TCDB is operated by the Saier Lab Bioinformatics Group

8.A.47 The Neuropilin and Tolloid-like (Neto) Family 

Kainate receptors are a family of ionotropic glutamate receptors whose physiological roles differ from those of other subtypes of glutamate receptors in that they predominantly serve as modulators, rather than mediators, of synaptic transmission (Copits and Swanson 2012). Neuronal kainate receptors exhibit unusually slow kinetic properties that have been difficult to reconcile with the behaviour of recombinant kainate receptors. However, the neuropilin and tolloid-like 1 (NETO1) and NETO2 proteins are auxiliary kainate receptor subunits that shape both the biophysical properties and synaptic localization of these receptors (Howe 2014). Several members of this family are large (700 - 900 aas; ~ twice as large as the monodomain proteins), and they contain at least two domains, an N-terminal domain belonging to TC family 8.A.47, and a fused domain belonging to TC family 8.A.154.  In view of this fact, it can be surmised that the members of these two families may function together.

Neto2 also interacts with the neuron-specific K+-Cl- cotransporter (KCC2) in the central nervous system (CNS). Efficient KCC2 transport is essential for setting the neuronal Cl- gradient, which is required for fast GABAergic inhibition. Neto2 is required to maintain the normal abundance of KCC2 in neurons, and increases KCC2 function by binding to the active oligomeric form of this cotransporter (Mahadevan et al. 2015). The amino-terminal domains of GluK1 and GluK2 control the strikingly different trafficking properties between these two receptors and are critical for synaptic expression of heteromeric receptors at mossy fiber-CA3 synapses. They also mediate the differential dependence on Neto proteins for surface and synaptic trafficking of GluK1 and GluK2 (Sheng et al. 2017) and regulate interneuronal somatodendritic and presynaptic kainate receptors to control network inhibition (Wyeth et al. 2017).

Kainate receptor heteromerization with the auxiliary subunits, Neto1 and Neto2, attenuate polyamine ion-channel block by facilitating polyamine permeation (Brown et al. 2016). Relief of polyamine block in GluK2/GluK5 heteromers results from a key proline residue that produces architectural changes in the channel pore α-helical region. The neto auxiliary subunits exert an additive effect to heteromerization, and thus relieve the polyamine block.


References associated with 8.A.47 family:

