TCDB is operated by the Saier Lab Bioinformatics Group

8.A.104.  The 5'-AMP-activated protein kinase (AMPK) Family 

This family includes the catalytic subunits of AMP-activated protein kinases (AMPK), energy sensor protein kinases that play key roles in regulating cellular energy metabolism.  Some of these proteins include an N-terminal PKc-like superfamily domain and a C-terminal AMPKA_C-like domain, but other members have only the N-terminal PKc domain.  In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes in mammals (Egan et al. 2011). It acts as a key regulator of glucose homeostasis in liver by phosphorylating CRTC2/TORC2, leading to CRTC2/TORC2 sequestration in the cytoplasm (McGee et al. 2008). It also phosphorylates CFTR, EEF2K, KLC1, NOS3 and SLC12A1 (Hallows et al. 2003).  It plays a role in the differential regulation of pro-autophagy (composed of PIK3C3, BECN1, PIK3R4 and UVRAG or ATG14) and non-autophagy (composed of PIK3C3, BECN1 and PIK3R4) complexes in response to glucose starvation, and can inhibit the non-autophagy complex by phosphorylating PIK3C3 while activating the pro-autophagy complex by phosphorylating BECN1.

A review summarizes the role of AMPK in the regulation of renal epithelial transport, updates the growing list of AMPK transport protein targets and discusses the regulatory mechanisms involved (Pastor-Soler and Hallows 2012). It couples membrane transport to the metabolic status of epithelial tissues like the kidney. AMPK is also involved in the coordination of hormonal, inflammatory, and other cellular stress pathway signals to produce an integrated effect on tubular transport (Pastor-Soler and Hallows 2012).  Mackenzie and Elliott 2014 review the roll of AMPK in glucose uptake and focus on a mechanism that operates via an insulin-dependent pathway.

This family belongs to the: Protein Kinase (PK) Superfamily.

References associated with 8.A.104 family:

