| |
---|---|
Accession Number: | P33302 |
Protein Name: | Pdr5 aka Sts1 aka Ydr1 aka LEM1 aka YOR153W |
Length: | 1511 |
Molecular Weight: | 170438.00 |
Species: | Saccharomyces cerevisiae (Baker's yeast) [4932] |
Number of TMSs: | 15 |
Location1 / Topology2 / Orientation3: | Cell membrane1 / Multi-pass membrane protein2 |
Substrate | rhodamine 6G, cyclic nucleotide, drug, fluconazole |
Cross database links:
DIP: | DIP-6776N |
---|---|
RefSeq: | NP_014796.1 |
Entrez Gene ID: | 854324 |
Pfam: | PF01061 PF00005 PF06422 |
KEGG: | sce:YOR153W |
Gene Ontology
GO:0016021
C:integral to membrane
GO:0005739
C:mitochondrion
GO:0005886
C:plasma membrane
GO:0005524
F:ATP binding
GO:0042802
F:identical protein binding
GO:0008559
F:xenobiotic-transporting ATPase activity
GO:0015893
P:drug transport
GO:0046677
P:response to antibiotic
GO:0046898
P:response to cycloheximide
| |
References (76)[1] “Saccharomyces cerevisiae YDR1, which encodes a member of the ATP-binding cassette (ABC) superfamily, is required for multidrug resistance.” Hirata D.et.al. 7882421 [2] “PDR5, a novel yeast multidrug resistance conferring transporter controlled by the transcription regulator PDR1.” Balzi E.et.al. 8294477 [3] “Molecular cloning and expression of the Saccharomyces cerevisiae STS1 gene product. A yeast ABC transporter conferring mycotoxin resistance.” Bissinger P.H.et.al. 8307980 [4] “Analysis of a 35.6 kb region on the right arm of Saccharomyces cerevisiae chromosome XV.” Bordonne R.et.al. 9046089 [5] “The nucleotide sequence of Saccharomyces cerevisiae chromosome XV.” Dujon B.et.al. 9169874 [6] “The multidrug resistance gene PDR1 from Saccharomyces cerevisiae.” Balzi E.et.al. 3316228 [7] “Interaction of the yeast pleiotropic drug resistance genes PDR1 and PDR5.” Meyers S.et.al. 1319843 [8] “Loss of function mutation in the yeast multiple drug resistance gene PDR5 causes a reduction in chloramphenicol efflux.” Leonard P.J.et.al. 7840595 [9] “Solubilization and characterization of the overexpressed PDR5 multidrug resistance nucleotide triphosphatase of yeast.” Decottignies A.et.al. 8175692 [10] “Transcriptional control of the yeast PDR5 gene by the PDR3 gene product.” Katzmann D.J.et.al. 8007969 [11] “Positive autoregulation of the yeast transcription factor Pdr3p, which is involved in control of drug resistance.” Delahodde A.et.al. 7623800 [12] “Endocytosis and vacuolar degradation of the plasma membrane-localized Pdr5 ATP-binding cassette multidrug transporter in Saccharomyces cerevisiae.” Egner R.et.al. 7565740 [13] “LEM1, an ATP-binding-cassette transporter, selectively modulates the biological potency of steroid hormones.” Kralli A.et.al. 7753868 [14] “yAP-1- and yAP-2-mediated, heat shock-induced transcriptional activation of the multidrug resistance ABC transporter genes in Saccharomyces cerevisiae.” Miyahara K.et.al. 8821655 [15] “The yeast multidrug transporter Pdr5 of the plasma membrane is ubiquitinated prior to endocytosis and degradation in the vacuole.” Egner R.et.al. 8549828 [16] “The involvement of the Saccharomyces cerevisiae multidrug resistance transporters Pdr5p and Snq2p in cation resistance.” Miyahara K.et.al. 8985171 [17] “An FK506-sensitive transporter selectively decreases intracellular levels and potency of steroid hormones.” Kralli A.et.al. 8663352 [18] “The ATP binding cassette transporters Pdr5 and Snq2 of Saccharomyces cerevisiae can mediate transport of steroids in vivo.” Mahe Y.et.al. 8810273 [19] “Anticancer drugs, ionophoric peptides, and steroids as substrates of the yeast multidrug transporter Pdr5p.” Kolaczkowski M.et.al. 8940170 [20] “Camptothecin sensitivity is mediated by the pleiotropic drug resistance network in yeast.” Reid R.J.D.et.al. 9115278 [21] “Clustered amino acid substitutions in the yeast transcription regulator Pdr3p increase pleiotropic drug resistance and identify a new central regulatory domain.” Nourani A.et.al. 9393437 [22] “Molecular and phenotypic characterization of yeast PDR1 mutants that show hyperactive transcription of various ABC multidrug transporter genes.” Carvajal E.et.al. 9393438 [23] “Complete inventory of the yeast ABC proteins.” Decottignies A.et.al. 9020838 [24] “Role of ABC transporters in aureobasidin A resistance.” Ogawa A.et.al. 9559778 [25] “Endoplasmic reticulum degradation of a mutated ATP-binding cassette transporter Pdr5 proceeds in a concerted action of Sec61 and the proteasome.” Plemper R.K.et.al. 9830032 [26] “Genetic separation of FK506 susceptibility and drug transport in the yeast Pdr5 ATP-binding cassette multidrug resistance transporter.” Egner R.et.al. 9450972 [27] “In vivo characterization of the drug resistance profile of the major ABC transporters and other components of the yeast pleiotropic drug resistance network.” Kolaczkowski M.et.al. 9818966 [28] “Casein kinase I-dependent phosphorylation and stability of the yeast multidrug transporter Pdr5p.” Decottignies A.et.al. 10601275 [29] “Chemical specificity of the PDR5 multidrug resistance gene product of Saccharomyces cerevisiae based on studies with tri-n-alkyltin chlorides.” Golin J.et.al. 10602734 [30] “Role of the PDR gene network in yeast susceptibility to the antifungal antibiotic mucidin.” Michalkova-Papajova D.et.al. 10639374 [31] “The transmembrane domain 10 of the yeast Pdr5p ABC antifungal efflux pump determines both substrate specificity and inhibitor susceptibility.” Egner R.et.al. 10712705 [32] “Genome microarray analysis of transcriptional activation in multidrug resistance yeast mutants.” DeRisi J.et.al. 10734226 [33] “Prenyl-flavonoids as potent inhibitors of the Pdr5p multidrug ABC transporter from Saccharomyces cerevisiae.” Conseil G.et.al. 10841772 [34] “Protein kinase C effectors bind to multidrug ABC transporters and inhibit their activity.” Conseil G.et.al. 11327879 [35] “A novel screening for inhibitors of a pleiotropic drug resistant pump, Pdr5, in Saccharomyces cerevisiae.” Hiraga K.et.al. 11515543 [36] “Purification and some properties of an inhibitor for a yeast pleiotropic drug resistant pump from Kitasatospora sp. E-420.” Wanigasekera A.et.al. 11758940 [37] “The ABC transporter Pdr5p mediates the efflux of nonsteroidal ecdysone agonists in Saccharomyces cerevisiae.” Hu W.et.al. 11422371 [38] “Saccharomyces cerevisiae multidrug resistance gene expression inversely correlates with the status of the F(0) component of the mitochondrial ATPase.” Zhang X.et.al. 11602584 [39] “The pleitropic drug ABC transporters from Saccharomyces cerevisiae.” Rogers B.et.al. 11321575 [40] “Zinc cluster protein Rdr1p is a transcriptional repressor of the PDR5 gene encoding