TCDB is operated by the Saier Lab Bioinformatics Group

3.E.1 The Ion-translocating Microbial Rhodopsin (MR) Family

Members of the MR family catalyze light-driven ion translocation across microbial cytoplasmic membranes or serve as light receptors. Among the high resolution structures for members of the MR family are the archaeal proteins, bacteriorhodopsin (Luecke et al., 1999), sensory rhodopsin II (Royant et al., 2001) and halorhodopsin (Kolbe et al., 2000) as well as an Anabaena cyanobacterial sensory rhodopsin (3.E.1.8.a) (Vogeley et al., 2004). Homologues include putative fungal chaparone proteins, a retinal-containing rhodopsin from Neurospora crassa (Maturana et al., 2001), a H+-pumping rhodopsin from Leptosphaeria maculans (Waschuk et al., 2005), retinal-containing proton pumps isolated from marine bacteria (Béjà et al., 2000), a green light-activated photoreceptor in cyanobacteria that does not pump ions and interacts with a small (14 kDa) soluble transducer protein (Jung et al., 2003; Vogeley et al., 2004) and light-gated H+ channels from the green alga, Chlamydomonas reinhardtii (Nagel et al., 2002). The N. crassa NOP-1 protein exhibits a photocycle and conserved H+ translocation residues that suggest that this putative photoreceptor is a slow H+ pump (Brown et al., 2001; see also Brown, 2004 and Waschuk et al., 2005). Allosteric structural changes in the photocycle are mediated by a sliding movement of a transmembrane helix (Takeda et al. 2004). MR proteins such as SRII exhibit fast internal motion and residual conformational entropy (O'Brien et al. 2020). Procedures for the formation of thin (mono-) and thick (multi-) layers from materials containing BR and BR/nanoparticle hybrids have been reviewed (Oleinikov et al. 2020) and their usefulness in optogenetic studies have been reviewed (Kandori 2021).  The molecular determinants of ionic selectivity, photocurrent desensitization, and spectral tuning in anion- and cation-selective channelrhodopsins have been defined (Govorunova et al. 2021). Concerted motions and molecular functions of Llight-driven ion-pumping rhodopsins have been reviewed (Mizutani 2021). An outward proton pumping rhodopsin with a record in thermostability has been made by amino acid mutations (Yasuda et al. 2022). Dynamic aspects of bacteriorhodopsin as a typical membrane protein have been studied by  site-directed solid-state 13C NMR (Saitô et al. 2004). Ion-pumping microbial rhodopsin proteins have been classified using a machine learning approach (Selvaraj et al. 2023). The surface proton current observed in bacteriorhodopsin purple membranes has been explained (Silverstein 2023). There has been widespread use of proton-pumping rhodopsin in Antarctic phytoplankton (Andrew et al. 2023).

The Anabaena sensory rhodopsin exhibits light-induced interconversion between 13-cis and all trans states (Vogeley et al., 2004). The ratio of its cis and trans chromophore forms depends on the wavelength of illumination, thus providing a mechanism for a single protein to signal the color of light, for example, to regulate color-sensitive processes such as chromatic adaptation in photosynthesis. Its cytoplasmic half channel, highly hydrophobic in the archaeal rhodopsins, contains numerous hydrophilic residues networked by water molecules, providing a connection from the photoactive site to the cytoplasmic surface believed to interact with the receptor's soluble 14-kilodalton transducer.

Most proteins of the MR family are all of about the same size (250-350 amino acyl residues) and possess seven TMSs with their N-termini on the outside and their C-termini on the inside. There are 8 subfamilies in the MR family: (1) bacteriorhodopsins pump protons out of the cell; (2) halorhodopsins pump chloride (and other anions such as bromide, iodide and nitrate) into the cell; (3) sensory rhodopsins, which normally function as receptors for phototactic behavior, are capable of pumping protons out of the cell if dissociated from their transducer proteins; (4) the fungal chaparones are stress-induced proteins of ill-defined biochemical function, but this subfamily also includes a H+-pumping rhodopsin (Waschuk et al., 2005); (5) the bacterial rhodopsin, called proteorhodopsin, is a light-driven proton pump that functions as does bacteriorhodopsins; (6) the N. crassa retinal-containing receptor serves as a photoreceptor (Zhai et al., 2001); (7) the green algal light-gated proton channel, channelrhodpsin-1, (8) sensory rhodopsins from cyanobacteria and (9) light-activated rhodopsin guanylyl cyclases. A phylogenetic analysis of microbial rhodopsins and a detailed analysis of potential examples of horizontal gene transfer have been published (Sharma et al., 2006). Microbial rhodopsins have a Trp residue in the middle of TMS3, which is homologous to W86 of bacteriorhodopsin (BR), is well conserved among microbial rhodopsins with various light-driven functions, and it serves as a gate-keeper in many microbial rhodopsins (Nagasaka et al. 2020). Roles of functional lipids in the bacteriorhodopsin photocycle in various delipidated purple membranes have been examined (Zhong et al. 2022).

Bacterio- and halorhodopsins pump 1 H+ and 1 Cl- per photon absorbed, respectively. Specific transport mechanisms and pathways have been proposed (see Kolbe et al., 2000; Lanyi and Schobert, 2003; Schobert et al., 2003). The mechanism involves (1) photo-isomerization of the retinal and its initial configurational changes, (2) deprotonation of the retinal Schiff base and the coupled release of a proton to the extracellular membrane surface, and (3) the switch event that allows reprotonation of the Schiff base from the cytoplasmic side. Six structural models describe the transformations of the retinal and its interaction with water 402, Asp85, and Asp212 in atomic detail, as well as the displacements of functional residues farther from the Schiff base. The changes provide rationales for how relaxation of the distorted retinal causes movements of water and protein atoms that result in vectorial proton transfers to and from the Schiff base (Lanyi and Schobert, 2003). Helix deformation is coupled to vectorial proton transport in the photocycle of bacteriorhodopsin (Royant et al., 2000). Bacteriorhodopsin activity as a function of its local environment has been quantified with a raman-based assay (Leighton and Frontiera 2023).

The marine bacterial rhodopsin has been reported to function as a proton pump. However, it most closely resembles sensory rhodopsin II of archaea as well as an Orf from the fungus Leptosphaeria maculans (AF290180). These proteins exhibit 20-30% identity with each other.  Sensory rhodopsins are widespread in the microbial world, but they exhibit different modes of signaling in different organisms, including interaction with other membrane proteins, interaction with cytoplasmic transducers and light-controlled Ca2+ channel activity. Work on cyanobacteria, algae, fungi and marine proteobacteria has shown that the common design of these proteins allows rich diversity in their signaling mechanisms (Spudich 2006).

The association of sensory rhodopsins with their transducer proteins appears to determine whether they function as transporters or receptors. Association of a sensory rhodopsin receptor with its transducer occurs via the transmembrane helical domains of the two interacting proteins. There are two sensory rhodopsins in any one halophilic archaeon, one (SRI) that responds positively to orange light but negatively to blue light, the other (SRII) that responds only negatively to blue light. Each transducer is specific for its cognate receptor. An x-ray structure of SRII complexed with its transducer (HtrII) at 1.94 Å resolution is available (Gordelly et al., 2002).  Molecular and evolutionary aspects of the light-signal transduction by microbial sensory receptors have been reviewed (Inoue et al. 2014).

Sol-gel immobilization of proteins in transparent inorganic matrices provide a liposomal system in which the liposome provides membrane structure. Two transmembrane proteins, bacteriorhodopsin (bR) and F0F1-ATP synthase have been incorporated into such a matrix called proteogels; if containing only bRho, a stable proton gradient forms when irradiated with visible light, whereas proteogels containing proteoliposomes with both bRho and an F0F1-ATP synthase couple the photo-induced proton gradient to the production of ATP (Luo et al. 2005). Thus, the liposome/sol-gel architecture can harness the properties of transmembrane proteins and enable a variety of applications, from power generation and energy storage to the powering of molecular motors.

Channelrhodopsin-1 (ChR1) or channelopsin-1 (Chop1; Cop3; CSOA) of C. reinhardtii is most closely related to the archaeal sensory rhodopsins. It has 712 aas with a signal peptide, followed by a short amphipathic region, and then a hydrophobic N-terminal domain with seven probable TMSs (residues 76-309) followed by a long hydrophilic C-terminal domain of about 400 residues. Part of the C-terminal hydrophilic domain is homologous to intersectin (EH and SH3 domain protein 1A) of animals (AAD30271).

Chop1 serves as a light-gated proton channel and mediates phototaxis and photophobic responses in green algae (Nagel et al., 2002). Based on this phenotype, Chop1 could be assigned to TC category #1.A, but because it belongs to a family in which well-characterized homologues catalyze active ion transport, it is assigned to the MR family. Expression of the chop1 gene, or a truncated form of this gene encoding only the hydrophobic core (residues 1-346 or 1-517) in frog oocytes in the presence of all-trans retinal produces a light-gated conductance that shows characteristics of a channel, passively but selectively permeable to protons. This channel activity may generate bioelectric currents (Nagel et al., 2002).