Ali, M.M., T. Bagratuni, E.L. Davenport, P.R. Nowak, M.C. Silva-Santisteban, A. Hardcastle, C. McAndrews, M.G. Rowlands, G.J. Morgan, W. Aherne, I. Collins, F.E. Davies, and L.H. Pearl. (2011). Structure of the Ire1 autophosphorylation complex and implications for the unfolded protein response. EMBO. J. 30: 894-905. 21317875
Bae, D., K.A. Moore, J.M. Mella, S.Y. Hayashi, and J. Hollien. (2019). Degradation of mRNA by IRE1 repositions lysosomes and protects cells from stress. J. Cell Biol. 218: 1118-1127. 30787040
Egan, D.F., D.B. Shackelford, M.M. Mihaylova, S. Gelino, R.A. Kohnz, W. Mair, D.S. Vasquez, A. Joshi, D.M. Gwinn, R. Taylor, J.M. Asara, J. Fitzpatrick, A. Dillin, B. Viollet, M. Kundu, M. Hansen, and R.J. Shaw. (2011). Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331: 456-461. 21205641
Enomoto, A., H. Murakami, N. Asai, N. Morone, T. Watanabe, K. Kawai, Y. Murakumo, J. Usukura, K. Kaibuchi, and M. Takahashi. (2005). Akt/PKB regulates actin organization and cell motility via Girdin/APE. Dev Cell 9: 389-402. 16139227
Gonsalez, S.R., D.S. Gomes, A.M. de Souza, F.M. Ferrão, Z. Vallotton, V.R. Gogulamudi, J. Lowe, D.E. Casarini, M.C. Prieto, and L.S. Lara. (2023). The Triad Na Activated Na Channel (Nax)-Salt Inducible KINASE (SIK) and (Na + K)-ATPase: Targeting the Villains to Treat Salt Resistant and Sensitive Hypertension. Int J Mol Sci 24:. 37175599
Hallows, K.R., G.P. Kobinger, J.M. Wilson, L.A. Witters, and J.K. Foskett. (2003). Physiological modulation of CFTR activity by AMP-activated protein kinase in polarized T84 cells. Am. J. Physiol. Cell Physiol. 284: C1297-1308. 12519745
Jensen, B.C., P. Vaney, J. Flaspohler, I. Coppens, and M. Parsons. (2021). Unusual features and localization of the membrane kinome of Trypanosoma brucei. PLoS One 16: e0258814. 34653230
Kane, S., H. Sano, S.C. Liu, J.M. Asara, W.S. Lane, C.C. Garner, and G.E. Lienhard. (2002). A method to identify serine kinase substrates. Akt phosphorylates a novel adipocyte protein with a Rab GTPase-activating protein (GAP) domain. J. Biol. Chem. 277: 22115-22118. 11994271
Ko, W., S.R. Jung, K.W. Kim, J.H. Yeon, C.G. Park, J.H. Nam, B. Hille, and B.C. Suh. (2020). Allosteric modulation of alternatively spliced Ca-activated Cl channels TMEM16A by PI(4,5)P and CaMKII. Proc. Natl. Acad. Sci. USA 117: 30787-30798. 33199590
Lee, E.E., J. Ma, A. Sacharidou, W. Mi, V.K. Salato, N. Nguyen, Y. Jiang, J.M. Pascual, P.E. North, P.W. Shaul, M. Mettlen, and R.C. Wang. (2015). A Protein Kinase C Phosphorylation Motif in GLUT1 Affects Glucose Transport and is Mutated in GLUT1 Deficiency Syndrome. Mol. Cell 58: 845-853. 25982116
Lopez-Escamez, J.A., A. Batuecas-Caletrio, and A. Bisdorff. (2018). Towards personalized medicine in Ménière''s disease. F1000Res 7:. 30430003
Mackenzie, R.W. and B.T. Elliott. (2014). Akt/PKB activation and insulin signaling: a novel insulin signaling pathway in the treatment of type 2 diabetes. Diabetes Metab Syndr Obes 7: 55-64. 24611020
Makgoo, L., S. Mosebi, and Z. Mbita. (2023). The Role of Death-Associated Protein Kinase-1 in Cell Homeostasis-Related Processes. Genes (Basel) 14:. 37372454
McGee, S.L., B.J. van Denderen, K.F. Howlett, J. Mollica, J.D. Schertzer, B.E. Kemp, and M. Hargreaves. (2008). AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Diabetes 57: 860-867. 18184930
Pastor-Soler, N.M. and K.R. Hallows. (2012). AMP-activated protein kinase regulation of kidney tubular transport. Curr Opin Nephrol Hypertens 21: 523-533. 22801443
Proietti Onori, M., B. Koopal, D.B. Everman, J.D. Worthington, J.R. Jones, M.A. Ploeg, E. Mientjes, B.W. van Bon, T. Kleefstra, H. Schulman, S.A. Kushner, S. Küry, Y. Elgersma, and G.M. van Woerden. (2018). The intellectual disability-associated CAMK2G p.Arg292Pro mutation acts as a pathogenic gain-of-function. Hum Mutat 39: 2008-2024. 30184290
Rose, A.J., B. Kiens, and E.A. Richter. (2006). Ca2+-calmodulin-dependent protein kinase expression and signalling in skeletal muscle during exercise. J. Physiol. 574: 889-903. 16690701
Stephenson, J.R., X. Wang, T.L. Perfitt, W.P. Parrish, B.C. Shonesy, C.R. Marks, D.P. Mortlock, T. Nakagawa, J.S. Sutcliffe, and R.J. Colbran. (2017). A Novel Human Mutation Disrupts Dendritic Morphology and Synaptic Transmission, and Causes ASD-Related Behaviors. J. Neurosci. 37: 2216-2233. 28130356
Takagi, S., T. Onishi, T. Takashima, K. Shibahara, and M. Mori. (2023). Acquired AKT-inhibitor Resistance Is Mediated by ATP-binding Cassette Transporters in Endometrial Carcinoma. Anticancer Res 43: 2501-2507. 37247888
Tian, Y., X. Zheng, R. Li, L. Hu, X. Shui, L. Wang, D. Chen, T.H. Lee, and T. Zhang. (2023). Quantitative Proteomic and Phosphoproteomic Analyses Reveal a Role of Death-Associated Protein Kinase 1 in Regulating Hippocampal Synapse. Mol Neurobiol. [Epub: Ahead of Print] 37775722
Tran, N.H., S.D. Carter, A. De Mazière, A. Ashkenazi, J. Klumperman, P. Walter, and G.J. Jensen. (2021). The stress-sensing domain of activated IRE1α forms helical filaments in narrow ER membrane tubes. Science 374: 52-57. 34591618
Yoshida, H., T. Matsui, A. Yamamoto, T. Okada, and K. Mori. (2001). XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107: 881-891. 11779464