a multidrug transporter.” Hellauer K.et.al. 11882665 [41] “New regulators of drug sensitivity in the family of yeast zinc cluster proteins.” Akache B.et.al. 11943786 [42] “Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae.” Ficarro S.B.et.al. 11875433 [43] “Subproteomics: identification of plasma membrane proteins from the yeast Saccharomyces cerevisiae.” Navarre C.et.al. 12469340 [44] “Potent competitive inhibition of drug binding to the Saccharomyces cerevisiae ABC exporter Pdr5p by the hydrophobic estradiol-derivative RU49953.” Conseil G.et.al. 12896805 [45] “Phenothiazines as potent modulators of yeast multidrug resistance.” Kolaczkowski M.et.al. 13678835 [46] “Studies with novel Pdr5p substrates demonstrate a strong size dependence for xenobiotic efflux.” Golin J.et.al. 12496287 [47] “A general strategy to uncover transcription factor properties identifies a new regulator of drug resistance in yeast.” Hikkel I.et.al. 12529331 [48] “Three-dimensional reconstruction of the Saccharomyces cerevisiae multidrug resistance protein Pdr5p.” Ferreira-Pereira A.et.al. 12551908 [49] “Antifungal activity of amiodarone is mediated by disruption of calcium homeostasis.” Gupta S.S.et.al. 12754197 [50] “Global analysis of protein expression in yeast.” Ghaemmaghami S.et.al. 14562106 [51] “A proteomics approach to understanding protein ubiquitination.” Peng J.et.al. 12872131 [52] “A subset of membrane-associated proteins is ubiquitinated in response to mutations in the endoplasmic reticulum degradation machinery.” Hitchcock A.L.et.al. 14557538 [53] “A yeast-based method for the detection of cyto and genotoxicity.” Lichtenberg-Frate H.et.al. 14599467 [54] “Chemosensitization of fluconazole resistance in Saccharomyces cerevisiae and pathogenic fungi by a D-octapeptide derivative.” Niimi K.et.al. 15047528 [55] “The transporters Pdr5p and Snq2p mediate diazaborine resistance and are under the control of the gain-of-function allele PDR1-12.” Wehrschutz-Sigl E.et.al. 15009193 [56] “Expression regulation of the yeast PDR5 ATP-binding cassette (ABC) transporter suggests a role in cellular detoxification during the exponential growth phase.” Mamnun Y.M.et.al. 14960317 [57] “On the mechanism of constitutive Pdr1 activator-mediated PDR5 transcription in Saccharomyces cerevisiae: evidence for enhanced recruitment of coactivators and altered nucleosome structures.” Gao C.et.al. 15294907 [58] “Enniatin has a new function as an inhibitor of Pdr5p, one of the ABC transporters in Saccharomyces cerevisiae.” Hiraga K.et.al. 15707993 [59] “A new function of isonitrile as an inhibitor of the Pdr5p multidrug ABC transporter in Saccharomyces cerevisiae.” Yamamoto S.et.al. 15796929 [60] “The role of hydrogen bond acceptor groups in the interaction of substrates with Pdr5p, a major yeast drug transporter.” Hanson L.et.al. 16008355 [61] “Retrograde regulation of multidrug resistance in Saccharomyces cerevisiae.” Moye-Rowley W.S.et.al. 15896930 [62] “Mutational analysis of the yeast multidrug resistance ABC transporter Pdr5p with altered drug specificity.” Tutulan-Cunita A.C.et.al. 15836770 [63] “Activity of yeast multidrug resistance pumps during growth is controlled by carbon source and the composition of growth-depleted medium: DiS-C3(3) fluorescence assay.” Malac J.et.al. 16061415 [64] “Regulation of the sphingoid long-chain base kinase Lcb4p by ergosterol and heme: studies in phytosphingosine-resistant mutants.” Sano T.et.al. 16141212 [65] “Early expression of yeast genes affected by chemical stress.” Lucau-Danila A.et.al. 15713640 [66] “Early transcriptional response of Saccharomyces cerevisiae to stress imposed by the herbicide 2,4-dichlorophenoxyacetic acid.” Teixeira M.C.et.al. 16487346 [67] “Adaptive response to the antimalarial drug artesunate in yeast involves Pdr1p/Pdr3p-mediated transcriptional activation of the resistance determinants TPO1 and PDR5.” Alenquer M.et.al. 17156010 [68] “ELM1 is required for multidrug resistance in Saccharomyces cerevisiae.” Souid A.K.et.al. 16751665 [69] “A global topology map of the Saccharomyces cerevisiae membrane proteome.” Kim H.et.al. 16847258 [70] “The yeast Pdr5p multidrug transporter: how does it recognize so many substrates?” Golin J.et.al. 17316560 [71] “The central role of PDR1 in the foundation of yeast drug resistance.” Fardeau V.et.al. 17158869 [72] “Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae.” Li X.et.al. 17330950 [73] “Subcellular trafficking of the yeast plasma membrane ABC transporter, Pdr5, is impaired by a mutation in the N-terminal nucleotide-binding fold.” de Thozee C.P.et.al. 17302805 [74] “Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry.” Chi A.et.al. 17287358 |
External Searches:
|
Analyze:
Predict TMSs (Predict number of transmembrane segments) | ||||
FASTA formatted sequence |
|
1: MPEAKLNNNV NDVTSYSSAS SSTENAADLH NYNGFDEHTE ARIQKLARTL TAQSMQNSTQ 61: SAPNKSDAQS IFSSGVEGVN PIFSDPEAPG YDPKLDPNSE NFSSAAWVKN MAHLSAADPD 121: FYKPYSLGCA WKNLSASGAS ADVAYQSTVV NIPYKILKSG LRKFQRSKET NTFQILKPMD 181: GCLNPGELLV VLGRPGSGCT TLLKSISSNT HGFDLGADTK ISYSGYSGDD IKKHFRGEVV 241: YNAEADVHLP HLTVFETLVT VARLKTPQNR IKGVDRESYA NHLAEVAMAT YGLSHTRNTK 301: VGNDIVRGVS GGERKRVSIA EVSICGSKFQ CWDNATRGLD SATALEFIRA LKTQADISNT 361: SATVAIYQCS QDAYDLFNKV CVLDDGYQIY YGPADKAKKY FEDMGYVCPS RQTTADFLTS 421: VTSPSERTLN KDMLKKGIHI PQTPKEMNDY WVKSPNYKEL MKEVDQRLLN DDEASREAIK 481: EAHIAKQSKR ARPSSPYTVS YMMQVKYLLI RNMWRLRNNI GFTLFMILGN CSMALILGSM 541: FFKIMKKGDT STFYFRGSAM FFAILFNAFS SLLEIFSLYE ARPITEKHRT YSLYHPSADA 601: FASVLSEIPS KLIIAVCFNI IFYFLVDFRR NGGVFFFYLL INIVAVFSMS HLFRCVGSLT 661: KTLSEAMVPA SMLLLALSMY TGFAIPKKKI LRWSKWIWYI NPLAYLFESL LINEFHGIKF 721: PCAEYVPRGP AYANISSTES VCTVVGAVPG QDYVLGDDFI RGTYQYYHKD KWRGFGIGMA 781: YVVFFFFVYL FLCEYNEGAK QKGEILVFPR SIVKRMKKRG VLTEKNANDP ENVGERSDLS 841: SDRKMLQESS EEESDTYGEI GLSKSEAIFH WRNLCYEVQI KAETRRILNN VDGWVKPGTL 901: TALMGASGAG KTTLLDCLAE RVTMGVITGD ILVNGIPRDK SFPRSIGYCQ QQDLHLKTAT 961: VRESLRFSAY LRQPAEVSIE EKNRYVEEVI KILEMEKYAD AVVGVAGEGL NVEQRKRLTI 1021: GVELTAKPKL LVFLDEPTSG LDSQTAWSIC QLMKKLANHG QAILCTIHQP SAILMQEFDR 1081: LLFMQRGGKT VYFGDLGEGC KTMIDYFESH GAHKCPADAN PAEWMLEVVG AAPGSHANQD 1141: YYEVWRNSEE YRAVQSELDW MERELPKKGS ITAAEDKHEF SQSIIYQTKL VSIRLFQQYW 1201: RSPDYLWSKF ILTIFNQLFI GFTFFKAGTS LQGLQNQMLA VFMFTVIFNP ILQQYLPSFV 1261: QQRDLYEARE RPSRTFSWIS FIFAQIFVEV PWNILAGTIA YFIYYYPIGF YSNASAAGQL 1321: HERGALFWLF SCAFYVYVGS MGLLVISFNQ VAESAANLAS LLFTMSLSFC GVMTTPSAMP 1381: RFWIFMYRVS PLTYFIQALL AVGVANVDVK CADYELLEFT PPSGMTCGQY MEPYLQLAKT 1441: GYLTDENATD TCSFCQISTT NDYLANVNSF YSERWRNYGI FICYIAFNYI AGVFFYWLAR 1501: VPKKNGKLSK K