A homologue of ChR1 in C. reinhardtii is channelrhodopsin-2 (ChR2; Chop2; Cop4; CSOB). This protein is 57% identical, 10% similar to ChR1. It forms a cation-selective ion channel activated by light absorption. It transports both monovalent and divalent cations. It desensitizes to a small conductance in continuous light. Recovery from desensitization is accelerated by extracellular H+ and a negative membrane potential. It may be a photoreceptor for dark adapted cells (Nagel et al., 2003). A transient increase in hydration of transmembrane α-helices with a t(1/2) = 60 μs tallies with the onset of cation permeation. Aspartate 253 accepts the proton released by the Schiff base (t(1/2) = 10 μs), with the latter being reprotonated by aspartic acid 156 (t(1/2) = 2 ms). The internal proton acceptor and donor groups, corresponding to D212 and D115 in bacteriorhodopsin, are clearly different from other microbial rhodopsins, indicating that their spatial position in the protein was relocated during evolution. E90 deprotonates exclusively in the nonconductive state. The observed proton transfer reactions and the protein conformational changes relate to the gating of the cation channel (Lórenz-Fonfría et al. 2013).

Most of the MR family homologues in yeast and fungi are of about the same size and topology as the archaeal proteins (283-344 amino acyl residues; 7 putative transmembrane α-helical segments), but they are heat shock- and toxic solvent-induced proteins of unknown biochemical function. They have been suggested to function as pmf-driven chaperones that fold extracellular proteins (Zhai et al., 2001), but only indirect evidence supports this postulate. The MR family is distantly related to the 7 TMS LCT family (TC #2.A.43) (Zhai et al., 2001). It is a part of the TOG superfamily which includes G-protein coupled receptors (GPCRs) (Yee et al. 2013), and the conclusioin of homology between MRs and GPCRs has been extensively confirmed (Shalaeva et al. 2015).

Archaerhodopsin-2 (aR2), a retinal protein-carotenoid complex found in the claret membrane of Halorubrum sp. aus-2, functions as a light-driven proton pump. Trigonal and hexagonal crystals revealed that trimers are arranged on a honeycomb lattice (Yoshimura and Kouyama, 2008). In these crystals, the carotenoid bacterioruberin binds to crevices between the subunits of the trimer. Its polyene chain is inclined from the membrane normal by an angle of about 20 degrees and, on the cytoplasmic side, it is surrounded by helices AB and DE of neighbouring subunits. This peculiar binding mode suggests that bacterioruberin plays a structural role for the trimerization of aR2. When compared with the aR2 structure in another crystal form containing no bacterioruberin, the proton release channel takes a more closed conformation in the P321 or P6(3) crystal; i.e., the native conformation of protein is stabilized in the trimeric protein-bacterioruberin complex.

A crystallographic structure of xanthorhodopsin at 1.9 Å resolution revealed a dual chromophore, the geometry of the carotenoid and the retinal (Luecke et al., 2008). The close approach of the 2 polyenes at their ring ends explains why the efficiency of the excited-state energy transfer is as high as approximately 45%, and the 46 degrees angle between them suggests that the chromophore location is a compromise between optimal capture of light of all polarization angles and excited-state energy transfer. At 1.9 Å resolution, the structure revealed a light-driven proton pump with a dual chromophore.  Ion-transporting rhodopsins of marine bacteria have been reviewed (Inoue et al. 2014).

Most residues participating in the trimerization are not conserved in bacteriorhodopsin, a homologous protein capable of forming a trimeric structure in the absence of bacterioruberin. Despite a large alteration in the amino acid sequence, the shape of the intratrimer hydrophobic space filled by lipids is highly conserved between aR2 and bacteriorhodopsin. Since a transmembrane helix facing this space undergoes a large conformational change during the proton pumping cycle, it is feasible that trimerization is an important strategy to capture special lipid components that are relevant to the protein activity (Yoshimura and Kouyama, 2008).

Ion-pumping bacterial rhodopsins functioning as outward H+ or Na+ and inward Cl- pumps convert light energy into transmembrane electrochemical potential differences. The H+, Na+, and Cl- pumps possess conserved respective DTE, NDQ, and NTQ motifs in helices C, which likely serve as their functional determinants, and this has been verified (Inoue et al. 2016). Phylogenetic analyses suggested that a H+ pump was the common ancestor from which Cl- pumps emerged followed by Na+ pumps. Inoue et al. 2016 proposed that successful functional conversion was achieved when these amino acid sequences changed, possibly accompanied by other changes. 

Nango et al. 2016 used time-resolved serial femtosecond crystallography at an x-ray free electron laser to visualize conformational changes in bRho from nanoseconds to milliseconds following photoactivation. An initially twisted retinal chromophore displaces a conserved tryptophan residue of transmembrane helix F on the cytoplasmic side of the protein while dislodging a key water molecule on the extracellular side. The resulting cascade of structural changes throughout the protein shows how motions are choreographed as bRho transports protons uphill against a transmembrane concentration gradient.

Brho (BR) has light-independent lipid scramblase activity (Verchère et al. 2017). This activity occurs  at a rate >10,000 per trimer per second, comparable to that of other scramblases including bovine rhodopsin and fungal TMEM16 proteins. BR scrambles fluorescent analogues of common phospholipids but does not transport a glycosylated diphosphate isoprenoid lipid. In silico analyses suggested that membrane-exposed polar residues in transmembrane helices 1 and 2 of BR may provide the molecular basis for lipid translocation by coordinating the polar head-groups of transiting phospholipids. Consistent with this possibility, molecular dynamics simulations of a BR trimer in a phospholipid membrane revealed water penetration along transmembrane helix 1 with the cooperation of a polar residue (Y147 in transmembrane helix 5) in the adjacent protomer. These findings suggest that the lipid translocation pathway may lie at or near the interface of the protomers of the BR trimer (Verchère et al. 2017). 

Electronic current passes through bR-containing artificial lipid bilayers in solid 'electrode-bilayer-electrode' structures. The current through the protein is more than four orders of magnitude higher than would be estimated for direct tunneling through 5-nm water-free peptides. Jin et al. 2006 found that electron transport (ET) occurs only if retinal or a close analogue is present in the protein. As long as the retinal can isomerize after light absorption, there is a photo-ET effect. The contribution of light-driven proton pumping to the steady-state photocurrents is negligible. Possibly this is relevant to the early evolutionary origin of halobacteria (Jin et al. 2006).

Parvularcula oceani xenorhodopsin (PoXeR) was the first light-driven inward proton pump with a brho topology and structure, binding retinal to TMS 7. Ultrafast pump-probe spectroscopy revealed that the isomerization time of retinal is 1.2 ps, considerably slower than those of other microbial rhodopsins (180-770 fs). Following the production of J, the K intermediate was formed at 4 ps. Proton transfer occurred on a slower time-scale. While a proton was released from Asp216 into the cytoplasm, no proton-donating residue was identified on the extracellular side. A branched retinal isomerization (from 13-cis-15-anti to 13-cis-15-syn and all-trans-15-anti) occurred simultaneously with proton uptake. Thus, retinal isomerization is the rate-limiting process in proton uptake, and the regulation of pKa of the retinal Schiff base by thermal isomerization enables uptake from the extracellular medium (Inoue et al. 2018). Tamogami 2023 introduce a useful experimental method for measuring rapid transient pH changes with photoinduced proton uptake/release using transparent tin oxide (SnO2) or indium-tin oxide (ITO) electrodes. The unique pH-dependent behavior of the photoinduced proton transfer sequence as well as the vectoriality of proton transport in proteorhodopsin (PR) from marine eubacteria was also described. Through intensive ITO experiments over a wide pH range, in combination with photoelectric measurements using Xenopus oocytes or a thin polymer film 'Lumirror,' they made several interesting observations on photoinduced proton transfer in PR: 1) proton uptake/release sequence reversal and potential proton translocation direction reversal under alkali conditions, and 2) fast proton release from D227, a secondary counterion of the protonated retinal Schiff base at acidic pH values (Tamogami 2023).

Rhodopsins with enzymatic activity are present in microbes; three different types are known: light-activated guanylyl cyclase opsins (Cyclop) in fungi (TC# 3.E.1.5.1), light-inhibited two-component guanylyl cyclase opsins (2c-Cyclop) in green algae, and rhodopsin phosphodiesterases (RhoPDE) in choanoflagellates (TC# 3.E.1.5.2) (Tian et al. 2022). They are integral membrane proteins with eight TMSs, different from the other microbial (type I) rhodopsins with 7 TMSs. A classification as type Ib rhodopsins for opsins with 8 TMSs and type Ia for the ones with 7 TMSs has been proposed (Tian et al. 2022). Kojima and Sudo 2023 propposed that animal and microbial rhodopsins convergently evolved from their distinctive origins as multi-colored retinal-binding membrane proteins whose activities are regulated by light and heat but independently evolved for different molecular and physiological functions in the cognate organism. However, bioinformatic research in the Saier lab suggested that these proteins all evolved from a common ancestor (Yee et al. 2013; Shlykov et al. 2012).

