromosome 6.”  Mungall A.J.et.al.   14574404
[5] “The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).”  The MGC Project Teamet.al.   15489334
[6] “Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.”  Olsen J.V.et.al.   17081983
[7] “Evaluation of the low-specificity protease elastase for large-scale phosphoproteome analysis.”  Wang B.et.al.   19007248
[8] “Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle.”  Daub H.et.al.   18691976
[9] “A quantitative atlas of mitotic phosphorylation.”  Dephoure N.et.al.   18669648
[10] “Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach.”  Gauci S.et.al.   19413330
[11] “Large-scale proteomics analysis of the human kinome.”  Oppermann F.S.et.al.   19369195
[12] “Molecular cloning and identification of 3'-phosphoadenosine 5'-phosphosulfate transporter.”  Kamiyama S.et.al.   12716889
[13] “Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways.”  Matsuda A.et.al.   12761501
[14] “Signal sequence and keyword trap in silico for selection of full-length human cDNAs encoding secretion or membrane proteins from oligo-capped cDNA libraries.”  Otsuki T.et.al.   16303743
[15] “The DNA sequence and analysis of human chromosome 6.”  Mungall A.J.et.al.   14574404
[16] “The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).”  The MGC Project Teamet.al.   15489334
[17] “Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.”  Olsen J.V.et.al.   17081983
[18] “Evaluation of the low-specificity protease elastase for large-scale phosphoproteome analysis.”  Wang B.et.al.   19007248
[19] “Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle.”  Daub H.et.al.   18691976
[20] “A quantitative atlas of mitotic phosphorylation.”  Dephoure N.et.al.   18669648
[21] “Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach.”  Gauci S.et.al.   19413330
[22] “Large-scale proteomics analysis of the human kinome.”  Oppermann F.S.et.al.   19369195

External Searches:

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MDARWWAVVV LAAFPSLGAG GETPEAPPES WTQLWFFRFV VNAAGYASFM VPGYLLVQYF 
61:	RRKNYLETGR GLCFPLVKAC VFGNEPKASD EVPLAPRTEA AETTPMWQAL KLLFCATGLQ 
121:	VSYLTWGVLQ ERVMTRSYGA TATSPGERFT DSQFLVLMNR VLALIVAGLS CVLCKQPRHG 
181:	APMYRYSFAS LSNVLSSWCQ YEALKFVSFP TQVLAKASKV IPVMLMGKLV SRRSYEHWEY 
241:	LTATLISIGV SMFLLSSGPE PRSSPATTLS GLILLAGYIA FDSFTSNWQD ALFAYKMSSV 
301:	QMMFGVNFFS CLFTVGSLLE QGALLEGTRF MGRHSEFAAH ALLLSICSAC GQLFIFYTIG 
361:	QFGAAVFTII MTLRQAFAIL LSCLLYGHTV TVVGGLGVAV VFAALLLRVY ARGRLKQRGK 
421:	KAVPVESPVQ KV