TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


3.A.1.203.1
Peroxisomal long chain fatty acyl (LCFA; especially branched chain fatty acids) transporter of 659 aas; associated with Zellweger Syndrome, ABCD3, PMP70, PXMP1.  Can form heterodimers with ABCD1/ALD and ABCD2/ALDR, but the transporter is perdominantly a homodimer (Hillebrand et al. 2007). Dimerization is necessary to form an active transporter. It interacts with PEX19.  abcd3-knockout mice accumulate bile acid precursors suggesting that Abcd3 imports these compounds as CoA derivatives into peroxisomes (Visser et al. 2007).  These mutants also accumulate pristanic acid suggesting that Abcd3 also imports branched chain substrates into peroxisomes (Sakamoto et al. 2019). The unfolded protein response (UPR) detects and restores deficits in the endoplasmic reticulum (ER) protein folding capacity (Torres et al. 2019). Ceapins are aromatic compounds that specifically inhibit the UPR sensor ATF6alpha, an ER-tethered transcription factor, by retaining it at the ER. Ceapin's function is dependent on ABCD3. ABCD3 physically associates with ER-resident ATF6alpha in cells and in vitro in a Ceapin-dependent manner. Ceapins induce the neomorphic association of ER and peroxisomes by directly tethering the cytosolic domain of ATF6alpha to ABCD3's transmembrane regions without inhibiting or depending on ABCD3 transport activity (Torres et al. 2019).  Ceapins act through ABCD3 which binds to ATF6α. causing the ER to be tethered to the peroxysome, preventing ATF6α from carrying out its function as the unfolded protein response sensor (Torres et al. 2019). A CCG expansion in ABCD3 causes oculopharyngodistal myopathy in individuals of European ancestry (Cortese et al. 2024).

Accession Number:P28288
Protein Name:ABD3 aka PMP70 aka PXMP1 aka ABCD3
Length:659
Molecular Weight:75476.00
Species:Homo sapiens (Human) [9606]
Number of TMSs:5
Location1 / Topology2 / Orientation3: Peroxisome membrane1 / Multi-pass membrane protein2
Substrate fatty acyl-CoA, long-chain fatty acid, branched-chain fatty acid, bile acid

Cross database links:

RefSeq: NP_001116146.1    NP_002849.1   
Entrez Gene ID: 5825   
Pfam: PF06472    PF00005   
OMIM: 170995  gene+phenotype
KEGG: hsa:5825   

Gene Ontology

GO:0005779 C:integral to peroxisomal membrane
GO:0005524 F:ATP binding
GO:0042626 F:ATPase activity, coupled to transmembrane m...
GO:0005515 F:protein binding
GO:0015910 P:peroxisomal long-chain fatty acid import
GO:0007031 P:peroxisome organization
GO:0055085 P:transmembrane transport

References (11)

[1] “Mutations in the 70K peroxisomal membrane protein gene in Zellweger syndrome.”  Gaertner J.et.al.   1301993
[2] “Nucleotide sequence of the human 70 kDa peroxisomal membrane protein: a member of ATP-binding cassette transporters.”  Kamijo K.et.al.   1536884
[3] “Genomic organization of the 70-kDa peroxisomal membrane protein gene (PXMP1).”  Gaertner J.et.al.   9521874
[4] “The DNA sequence and biological annotation of human chromosome 1.”  Gregory S.G.et.al.   16710414
[5] “The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).”  The MGC Project Teamet.al.   15489334
[6] “Homo- and heterodimerization of peroxisomal ATP-binding cassette half-transporters.”  Liu L.X.et.al.   10551832
[7] “Human adrenoleukodystrophy protein and related peroxisomal ABC transporters interact with the peroxisomal assembly protein PEX19p.”  Gloeckner C.J.et.al.   10777694
[8] “PEX19 binds multiple peroxisomal membrane proteins, is predominantly cytoplasmic, and is required for peroxisome membrane synthesis.”  Sacksteder K.A.et.al.   10704444
[9] “Characterization and functional analysis of the nucleotide binding fold in human peroxisomal ATP binding cassette transporters.”  Roerig P.et.al.   11248239
[10] “Automated phosphoproteome analysis for cultured cancer cells by two-dimensional nanoLC-MS using a calcined titania/C18 biphasic column.”  Imami K.et.al.   18187866
[11] “Lysine acetylation targets protein complexes and co-regulates major cellular functions.”  Choudhary C.et.al.   19608861

External Searches:

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MAAFSKYLTA RNSSLAGAAF LLLCLLHKRR RALGLHGKKS GKPPLQNNEK EGKKERAVVD 
61:	KVFFSRLIQI LKIMVPRTFC KETGYLVLIA VMLVSRTYCD VWMIQNGTLI ESGIIGRSRK 
121:	DFKRYLLNFI AAMPLISLVN NFLKYGLNEL KLCFRVRLTK YLYEEYLQAF TYYKMGNLDN 
181:	RIANPDQLLT QDVEKFCNSV VDLYSNLSKP FLDIVLYIFK LTSAIGAQGP ASMMAYLVVS 
241:	GLFLTRLRRP IGKMTITEQK YEGEYRYVNS RLITNSEEIA FYNGNKREKQ TVHSVFRKLV 
301:	EHLHNFILFR FSMGFIDSII AKYLATVVGY LVVSRPFLDL SHPRHLKSTH SELLEDYYQS 
361:	GRMLLRMSQA LGRIVLAGRE MTRLAGFTAR ITELMQVLKD LNHGKYERTM VSQQEKGIEG 
421:	VQVIPLIPGA GEIIIADNII KFDHVPLATP NGDVLIRDLN FEVRSGANVL ICGPNGCGKS 
481:	SLFRVLGELW PLFGGRLTKP ERGKLFYVPQ RPYMTLGTLR DQVIYPDGRE DQKRKGISDL 
541:	VLKEYLDNVQ LGHILEREGG WDSVQDWMDV LSGGEKQRMA MARLFYHKPQ FAILDECTSA 
601:	VSVDVEGYIY SHCRKVGITL FTVSHRKSLW KHHEYYLHMD GRGNYEFKQI TEDTVEFGS