New sensory rhodopsins, resembling proteorhodopsins (see TC# 3.E.1.6), display many unusual amino acid residues, including those around the retinal chromophore; most strikingly, a tyrosine in place of a carboxyl counterion of the retinal Schiff base on helix C (Saliminasab et al. 2023). Experimental data, bioinformatic sequence analyses, and structural modeling suggest that the tyrosine/aspartate complex counterion contributes to a complex water-mediated hydrogen-bonding network that couples the protonated retinal Schiff base to an extracellular carboxylic dyad. These SRs interact with Htr-like transducers (Saliminasab et al. 2023) but show greater sequence similarity with proteorhodopsins that archaeal sensory rhodopsins that also interact with Htr-like transducers (Saliminasab et al. 2023)

The generalized transport reaction for bacterio- (and some sensory) rhodopsins is:

H+ (in) + hν → H+ (out)

That for halorhodopsin is:

Cl- (out) + hν → Cl- (in)

That for xenorhodopsin is:

H+ (out) + hν  → H+ (in)

 

References associated with 3.E.1 family:

Adam, S. and A.N. Bondar. (2018). Mechanism by which water and protein electrostatic interactions control proton transfer at the active site of channelrhodopsin. PLoS One 13: e0201298. 30086158
Andrew, S.M., C.M. Moreno, K. Plumb, B. Hassanzadeh, L. Gomez-Consarnau, S.N. Smith, O. Schofield, S. Yoshizawa, T. Fujiwara, W.G. Sunda, B.M. Hopkinson, A.N. Septer, and A. Marchetti. (2023). Widespread use of proton-pumping rhodopsin in Antarctic phytoplankton. Proc. Natl. Acad. Sci. USA 120: e2307638120. 37722052
Astashkin, R., K. Kovalev, S. Bukhdruker, S. Vaganova, A. Kuzmin, A. Alekseev, T. Balandin, D. Zabelskii, I. Gushchin, A. Royant, D. Volkov, G. Bourenkov, E. Koonin, M. Engelhard, E. Bamberg, and V. Gordeliy. (2022). Structural insights into light-driven anion pumping in cyanobacteria. Nat Commun 13: 6460. 36309497
Bada Juarez, J.F., P.J. Judge, S. Adam, D. Axford, J. Vinals, J. Birch, T.O.C. Kwan, K.K. Hoi, H.Y. Yen, A. Vial, P.E. Milhiet, C.V. Robinson, I. Schapiro, I. Moraes, and A. Watts. (2021). Structures of the archaerhodopsin-3 transporter reveal that disordering of internal water networks underpins receptor sensitization. Nat Commun 12: 629. 33504778
Bamann, C., R. Gueta, S. Kleinlogel, G. Nagel, and E. Bamberg. (2010). Structural guidance of the photocycle of channelrhodopsin-2 by an interhelical hydrogen bond. Biochemistry 49: 267-278. 20000562
Béjà, O., L. Aravind, E.V. Koonin, M.T. Suzuki, A. Hadd, L.P. Nguyen, S.B. Jovanovich, C.M. Gates, R.A. Feldman, J. L. Spudich, E.N. Spudich, and E.F. DeLong. (2000). Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289: 1902-1906. 10988064
Berndt, A., M. Prigge, D. Gradmann, and P. Hegemann. (2010). Two open states with progressive proton selectivities in the branched channelrhodopsin-2 photocycle. Biophys. J. 98: 753-761. 20197028
Bertsova, Y.V., A.V. Bogachev, and V.P. Skulachev. (2015). Proteorhodopsin from Dokdonia sp. PRO95 is a light-driven Na+-pump. Biochemistry (Mosc) 80: 449-454. 25869362
Besaw, J.E., W.L. Ou, T. Morizumi, B.T. Eger, J.D. Sanchez Vasquez, J.H.Y. Chu, A. Harris, L.S. Brown, R.J.D. Miller, and O.P. Ernst. (2020). The crystal structures of a chloride-pumping microbial rhodopsin and its proton-pumping mutant illuminate proton transfer determinants. J. Biol. Chem. 295: 14793-14804. 32703899
Bieszke, J.A., E.L. Braun, L.E. Bean, S. Kang, D.O. Natvig, and K.A. Borkovich. (1999). The nop-1 gene of Neurospora crassa encodes a seven transmembrane helix retinal-binding protein homologous to archaeal rhodopsins. Proc. Natl. Acad. Sci. USA 96: 8034-8039. 10393943
Bieszke, J.A., L. Li, and K.A. Borkovich. (2007). The fungal opsin gene nop-1 is negatively-regulated by a component of the blue light sensing pathway and influences conidiation-specific gene expression in Neurospora crassa. Curr. Genet. 52: 149-157. 17676324
Bratanov, D., K. Kovalev, J.P. Machtens, R. Astashkin, I. Chizhov, D. Soloviov, D. Volkov, V. Polovinkin, D. Zabelskii, T. Mager, I. Gushchin, T. Rokitskaya, Y. Antonenko, A. Alekseev, V. Shevchenko, N. Yutin, R. Rosselli, C. Baeken, V. Borshchevskiy, G. Bourenkov, A. Popov, T. Balandin, G. Büldt, D.J. Manstein, F. Rodriguez-Valera, C. Fahlke, E. Bamberg, E. Koonin, and V. Gordeliy. (2019). Unique structure and function of viral rhodopsins. Nat Commun 10: 4939. 31666521
Broecker, J., B.T. Eger, and O.P. Ernst. (2017). Crystallogenesis of Membrane Proteins Mediated by Polymer-Bounded Lipid Nanodiscs. Structure 25: 384-392. 28089451
Brown, L.S. (2004). Fungal rhodopsins and opsin-related proteins: eukaryotic homologues of bacteriorhodopsin with unknown functions. Photochem. Photobiol. Sci. 3: 555-565. 15170485
Brown, L.S., A.K. Dioumaev, J.K. Lanyi, E.N. Spudich, and J.L. Spudich. (2001). Photochemical reaction cycle and proton transfers in Neurospora rhodopsin. J. Biol. Chem. 276: 32495-32505. 11435422
Cheng, J., W. Zhang, S. Zhou, X. Ran, Y. Shang, G.V. Lo, Y. Dou, and S. Yuan. (2021). The effect on ion channel of different protonation states of E90 in channelrhodopsin-2: a molecular dynamics simulation. RSC Adv 11: 14542-14551. 35424009
da Silva, G.F., B.R. Goblirsch, A.L. Tsai, and J.L. Spudich. (2015). Cation-Specific Conformations in a Dual-Function Ion-Pumping Microbial Rhodopsin. Biochemistry 54: 3950-3959. 26037033
Daicho, K.M., Y. Hirono-Hara, H. Kikukawa, K. Tamura, and K.Y. Hara. (2024). Engineering yeast with a light-driven proton pump system in the vacuolar membrane. Microb Cell Fact 23: 4. 38172917
Deaton, J., J. Sun, A. Holzenburg, D.K. Struck, J. Berry, and R. Young. (2004). Functional bacteriorhodopsin is efficiently solubilized and delivered to membranes by the chaperonin GroEL. Proc. Natl. Acad. Sci. USA 101: 2281-2286. 14983001
Dong, B., L. Sánchez-Magraner, and H. Luecke. (2016). Structure of an Inward Proton-Transporting Anabaena Sensory Rhodopsin Mutant: Mechanistic Insights. Biophys. J. 111: 963-972. 27602724
Frassanito, A.M., L. Barsanti, V. Passarelli, V. Evangelista, and P. Gualtieri. (2010). A rhodopsin-like protein in Cyanophora paradoxa: gene sequence and protein immunolocalization. Cell Mol Life Sci 67: 965-971. 20016996
Freier, E., S. Wolf, and K. Gerwert. (2011). Proton transfer via a transient linear water-molecule chain in a membrane protein. Proc. Natl. Acad. Sci. USA 108: 11435-11439. 21709261
Friedrich, T., S. Geibel, R. Kalmbach, I. Chizhov, K. Ataka, J. Heberle, M. Engelhard, and E. Bamberg. (2002). Proteorhodopsin is a light-driven proton pump with variable vectorality. J. Mol. Biol. 321: 821-838. 12206764
Fu, H.Y., Y.C. Lin, Y.N. Chang, H. Tseng, C.C. Huang, K.C. Liu, C.S. Huang, C.W. Su, R.R. Weng, Y.Y. Lee, W.V. Ng, and C.S. Yang. (2010). A novel six-rhodopsin system in a single archaeon. J. Bacteriol. 192: 5866-5873. 20802037
Gao, S., J. Nagpal, M.W. Schneider, V. Kozjak-Pavlovic, G. Nagel, and A. Gottschalk. (2015). Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp. Nat Commun 6: 8046. 26345128