Bosseboeuf, E., A. Chikh, A.B. Chaker, T.P. Mitchell, D. Vignaraja, R. Rajendrakumar, R.S. Khambata, T.D. Nightingale, J.C. Mason, A.M. Randi, A. Ahluwalia, and C. Raimondi. (2023). Neuropilin-1 interacts with VE-cadherin and TGFBR2 to stabilize adherens junctions and prevent activation of endothelium under flow. Sci Signal 16: eabo4863. 37220183
Brown, P.M., M.R. Aurousseau, M. Musgaard, P.C. Biggin, and D. Bowie. (2016). Kainate receptor pore-forming and auxiliary subunits regulate channel block by a novel mechanism. J. Physiol. 594: 1821-1840. 26682513
Copits, B.A. and G.T. Swanson. (2012). Dancing partners at the synapse: auxiliary subunits that shape kainate receptor function. Nat Rev Neurosci 13: 675-686. 22948074
Dutta, S., N.S. Polavaram, R. Islam, S. Bhattacharya, S. Bodas, T. Mayr, S. Roy, S.A.Y. Albala, M.I. Toma, A. Darehshouri, A. Borkowetz, S. Conrad, S. Fuessel, M. Wirth, G.B. Baretton, L.C. Hofbauer, P. Ghosh, K.J. Pienta, D.L. Klinkebiel, S.K. Batra, M.H. Muders, and K. Datta. (2022). Neuropilin-2 regulates androgen-receptor transcriptional activity in advanced prostate cancer. Oncogene. [Epub: Ahead of Print] 35754042
Gomez, K., P. Duran, R. Tonello, H.N. Allen, L. Boinon, A. Calderon-Rivera, S. Loya-López, T.S. Nelson, D. Ran, A. Moutal, N.W. Bunnett, and R. Khanna. (2023). Neuropilin-1 is essential for vascular endothelial growth factor A-mediated increase of sensory neuron activity and development of pain-like behaviors. Pain. [Epub: Ahead of Print] 37366599
He, L., J. Sun, Y. Gao, B. Li, Y. Wang, Y. Dong, W. An, H. Li, B. Yang, Y. Ge, X.C. Zhang, Y.S. Shi, and Y. Zhao. (2021). Kainate receptor modulation by NETO2. Nature 599: 325-329. 34552241
Hou, L. and Y. Du. (2023). Neuropilin 1 Promotes Unilateral Ureteral Obstruction-Induced Renal Fibrosis via RACK1 in Renal Tubular Epithelial Cells. Am. J. Physiol. Renal Physiol. [Epub: Ahead of Print] 37823194
Howe, J.R. (2014). Modulation of non-NMDA receptor gating by auxiliary subunits. J. Physiol. [Epub: Ahead of Print] 25172949
Issitt, T., E. Bosseboeuf, N. De Winter, N. Dufton, G. Gestri, V. Senatore, A. Chikh, A.M. Randi, and C. Raimondi. (2019). Neuropilin-1 Controls Endothelial Homeostasis by Regulating Mitochondrial Function and Iron-Dependent Oxidative Stress. iScience 11: 205-223. 30623799
Kong, W., M. Montano, M.J. Corley, E. Helmy, H. Kobayashi, M. Kinisu, R. Suryawanshi, X. Luo, L.A. Royer, N.R. Roan, M. Ott, L.C. Ndhlovu, and W.C. Greene. (2022). Neuropilin-1 Mediates SARS-CoV-2 Infection of Astrocytes in Brain Organoids, Inducing Inflammation Leading to Dysfunction and Death of Neuron.s. mBio e0230822. [Epub: Ahead of Print] 36314791
Li, Y.J., G.F. Duan, J.H. Sun, D. Wu, C. Ye, Y.Y. Zang, G.Q. Chen, Y.Y. Shi, J. Wang, W. Zhang, and Y.S. Shi. (2019). Neto proteins regulate gating of the kainate-type glutamate receptor GluK2 through two binding sites. J. Biol. Chem. 294: 17889-17902. 31628192
Mahadevan, V., Z. Dargaei, E.A. Ivakine, A.M. Hartmann, D. Ng, J. Chevrier, J. Ormond, H.G. Nothwang, R.R. McInnes, and M.A. Woodin. (2015). Neto2-null mice have impaired GABAergic inhibition and are susceptible to seizures. Front Cell Neurosci 9: 368. 26441539
Malik, J.R., A. Acharya, S.N. Avedissian, S.N. Byrareddy, C.V. Fletcher, A.T. Podany, and S.R. Dyavar. (2023). ACE-2, TMPRSS2, and Neuropilin-1 Receptor Expression on Human Brain Astrocytes and Pericytes and SARS-CoV-2 Infection Kinetics. Int J Mol Sci 24:. 37239978
Martinez-Martin, N., J. Marcandalli, C.S. Huang, C.P. Arthur, M. Perotti, M. Foglierini, H. Ho, A.M. Dosey, S. Shriver, J. Payandeh, A. Leitner, A. Lanzavecchia, L. Perez, and C. Ciferri. (2018). An Unbiased Screen for Human Cytomegalovirus Identifies Neuropilin-2 as a Central Viral Receptor. Cell 174: 1158-1171.e19. 30057110
McKay, J.P., D.M. Raizen, A. Gottschalk, W.R. Schafer, and L. Avery. (2004). eat-2 and eat-18 are required for nicotinic neurotransmission in the Caenorhabditis elegans pharynx. Genetics 166: 161-169. 15020415
Michishita, M., T. Ikeda, T. Nakashiba, M. Ogawa, K. Tashiro, T. Honjo, K. Doi, S. Itohara, and S. Endo. (2004). Expression of Btcl2, a novel member of Btcl gene family, during development of the central nervous system. Brain Res Dev Brain Res 153: 135-142. 15464227
Sheng, N., Y.S. Shi, and R.A. Nicoll. (2017). Amino-terminal domains of kainate receptors determine the differential dependence on Neto auxiliary subunits for trafficking. Proc. Natl. Acad. Sci. USA 114: 1159-1164. 28100490
Walker, C.S., M.M. Francis, P.J. Brockie, D.M. Madsen, Y. Zheng, and A.V. Maricq. (2006). Conserved SOL-1 proteins regulate ionotropic glutamate receptor desensitization. Proc. Natl. Acad. Sci. USA 103: 10787-10792. 16818875
Walker, C.S., P.J. Brockie, D.M. Madsen, M.M. Francis, Y. Zheng, S. Koduri, J.E. Mellem, N. Strutz-Seebohm, and A.V. Maricq. (2006). Reconstitution of invertebrate glutamate receptor function depends on stargazin-like proteins. Proc. Natl. Acad. Sci. USA 103: 10781-10786. 16818877
Wyeth, M.S., K.A. Pelkey, X. Yuan, G. Vargish, A.D. Johnston, S. Hunt, C. Fang, D. Abebe, V. Mahadevan, A. Fisahn, M.W. Salter, R.R. McInnes, R. Chittajallu, and C.J. McBain. (2017). Neto Auxiliary Subunits Regulate Interneuron Somatodendritic and Presynaptic Kainate Receptors to Control Network Inhibition. Cell Rep 20: 2156-2168. 28854365
Zheng, Y., J.E. Mellem, P.J. Brockie, D.M. Madsen, and A.V. Maricq. (2004). SOL-1 is a CUB-domain protein required for GLR-1 glutamate receptor function in C. elegans. Nature 427: 451-457. 14749834