Gautier, A. and D. Nietlispach. (2012). Solution NMR Studies of Integral Polytopic α-Helical Membrane Proteins: The Structure Determination of the Seven-Helix Transmembrane Receptor Sensory Rhodopsin II, pSRII. Methods Mol Biol 914: 25-45. 22976021
Gautier, A., H.R. Mott, M.J. Bostock, J.P. Kirkpatrick, and D. Nietlispach. (2010). Structure determination of the seven-helix transmembrane receptor sensory rhodopsin II by solution NMR spectroscopy. Nat Struct Mol Biol 17: 768-774. 20512150
Gerwert, K. (2017). Channelrhodopsin reveals its dark secrets. Science 358: 1000-1001. 29170223
Gordeliy, V.I., J. Labahn, R. Moukhametzianov, R. Efremov, J. Granzin, R. Schlesinger, G. Buldt, T. Savopol, A.J. Scheidig, J.P. Klare, and M. Engelhard. (2002). Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex. Nature 419: 484-487. 12368857
Govorunova, E.G., E.N. Spudich, C.E. Lane, O.A. Sineshchekov, and J.L. Spudich. (2011). New channelrhodopsin with a red-shifted spectrum and rapid kinetics from Mesostigma viride. MBio 2: e115-11511. 21693637
Govorunova, E.G., O.A. Sineshchekov, H. Li, Y. Wang, L.S. Brown, A. Palmateer, M. Melkonian, S. Cheng, E. Carpenter, J. Patterson, G.K. Wong, and J.L. Spudich. (2021). Cation and Anion Channelrhodopsins: Sequence Motifs and Taxonomic Distribution. mBio e0165621. [Epub: Ahead of Print] 34281394
Govorunova, E.G., O.A. Sineshchekov, R. Janz, X. Liu, and J.L. Spudich. (2015). NEUROSCIENCE. Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics. Science 349: 647-650. 26113638
Hasegawa, M., T. Hosaka, K. Kojima, Y. Nishimura, Y. Nakajima, T. Kimura-Someya, M. Shirouzu, Y. Sudo, and S. Yoshizawa. (2020). A unique clade of light-driven proton-pumping rhodopsins evolved in the cyanobacterial lineage. Sci Rep 10: 16752. 33028840
Hashimoto, K., A.R. Choi, Y. Furutani, K.H. Jung, and H. Kandori. (2010). Low-temperature FTIR study of Gloeobacter rhodopsin: presence of strongly hydrogen-bonded water and long-range structural protein perturbation upon retinal photoisomerization. Biochemistry 49: 3343-3350. 20230053
Hatakeyama, A., E. Sugano, T. Sayama, Y. Watanabe, T. Suzuki, K. Tabata, Y. Endo, T. Sakajiri, T. Fukuda, T. Ozaki, and H. Tomita. (2023). Properties of a Single Amino Acid Residue in the Third Transmembrane Domain Determine the Kinetics of Ambient Light-Sensitive Channelrhodopsin. Int J Mol Sci 24:. 36902480
Hayashi, T., S. Yasuda, K. Suzuki, T. Akiyama, K. Kanehara, K. Kojima, M. Tanabe, R. Kato, T. Senda, Y. Sudo, T. Murata, and M. Kinoshita. (2020). How Does a Microbial Rhodopsin RxR Realize Its Exceptionally High Thermostability with the Proton-Pumping Function Being Retained? J Phys Chem B 124: 990-1000. 31955569
Higuchi, A., W. Shihoya, M. Konno, T. Ikuta, H. Kandori, K. Inoue, and O. Nureki. (2021). Crystal structure of schizorhodopsin reveals mechanism of inward proton pumping. Proc. Natl. Acad. Sci. USA 118:. 33790007
Höler, S., D. Degreif, F. Stix, S. Yang, S. Gao, G. Nagel, A. Moroni, G. Thiel, A. Bertl, and O. Rauh. (2023). Tailoring baker's yeast Saccharomyces cerevisiae for functional testing of channelrhodopsin. PLoS One 18: e0280711. 37053213
Huang, S., L. Shen, M.R.G. Roelfsema, D. Becker, and R. Hedrich. (2023). Light-gated channelrhodopsin sparks proton-induced calcium release in guard cells. Science 382: 1314-1318. 38096275
Idnurm, A. and B.J. Howlett. (2001). Characterization of an opsin gene from the ascomycete Leptosphaeria maculans. Genome 44: 167-171. 11341726
Idzhilova, O.S., G.R. Smirnova, L.E. Petrovskaya, D.A. Kolotova, M.A. Ostrovsky, and A.Y. Malyshev. (2022). Cationic Channelrhodopsin from the Alga Platymonas subcordiformis as a Promising Optogenetic Tool. Biochemistry (Mosc) 87: 1327-1334. 36509722
Ihara, K., T. Umemura, I. Katagiri, T. Kitajima-Ihara, Y. Sugiyama, Y. Kimura, and Y. Mukohata. (1999). Evolution of the archaeal rhodopsins: evolution rate changes by gene duplication and functional differentiation. J. Mol. Biol. 285: 163-174. 9878396
Iimura, Y. and K. Tatsumi. (1997). Isolation of mRNAs induced by a hazardous chemical in white-rot fungus, Coriolus versicolor, by differential display. FEBS Lett. 412: 370-374. 9256254
Imasheva, E.S., S.P. Balashov, A.R. Choi, K.H. Jung, and J.K. Lanyi. (2009). Reconstitution of Gloeobacter violaceus rhodopsin with a light-harvesting carotenoid antenna. Biochemistry 48: 10948-10955. 19842712
Inada, M., M. Kinoshita, A. Sumino, S. Oiki, and N. Matsumori. (2019). A concise method for quantitative analysis of interactions between lipids and membrane proteins. Anal Chim Acta 1059: 103-112. 30876624
Inoue K., Kato Y. and Kandori H. (2015). Light-driven ion-translocating rhodopsins in marine bacteria. Trends Microbiol. 23(2):91-8. 25432080
Inoue, K., S. Tahara, Y. Kato, S. Takeuchi, T. Tahara, and H. Kandori. (2018). Spectroscopic Study of Proton-Transfer Mechanism of Inward Proton-Pump Rhodopsin, Parvularcula oceani Xenorhodopsin. J Phys Chem B. [Epub: Ahead of Print] 29807427
Inoue, K., T. Tsukamoto, and Y. Sudo. (2014). Molecular and evolutionary aspects of microbial sensory rhodopsins. Biochim. Biophys. Acta. 1837: 562-577. 23732219
Inoue, K., Y. Nomura, and H. Kandori. (2016). Asymmetric Functional Conversion of Eubacterial Light-driven Ion Pumps. J. Biol. Chem. 291: 9883-9893. 26929409
Jacobson, D.R., L. Uyetake, and T.T. Perkins. (2020). Membrane-Protein Unfolding Intermediates Detected with Enhanced Precision Using a Zigzag Force Ramp. Biophys. J. 118: 667-675. 31882249
Jahnke, J.P., M.N. Idso, S. Hussain, M.J.N. Junk, J.M. Fisher, D.D. Phan, S. Han, and B.F. Chmelka. (2018). Functionally Active Membrane Proteins Incorporated in Mesostructured Silica Films. J. Am. Chem. Soc. 140: 3892-3906. 29533066
Jardón-Valadez, E., A.N. Bondar, and D.J. Tobias. (2014). Electrostatic interactions and hydrogen bond dynamics in chloride pumping by halorhodopsin. Biochim. Biophys. Acta. 1837: 1964-1972. 25256652
Jin, Y., N. Friedman, M. Sheves, T. He, and D. Cahen. (2006). Bacteriorhodopsin (bR) as an electronic conduction medium: current transport through bR-containing monolayers. Proc. Natl. Acad. Sci. USA 103: 8601-8606. 16731629
Jung, K.-H., V.D. Trivedi, and J.L. Spudich. (2003). Demonstration of a sensory rhodopsin in eubacteria. Mol. Microbiol. 47: 1513-1522. 12622809
Kamo, N., K. Shimono, M. Iwamoto, and Y. Sudo. (2001). Photochemistry and photoinduced proton-transfer by pharaonis phoborhodopsin. Biochemistry (Mosc) 66: 1277-1282. 11743872
Kamo, N., T. Hashiba, T. Kikukawa, T. Araiso, K. Ihara, and T. Nara. (2006). A light-driven proton pump from Haloterrigena turkmenica: functional expression in Escherichia coli membrane and coupling with a H+ co-transporter. Biochem. Biophys. Res. Commun. 341: 285-290. 16413498
Kandori, H. (2020). Biophysics of rhodopsins and optogenetics. Biophys Rev 12: 355-361. 32065378
Kandori, H. (2021). History and Perspectives of Ion-Transporting Rhodopsins. Adv Exp Med Biol 1293: 3-19. 33398804
Kandori, H. and N. Kamo. (2002). [Crystal structure of phoborhodopsin: mechanisms of color tuning and signal transduction]. Tanpakushitsu Kakusan Koso 47: 620-625. 11974859
Kanehara, K., S. Yoshizawa, T. Tsukamoto, and Y. Sudo. (2017). A phylogenetically distinctive and extremely heat stable light-driven proton pump from the eubacterium Rubrobacter xylanophilus DSM 9941. Sci Rep 7: 44427. 28290523
Kao, Y.M., C.H. Cheng, M.L. Syue, H.Y. Huang, I.C. Chen, T.Y. Yu, and L.K. Chu. (2019). Photochemistry of Bacteriorhodopsin with Various Oligomeric Statuses in Controlled Membrane Mimicking Environments: A Spectroscopic Study from Femtoseconds to Milliseconds. J Phys Chem B 123: 2032-2039. 30742764
Kato, H.E., K. Inoue, R. Abe-Yoshizumi, Y. Kato, H. Ono, M. Konno, S. Hososhima, T. Ishizuka, M.R. Hoque, H. Kunitomo, J. Ito, S. Yoshizawa, K. Yamashita, M. Takemoto, T. Nishizawa, R. Taniguchi, K. Kogure, A.D. Maturana, Y. Iino, H. Yawo, R. Ishitani, H. Kandori, and O. Nureki. (2015). Structural basis for Na+ transport mechanism by a light-driven Na+ pump. Nature 521: 48-53. 25849775
Keshmiri Neghab, H., M.H. Soheilifar, A.A. Saboury, B. Goliaei, J. Hong, and G. Esmaeeli Djavid. (2021). Optogenetic Stimulation of Primary Cardiomyocytes Expressing ChR2. J Lasers Med Sci 12: e32. 34733755
Khangholi, N., M. Finkler, R. Seemann, A. Ott, and J.B. Fleury. (2021). Photoactivation of Cell-Free Expressed Archaerhodopsin-3 in a Model Cell Membrane. Int J Mol Sci 22:. 34769410
Kikuchi, C., H. Kurane, T. Watanabe, M. Demura, T. Kikukawa, and T. Tsukamoto. (2021). Preference of Proteomonas sulcata anion channelrhodopsin for NO revealed using a pH electrode method. Sci Rep 11: 7908. 33846397
Kikukawa, T. (2021). Unique Cl pump rhodopsin with close similarity to H pump rhodopsin. Biophys Physicobiol 18: 317-326. 35087698
Kim, H.A., H.J. Kim, J. Park, A.R. Choi, K. Heo, H. Jeong, K.H. Jung, Y.J. Seok, P. Kim, and S.J. Lee. (2017). An evolutionary optimization of a rhodopsin-based phototrophic metabolism in Escherichia coli. Microb Cell Fact 16: 111. 28619035
Kimura, H., C.R. Young, A. Martinez, and E.F. Delong. (2011). Light-induced transcriptional responses associated with proteorhodopsin-enhanced growth in a marine flavobacterium. ISME J 5: 1641-1651. 21472017
Kishi, K.E., Y.S. Kim, M. Fukuda, M. Inoue, T. Kusakizako, P.Y. Wang, C. Ramakrishnan, E.F.X. Byrne, E. Thadhani, J.M. Paggi, T.E. Matsui, K. Yamashita, T. Nagata, M. Konno, S. Quirin, M. Lo, T. Benster, T. Uemura, K. Liu, M. Shibata, N. Nomura, S. Iwata, O. Nureki, R.O. Dror, K. Inoue, K. Deisseroth, and H.E. Kato. (2022). Structural basis for channel conduction in the pump-like channelrhodopsin ChRmine. Cell 185: 672-689.e23. 35114111
Ko, L.N., G.Z. Lim, X.R. Chen, C.J. Cai, K.T. Liu, and C.S. Yang. (2022). HwMR is a novel magnesium-associated protein. Biophys. J. 121: 2781-2793. 35690905
Kojima, K. and Y. Sudo. (2023). Convergent evolution of animal and microbial rhodopsins. RSC Adv 13: 5367-5381. 36793294
Kojima, K., H.C. Watanabe, S. Doi, N. Miyoshi, M. Kato, H. Ishikita, and Y. Sudo. (2018). Mutational analysis of the conserved carboxylates of anion channelrhodopsin-2 (ACR2) expressed in and their roles in anion transport. Biophys Physicobiol 15: 179-188. 30349802
Kolbe, M., H. Besir, L. Essen, and D. Oesterhelt. (2000). Structure of the light-driven chloride pump halorhodopsin at 1.8 Å resolution. Science 288: 1390-1396. 10827943
Kouyama, T., S. Kanada, Y. Takeguchi, A. Narusawa, M. Murakami, and K. Ihara. (2010). Crystal structure of the light-driven chloride pump halorhodopsin from Natronomonas pharaonis. J. Mol. Biol. 396: 564-579. 19961859
Kovalev, K., F. Tsybrov, A. Alekseev, V. Shevchenko, D. Soloviov, S. Siletsky, G. Bourenkov, M. Agthe, M. Nikolova, D. von Stetten, R. Astashkin, S. Bukhdruker, I. Chizhov, A. Royant, A. Kuzmin, I. Gushchin, R. Rosselli, F. Rodriguez-Valera, N. Ilyinskiy, A. Rogachev, V. Borshchevskiy, T.R. Schneider, E. Bamberg, and V. Gordeliy. (2023). Mechanisms of inward transmembrane proton translocation. Nat Struct Mol Biol 30: 970-979. 37386213
Kralj, J.M., D.R. Hochbaum, A.D. Douglass, and A.E. Cohen. (2011). Electrical spiking in Escherichia coli probed with a fluorescent voltage-indicating protein. Science 333: 345-348. 21764748
Kuan, G. and M.H. Saier, Jr. (1994). Phylogenetic relationships among bacteriorhodopsins. Res. Microbiol. 145: 273-285. 7997641
Kurihara, M., V. Thiel, H. Takahashi, K. Kojima, D.M. Ward, D.A. Bryant, M. Sakai, S. Yoshizawa, and Y. Sudo. (2023). Identification of a Functionally Efficient and Thermally Stable Outward Sodium-Pumping Rhodopsin (BeNaR) from a Thermophilic Bacterium. Chem Pharm Bull (Tokyo) 71: 154-164. 36724978
Lanyi, J.K. and B. Schobert. (2003). Mechanism of proton transport in bacteriorhodopsin from crystallographic structures of the K, L, M1, M2, and M2' intermediates of the photocycle. J. Mol. Biol. 328: 439-450. 12691752
Lanyi, J.K. and B. Schobert. (2004). Local-global conformational coupling in a heptahelical membrane protein: transport mechanism from crystal structures of the nine states in the bacteriorhodopsin photocycle. Biochemistry 43: 3-8. 14705925
Lanyi, J.K. and S.P. Balashov. (2008). Xanthorhodopsin: a bacteriorhodopsin-like proton pump with a carotenoid antenna. Biochim. Biophys. Acta. 1777: 684-688. 18515067
Lee KA., Lee SS., Kim SY., Choi AR., Lee JH. and Jung KH. (2015). Mistic-fused expression of algal rhodopsins in Escherichia coli and its photochemical properties. Biochim Biophys Acta. 1850(9):1694-703. 25869488
Lee, J.W. (2023). Transient protonic capacitor: Explaining the bacteriorhodopsin membrane experiment of Heberle et al. 1994. Biophys Chem 300: 107072. [Epub: Ahead of Print] 37406610
Leighton, R.E. and R.R. Frontiera. (2023). Quantifying Bacteriorhodopsin Activity as a Function of its Local Environment with a Raman-Based Assay. J Phys Chem B 127: 8833-8841. 37812499
Li, H., C.Y. Huang, E.G. Govorunova, O.A. Sineshchekov, A. Yi, K.J. Rothschild, M. Wang, L. Zheng, and J.L. Spudich. (2021). The crystal structure of bromide-bound ACR1 reveals a pre-activated state in the transmembrane anion tunnel. Elife 10:. 33998458
Lórenz-Fonfría, V.A., C. Bamann, T. Resler, R. Schlesinger, E. Bamberg, and J. Heberle. (2015). Temporal evolution of helix hydration in a light-gated ion channel correlates with ion conductance. Proc. Natl. Acad. Sci. USA 112: E5796-5804. 26460012
Lórenz-Fonfría, V.A., T. Resler, N. Krause, M. Nack, M. Gossing, G. Fischer von Mollard, C. Bamann, E. Bamberg, R. Schlesinger, and J. Heberle. (2013). Transient protonation changes in channelrhodopsin-2 and their relevance to channel gating. Proc. Natl. Acad. Sci. USA 110: E1273-1281. 23509282
Luecke, H., B. Schobert, H.-T. Richter, J.-P. Cartailler, and J.K. Lanyi. (1999). Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution. Science 286: 255-260. 10514362
Luecke, H., B. Schobert, J. Stagno, E.S. Imasheva, J.M. Wang, S.P. Balashov, and J.K. Lanyi. (2008). Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Proc. Natl. Acad. Sci. USA 105: 16561-16565. 18922772
Luecke, H., H.-T. Richter, and J.K. Lanyi. (1998). Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. Science 280: 1934-1937. 9632391
Luo, T.J., R. Soong, E. Lan, B. Dunn, and C. Montemagno. (2005). Photo-induced proton gradients and ATP biosynthesis produced by vesicles encapsulated in a silica matrix. Nat Mater 4: 220-224. 15696172
Makino, Y., I. Kawamura, T. Okitsu, A. Wada, N. Kamo, Y. Sudo, K. Ueda, and A. Naito. (2018). Retinal Configuration of ppR Intermediates Revealed by Photoirradiation Solid-State NMR and DFT. Biophys. J. 115: 72-83. 29972813
Maturana, A., S. Arnaudeau, S. Ryser, B. Banfi, J.P. Hossle, W. Schlegel, K.-H. Krause, and N. Demaurex. (2001). Heme histidine ligands within gp91phox modulate proton conduction by the phagocyte NADPH oxidase. J. Biol. Chem. 276: 30277-30284. 11389135
Mei, G., C.M. Cavini, N. Mamaeva, P. Wang, W.J. DeGrip, and K.J. Rothschild. (2021). Optical Switching Between Long-lived States of Opsin Transmembrane Voltage Sensors. Photochem Photobiol. [Epub: Ahead of Print] 33817800
Mizutani, Y. (2021). Concerted Motions and Molecular Function: What Physical Chemistry We Can Learn from Light-Driven Ion-Pumping Rhodopsins. J Phys Chem B 125: 11812-11819. 34672596
Morizumi, T., W.L. Ou, N. Van Eps, K. Inoue, H. Kandori, L.S. Brown, and O.P. Ernst. (2019). X-ray Crystallographic Structure and Oligomerization of Gloeobacter Rhodopsin. Sci Rep 9: 11283. 31375689
Mosslehy, W., N. Voskoboynikova, A. Colbasevici, A. Ricke, D. Klose, J.P. Klare, A.Y. Mulkidjanian, and H.J. Steinhoff. (2019). Conformational Dynamics of Sensory Rhodopsin II in Nanolipoprotein and Styrene-Maleic Acid Lipid Particles. Photochem Photobiol. [Epub: Ahead of Print] 30849183
Mukohata, Y., K. Ihara, T. Tamura, and Y. Sugiyama. (1999). Halobacterial rhodopsins. J. Biochem. 125: 649-657. 10101275
Müller, M., C. Bamann, E. Bamberg, and W. Kühlbrandt. (2011). Projection structure of channelrhodopsin-2 at 6 Å resolution by electron crystallography. J. Mol. Biol. 414: 86-95. 22001017
Müller, M., C. Bamann, E. Bamberg, and W. Kühlbrandt. (2015). Light-induced helix movements in channelrhodopsin-2. J. Mol. Biol. 427: 341-349. 25451024
Muroda, K., K. Nakashima, M. Shibata, M. Demura, and H. Kandori. (2012). Protein-bound water as the determinant of asymmetric functional conversion between light-driven proton and chloride pumps. Biochemistry 51: 4677-4684. 22583333
Nagasaka, Y., S. Hososhima, N. Kubo, T. Nagata, H. Kandori, K. Inoue, and H. Yawo. (2020). Gate-keeper of ion transport-a highly conserved helix-3 tryptophan in a channelrhodopsin chimera, C1C2/ChRWR. Biophys Physicobiol 17: 59-70. 33173715
Nagel, G., D. Ollig, M. Fuhrmann, S. Kateriya, A.M. Musti, E. Bamberg, and P. Hegemann. (2002). Channelrhodopsin-1: A light-gated proton channel in green algae. Science 296: 2395-2397. 12089443
Nagel, G., T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold, D. Ollig, P. Hegemann, and E. Bamberg. (2003). Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA 100: 13940-13945. 14615590
Nango, E., A. Royant, M. Kubo, T. Nakane, C. Wickstrand, T. Kimura, T. Tanaka, K. Tono, C. Song, R. Tanaka, T. Arima, A. Yamashita, J. Kobayashi, T. Hosaka, E. Mizohata, P. Nogly, M. Sugahara, D. Nam, T. Nomura, T. Shimamura, D. Im, T. Fujiwara, Y. Yamanaka, B. Jeon, T. Nishizawa, K. Oda, M. Fukuda, R. Andersson, P. Båth, R. Dods, J. Davidsson, S. Matsuoka, S. Kawatake, M. Murata, O. Nureki, S. Owada, T. Kameshima, T. Hatsui, Y. Joti, G. Schertler, M. Yabashi, A.N. Bondar, J. Standfuss, R. Neutze, and S. Iwata. (2016). A three-dimensional movie of structural changes in bacteriorhodopsin. Science 354: 1552-1557. 28008064
Nogly, P., T. Weinert, D. James, S. Carbajo, D. Ozerov, A. Furrer, D. Gashi, V. Borin, P. Skopintsev, K. Jaeger, K. Nass, P. Båth, R. Bosman, J. Koglin, M. Seaberg, T. Lane, D. Kekilli, S. Brünle, T. Tanaka, W. Wu, C. Milne, T. White, A. Barty, U. Weierstall, V. Panneels, E. Nango, S. Iwata, M. Hunter, I. Schapiro, G. Schertler, R. Neutze, and J. Standfuss. (2018). Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser. Science 361:. 29903883
O''Brien, E.S., B. Fuglestad, H.J. Lessen, M.A. Stetz, D.W. Lin, B.S. Marques, K. Gupta, K.G. Fleming, and J.J. Wand. (2020). Membrane Proteins Have Distinct Fast Internal Motion and Residual Conformational Entropy. Angew Chem Int Ed Engl. [Epub: Ahead of Print] 32277554
Ochiai, S., Y. Ichikawa, S. Tomida, and Y. Furutani. (2023). Covalent Bond between the Lys-255 Residue and the Main Chain Is Responsible for Stable Retinal Chromophore Binding and Sodium-Pumping Activity of Rhodopsin 2. Biochemistry 62: 1849-1857. 37243673
Oesterhelt, D. (1998). The structure and mechanism of the family of retinal proteins from halophilic archaea. Curr. Opin. Struc. Biol. 8: 489-500. 9729742
Ohki, Y., T. Shinone, S. Inoko, M. Sudo, M. Demura, T. Kikukawa, and T. Tsukamoto. (2023). The preferential transport of NO by full-length Guillardia theta anion channelrhodopsin 1 is enhanced by its extended cytoplasmic domain. J. Biol. Chem. 105305. [Epub: Ahead of Print] 37778732
Okamoto, O.K. and J.W. Hastings. (2003). Genome-wide analysis of redox-regulated genes in a dinoflagellate. Gene 321: 73-81. 14636994
Oleinikov, V.A., D.O. Solovyeva, and S.Y. Zaitsev. (2020). Nanohybrid Structures Based on Plasmonic or Fluorescent Nanoparticles and Retinal-Containing Proteins. Biochemistry (Mosc) 85: S196-S212. 32087060
Palanco, M.E., N. Skovgaard, J.S. Hansen, K. Berg-Sørensen, and C. Hélix-Nielsen. (2017). Tuning biomimetic membrane barrier properties by hydrocarbon, cholesterol and polymeric additives. Bioinspir Biomim 13: 016005. 29019793
Petrovskaya, L.E., E.P. Lukashev, M.D. Mamedov, E.A. Kryukova, S.P. Balashov, D.A. Dolgikh, A.B. Rubin, M.P. Kirpichnikov, and S.A. Siletsky. (2023). Oriented Insertion of ESR-Containing Hybrid Proteins in Proteoliposomes. Int J Mol Sci 24:. 37108532
Ran, T., G. Ozorowski, Y. Gao, O.A. Sineshchekov, W. Wang, J.L. Spudich, and H. Luecke. (2013). Cross-protomer interaction with the photoactive site in oligomeric proteorhodopsin complexes. Acta Crystallogr D Biol Crystallogr 69: 1965-1980. 24100316
Regnacq, M. and H. Boucherie. (1993). Isolation and sequence of HSP30, a yeast heat-shock gene coding for a hydrophobic membrane protein. Curr. Genet. 23: 435-442. 8319300
Richards R. and Dempski RE. (2015). Cysteine Substitution and Labeling Provide Insight into Channelrhodopsin-2 Ion Conductance. Biochemistry. 54(37):5665-8. 26322955
Richards, R. and R.E. Dempski. (2017). Adjacent channelrhodopsin-2 residues within transmembranes 2 and 7 regulate cation selectivity and distribution of the two open states. J. Biol. Chem. [Epub: Ahead of Print] 28302720
Royant, A., K. Edman, T. Ursby, E. Pebay-Peyroula, E.M. Landau, and R. Neutze. (2000). Helix deformation is coupled to vectorial proton transport in the photocycle of bacteriorhodopsin. Nature 406: 645-648. 10949307
Royant, A., P. Nollert, K. Edman, R. Neutze, E.M. Landau, E. Pebay-Peyroula, and J. Navarro. (2001). X-ray structure of sensory rhodopsin II at 2.1-Å resolution. Proc. Natl. Acad. Sci. USA 98: 10131-10136. 11504917
Ruffert, K., B. Himmel, D. Lall, C. Bamann, E. Bamberg, H. Betz, and V. Eulenburg. (2011). Glutamate residue 90 in the predicted transmembrane domain 2 is crucial for cation flux through channelrhodopsin 2. Biochem. Biophys. Res. Commun. 410: 737-743. 21683688
Saint Clair, E.C., J.I. Ogren, S. Mamaev, D. Russano, J.M. Kralj, and K.J. Rothschild. (2012). Near-IR resonance Raman spectroscopy of archaerhodopsin 3: effects of transmembrane potential. J Phys Chem B 116: 14592-14601. 23189985
Saitô, H., S. Yamaguchi, H. Okuda, A. Shiraishi, and S. Tuzi. (2004). Dynamic aspect of bacteriorhodopsin as a typical membrane protein as revealed by site-directed solid-state 13C NMR. Solid State Nucl Magn Reson 25: 5-14. 14698378
Saliminasab, M., Y. Yamazaki, A. Palmateer, A. Harris, L. Schubert, P. Langner, J. Heberle, A.N. Bondar, and L.S. Brown. (2023). A Proteorhodopsin-Related Photosensor Expands the Repertoire of Structural Motifs Employed by Sensory Rhodopsins. J Phys Chem B. [Epub: Ahead of Print] 37694950
Sasaki, T., N.W. Razak, N. Kato, and Y. Mukai. (2012). Characteristics of halorhodopsin-bacterioruberin complex from Natronomonas pharaonis membrane in the solubilized system. Biochemistry 51: 2785-2794. 22369627
Schobert, B., L.S. Brown, and J.K. Lanyi. (2003). Crystallographic structures of the M and N intermediates of bacteriorhodopsin: assembly of a hydrogen-bonded chain of water molecules between Asp-96 and the retinal Schiff base. J. Mol. Biol. 330: 553-570. 12842471
Schreiner, M., R. Schlesinger, J. Heberle, and H.H. Niemann. (2016). Crystal structure of Halobacterium salinarum halorhodopsin with a partially depopulated primary chloride-binding site. Acta Crystallogr F Struct Biol Commun 72: 692-699. 27599860
Selvaraj, M.K., A. Thakur, M. Kumar, A.K. Pinnaka, C.R. Suri, B. Siddhardha, and S.P. Elumalai. (2023). Ion-pumping microbial rhodopsin protein classification by machine learning approach. BMC Bioinformatics 24: 29. 36707759
Shalaeva, D.N., M.Y. Galperin, and A.Y. Mulkidjanian. (2015). Eukaryotic G protein-coupled receptors as descendants of prokaryotic sodium-translocating rhodopsins. Biol Direct 10: 63. 26472483
Sharma, A.K., J.L. Spudich, and W.F. Doolittle. (2006). Microbial rhodopsins: functional versatility and genetic mobility. Trends Microbiol. 14: 463-469. 17008099
Shevchenko, V., I. Gushchin, V. Polovinkin, E. Round, V. Borshchevskiy, P. Utrobin, A. Popov, T. Balandin, G. Büldt, and V. Gordeliy. (2014). Crystal structure of Escherichia coli-expressed Haloarcula marismortui bacteriorhodopsin I in the trimeric form. PLoS One 9: e112873. 25479443
Shi, L., M.A. Ahmed, W. Zhang, G. Whited, L.S. Brown, and V. Ladizhansky. (2009). Three-dimensional solid-state NMR study of a seven-helical integral membrane proton pump--structural insights. J. Mol. Biol. 386: 1078-1093. 19244620
Shim, J.G., K. Chuon, J.H. Kim, S.J. Lee, M.C. Song, S.G. Cho, C. Hour, and K.H. Jung. (2024). Proton-pumping photoreceptor controls expression of ABC transporter by regulating transcription factor through light. Commun Biol 7: 789. 38951607
Shionoya, T., M. Singh, M. Mizuno, H. Kandori, and Y. Mizutani. (2021). Strongly Hydrogen-Bonded Schiff Base and Adjoining Polyene Twisting in the Retinal Chromophore of Schizorhodopsins. Biochemistry 60: 3050-3057. 34601881
Shlykov, M.A., W.H. Zheng, J.S. Chen, and M.H. Saier, Jr. (2012). Bioinformatic characterization of the 4-Toluene Sulfonate Uptake Permease (TSUP) family of transmembrane proteins. Biochim. Biophys. Acta. 1818: 703-717. 22192777
Siletsky, S.A., M.D. Mamedov, E.P. Lukashev, S.P. Balashov, D.A. Dolgikh, A.B. Rubin, M.P. Kirpichnikov, and L.E. Petrovskaya. (2016). Electrogenic steps of light-driven proton transport in ESR, a retinal protein from Exiguobacterium sibiricum. Biochim. Biophys. Acta. 1857: 1741-1750. 27528561
Silverstein, T.P. (2023). Lee''s transient protonic capacitor cannot explain the surface proton current observed in bacteriorhodopsin purple membranes. Biophys Chem 301: 107096. 37604049
Sineshchekov, O.A., E.G. Govorunova, H. Li, Y. Wang, and J.L. Spudich. (2023). Channel Gating in Kalium Channelrhodopsin Slow Mutants. J. Mol. Biol. 168298. [Epub: Ahead of Print] 37802216
Sineshchekov, O.A., Trivedi, V.D., Sasaki, J., and J.L. Spudich. (2005). Photochromicity of Anabaena sensory rhodopsin, an atypical microbial receptor with a cis-retinal light-adapted form. J. Biol. Chem. 280: 14663-14668. 15710603
Soto-Rodríguez, J. and F. Baneyx. (2018). Role of the Signal Sequence in Proteorhodopsin Biogenesis in E. coli. Biotechnol Bioeng. [Epub: Ahead of Print] 30475397
Spudich, J.L. (1998). Variations on a molecular switch: transport and sensory signalling by archaeal rhodopsins. Mol. Microbiol. 28: 1051-1058. 9680197
Spudich, J.L. (2006). The multitalented microbial sensory rhodopsins. Trends Microbiol. 14: 480-487. 17005405
Sudo, Y., K. Ihara, S. Kobayashi, D. Suzuki, H. Irieda, T. Kikukawa, H. Kandori, and M. Homma. (2011). A microbial rhodopsin with a unique retinal composition shows both sensory rhodopsin II and bacteriorhodopsin-like properties. J. Biol. Chem. 286: 5967-5976. 21135094
Suomivuori, C.M., A.P. Gamiz-Hernandez, D. Sundholm, and V.R.I. Kaila. (2017). Energetics and dynamics of a light-driven sodium-pumping rhodopsin. Proc. Natl. Acad. Sci. USA. [Epub: Ahead of Print] 28611220
Takabatake, A., N. Kawazoe, and S. Izawa. (2015). Plasma membrane proteins Yro2 and Mrh1 are required for acetic acid tolerance in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 99: 2805-2814. 25503505
Takeda, K., Y. Matsui, N. Kamiya, S. Adachi, H. Okumura, and T. Kouyama. (2004). Crystal structure of the M intermediate of bacteriorhodopsin: allosteric structural changes mediated by sliding movement of a transmembrane helix. J. Mol. Biol. 341: 1023-1037. 15328615
Tamogami, J. (2023). [A Study on Mechanisms Underlying Proton Transport in Proton Pump-type Microbial Rhodopsins]. Yakugaku Zasshi 143: 111-118. 36724923
Taniguchi, Y., T. Ikehara, N. Kamo, H. Yamasaki, and Y. Toyoshima. (2007). Dynamics of light-induced conformational changes of the phoborhodopsin/transducer complex formed in the n-dodecyl β-D-maltoside micelle. Biochemistry 46: 5349-5357. 17432830
Tanimoto S., Sugiyama Y., Takahashi T., Ishizuka T. and Yawo H. (2013). Involvement of glutamate 97 in ion influx through photo-activated channelrhodopsin-2. Neurosci Res. 75(1):13-22. 22664343
Tashiro, R., K. Sushmita, S. Hososhima, S. Sharma, S. Kateriya, H. Kandori, and S.P. Tsunoda. (2021). Specific residues in the cytoplasmic domain modulate photocurrent kinetics of channelrhodopsin from Klebsormidium nitens. Commun Biol 4: 235. 33623126
Tian, Y., S. Gao, and G. Nagel. (2022). In Vivo and In Vitro Characterization of Cyclase and Phosphodiesterase Rhodopsins. Methods Mol Biol 2501: 325-338. 35857236
Tomita, H., E. Sugano, N. Murayama, T. Ozaki, F. Nishiyama, K. Tabata, M. Takahashi, T. Saito, and M. Tamai. (2014). Restoration of the majority of the visual spectrum by using modified Volvox channelrhodopsin-1. Mol Ther 22: 1434-1440. 24821344
Tsukamoto, T., K. Mizutani, T. Hasegawa, M. Takahashi, N. Honda, N. Hashimoto, K. Shimono, K. Yamashita, M. Yamamoto, S. Miyauchi, S. Takagi, S. Hayashi, T. Murata, and Y. Sudo. (2016). X-ray Crystallographic Structure of Thermophilic Rhodopsin: IMPLICATIONS FOR HIGH THERMAL STABILITY AND OPTOGENETIC FUNCTION. J. Biol. Chem. 291: 12223-12232. 27129243
Tsunoda, S.P., D. Ewers, S. Gazzarrini, A. Moroni, D. Gradmann, and P. Hegemann. (2006). H+ -pumping rhodopsin from the marine alga Acetabularia. Biophys. J. 91: 1471-1479. 16731558
Umegawa, Y., S. Kawatake, M. Murata, and S. Matsuoka. (2023). Combined effect of the head groups and alkyl chains of archaea lipids when interacting with bacteriorhodopsin. Biophys Chem 294: 106959. 36709544
Urui, T., K. Hayashi, M. Mizuno, K. Inoue, H. Kandori, and Y. Mizutani. (2024). - Reisomerization Preceding Reprotonation of the Retinal Chromophore Is Common to the Schizorhodopsin Family: A Simple and Rational Mechanism for Inward Proton Pumping. J Phys Chem B 128: 744-754. 38204413
Verchère, A., W.L. Ou, B. Ploier, T. Morizumi, M.A. Goren, P. Bütikofer, O.P. Ernst, G. Khelashvili, and A.K. Menon. (2017). Light-independent phospholipid scramblase activity of bacteriorhodopsin from Halobacterium salinarum. Sci Rep 7: 9522. 28842688
Vogeley, L., O.A. Sineshchekov, V.D. Trivedi, J. Sasaki, J.L. Spudich, and H. Luecke. (2004). Anabaena sensory rhodopsin: a photochromic color sensor at 2.0 Å. Science 306: 1390-1393. 15459346
Volkov, O., K. Kovalev, V. Polovinkin, V. Borshchevskiy, C. Bamann, R. Astashkin, E. Marin, A. Popov, T. Balandin, D. Willbold, G. Büldt, E. Bamberg, and V. Gordeliy. (2017). Structural insights into ion conduction by channelrhodopsin 2. Science 358:. 29170206
Volz, P., N. Krause, J. Balke, C. Schneider, M. Walter, F. Schneider, R. Schlesinger, and U. Alexiev. (2016). Light and pH-induced changes in structure and accessibility of transmembrane helix B and its immediate environment in Channelrhodopsin-2. J. Biol. Chem. [Epub: Ahead of Print] 27268055
Ward, M.E., L. Shi, E. Lake, S. Krishnamurthy, H. Hutchins, L.S. Brown, and V. Ladizhansky. (2011). Proton-detected solid-state NMR reveals intramembrane polar networks in a seven-helical transmembrane protein proteorhodopsin. J. Am. Chem. Soc. 133: 17434-17443. 21919530
Waschuk, S.A., A.G. Bezerra, Jr., L. Shi, and L.S. Brown. (2005). Leptosphaeria rhodopsin: bacteriorhodopsin-like proton pump from a eukaryote. Proc. Natl. Acad. Sci. USA 102: 6879-6883. 15860584
Watanabe, S., T. Ishizuka, S. Hososhima, A. Zamani, M.R. Hoque, and H. Yawo. (2016). The regulatory mechanism of ion permeation through a channelrhodopsin derived from Mesostigma viride (MvChR1). Photochem Photobiol Sci 15: 365-374. 26853505
Watanabe, Y., E. Sugano, K. Tabata, A. Hatakeyama, T. Sakajiri, T. Fukuda, T. Ozaki, T. Suzuki, T. Sayama, and H. Tomita. (2021). Development of an optogenetic gene sensitive to daylight and its implications in vision restoration. NPJ Regen Med 6: 64. 34650094
Weinert, T., P. Skopintsev, D. James, F. Dworkowski, E. Panepucci, D. Kekilli, A. Furrer, S. Brünle, S. Mous, D. Ozerov, P. Nogly, M. Wang, and J. Standfuss. (2019). Proton uptake mechanism in bacteriorhodopsin captured by serial synchrotron crystallography. Science 365: 61-65. 31273117
Wietek, J., J.S. Wiegert, N. Adeishvili, F. Schneider, H. Watanabe, S.P. Tsunoda, A. Vogt, M. Elstner, T.G. Oertner, and P. Hegemann. (2014). Conversion of channelrhodopsin into a light-gated chloride channel. Science 344: 409-412. 24674867
Wu, K., J.H. Dawe, and J.P. Aris. (2000). Expression and subcellular localization of a membrane protein related to Hsp30p in Saccharomyces cerevisiae. Biochim. Biophys. Acta. 1463: 477-482. 10675524
Yang, J., L. Zu, G. Li, C. Zhang, Z. Ge, W. Wang, X. Wang, B. Liu, N. Xi, and L. Liu. (2023). Upconversion optogenetics-driven biohybrid sensor for infrared sensing and imaging. Acta Biomater. [Epub: Ahead of Print] 36638940
Yang, Q. and D. Chen. (2023). Na Binding and Transport: Insights from Light-Driven Na-Pumping Rhodopsin. Molecules 28:. 37894614
Yang, T., W. Zhang, J. Cheng, Y. Nie, Q. Xin, S. Yuan, and Y. Dou. (2019). Formation Mechanism of Ion Channel in Channelrhodopsin-2: Molecular Dynamics Simulation and Steering Molecular Dynamics Simulations. Int J Mol Sci 20:. 31382458
Yasuda, S., T. Akiyama, K. Kojima, T. Ueta, T. Hayashi, S. Ogasawara, S. Nagatoishi, K. Tsumoto, N. Kunishima, Y. Sudo, M. Kinoshita, and T. Murata. (2022). Development of an Outward Proton Pumping Rhodopsin with a New Record in Thermostability by Means of Amino Acid Mutations. J Phys Chem B 126: 1004-1015. 35089040
Yee, D.C., M.A. Shlykov, A. Västermark, V.S. Reddy, S. Arora, E.I. Sun, and M.H. Saier, Jr. (2013). The transporter-opsin-G protein-coupled receptor (TOG) superfamily. FEBS J. 280: 5780-5800. 23981446
Yeh, V., T.Y. Lee, C.W. Chen, P.C. Kuo, J. Shiue, L.K. Chu, and T.Y. Yu. (2018). Highly Efficient Transfer of 7TM Membrane Protein from Native Membrane to Covalently Circularized Nanodisc. Sci Rep 8: 13501. 30201976
Yoshimura, K. and T. Kouyama. (2008). Structural role of bacterioruberin in the trimeric structure of archaerhodopsin-2. J. Mol. Biol. 375: 1267-1281. 18082767
Zabelskii, D., A. Alekseev, K. Kovalev, V. Rankovic, T. Balandin, D. Soloviov, D. Bratanov, E. Savelyeva, E. Podolyak, D. Volkov, S. Vaganova, R. Astashkin, I. Chizhov, N. Yutin, M. Rulev, A. Popov, A.S. Eria-Oliveira, T. Rokitskaya, T. Mager, Y. Antonenko, R. Rosselli, G. Armeev, K. Shaitan, M. Vivaudou, G. Büldt, A. Rogachev, F. Rodriguez-Valera, M. Kirpichnikov, T. Moser, A. Offenhäusser, D. Willbold, E. Koonin, E. Bamberg, and V. Gordeliy. (2020). Viral rhodopsins 1 are an unique family of light-gated cation channels. Nat Commun 11: 5707. 33177509
Zabelskii, D., N. Dmitrieva, O. Volkov, V. Shevchenko, K. Kovalev, T. Balandin, D. Soloviov, R. Astashkin, E. Zinovev, A. Alekseev, E. Round, V. Polovinkin, I. Chizhov, A. Rogachev, I. Okhrimenko, V. Borshchevskiy, V. Chupin, G. Büldt, N. Yutin, E. Bamberg, E. Koonin, and V. Gordeliy. (2021). Structure-based insights into evolution of rhodopsins. Commun Biol 4: 821. 34193947
Zamani, A., S. Sakuragi, T. Ishizuka, and H. Yawo. (2017). Kinetic characteristics of chimeric channelrhodopsins implicate the molecular identity involved in desensitization. Biophys Physicobiol 14: 13-22. 28409086
Zhai, Y., W.H.M. Heijne, D.W. Smith, and M.H. Saier, Jr. (2001). Homologues of archaeal rhodopsins in plants, animals and fungi: structural and functional predications for a putative fungal chaperone protein. Biochim. Biophys. Acta 1511: 206-223. 11286964
Zhang, W., A. Brooun, M.M. Mueller, and M. Alam. (1996). The primary structures of the Archaeon Halobacterium salinarium blue light receptor sensory rhodopsin II and its transducer, a methyl-accepting protein. Proc. Natl. Acad. Sci. USA 93: 8230-8235. 8710852
Zhang, W., T. Yang, S. Zhou, J. Cheng, S. Yuan, G.V. Lo, and Y. Dou. (2019). Molecular Dynamics Simulation of Transmembrane Transport of Chloride Ions in Mutants of Channelrhodopsin. Biomolecules 9:. 31835536
Zhang, X.-N., J. Zhu, and J.L. Spudich. (1999). The specificity of interaction of achaeal transducers with their cognate sensory rhodopsins is determined by their transmembrane helices. Proc. Natl. Acad. Sci. USA 96: 857-862. 9927658
Zhong, Y.R., T.Y. Yu, and L.K. Chu. (2022). Roles of functional lipids in bacteriorhodopsin photocycle in various delipidated purple membranes. Biophys. J. 121: 1789-1798. 35440419