1.D.35 The Pore-forming Cyclic Lipodepsipeptide (Lipodepsipeptide) Family

Several lipodepsipeptides consisiting of L- and D-amino acids form ion channels in artificial and biological membranes (Carpaneto et al. 2002; Szabó et al. 2004; Szabó et al. 2002; Agner et al. 2000; Dalla Serra et al. 1999; Hutchison and Gross 1997). These pore-forming phytotoxic, cyclic lipodepsipeptides include syringopeptin22A1, syringopeptin25A, syringomycin E, syringolin A, and syringotoxin, all synthesized by the phytopathogen, Pseudomonas syringae (Amrein et al. 2004; Bender et al. 1999). These toxic agents exhibit fungicidal, antibacterial and hemolytic activities (Szabó et al. 2002; Buber et al. 2002; Fogliano et al. 2002). They are all made by multimodular synthetases, and their biosynthesis, export and regulation have been studied (Kang and Gross 2005; Scholz-Schroeder et al. 2003). Related toxins include pseudophomins, fuscopeptins, corpeptins arthrofactin and ramoplanin (Balibar et al. 2005; Coraiola et al. 2008). Another cyclic lipodepsipeptide is phaeofungin, produced by the fungus, Phaeosphaeria sp. It consists of seven D- and L-amino acids and a β,γ-dihydroxy-γ-methylhexadecanoic acid arranged in a 25-membered cyclic depsipeptide (Singh et al. 2013). A related fungal lipodepsipeptide is phomafungin from Phoma sp. Many Pseudomonads, other bacteria and fungi synthesize these toxic agents (Scaloni et al. 2004; Miao et al. 2006). Syringopeptin 25A (SP25A) inserts into artificial membranes in two starges, the first stage is ascribed to large channels resulting from the aggregation of small ones, while the second more negative stage is associated with the small channels resulting from the disaggregation of the large ones (Becucci et al. 2016).


 

References:

Agner, G., Y.A. Kaulin, P.A. Gurnev, Z. Szabo, L.V. Schagina, J.Y. Takemoto, and K. Blasko. (2000). Membrane-permeabilizing activities of cyclic lipodepsipeptides, syringopeptin 22A and syringomycin E from Pseudomonas syringae pv. syringae in human red blood cells and in bilayer lipid membranes. Bioelectrochemistry 52: 161-167.

Amrein, H., S. Makart, J. Granado, R. Shakya, J. Schneider-Pokorny, and R. Dudler. (2004). Functional analysis of genes involved in the synthesis of syringolin A by Pseudomonas syringae pv. syringae B301 D-R. Mol. Plant Microbe Interact. 17: 90-97.

Balibar, C.J., F.H. Vaillancourt, and C.T. Walsh. (2005). Generation of D amino acid residues in assembly of arthrofactin by dual condensation/epimerization domains. Chem Biol 12: 1189-1200.

Becucci, L., A. Toppi, A. Fiore, A. Scaloni, and R. Guidelli. (2016). Channel-forming activity of syringopeptin 25A in mercury-supported phospholipid monolayers and negatively charged bilayers. Bioelectrochemistry 111: 131-142. [Epub: Ahead of Print]

Becucci, L., M. Rossi, A. Fiore, A. Scaloni, and R. Guidelli. (2016). Channel-forming activity of syringopeptin 25A in mercury-supported lipid bilayers with a phosphatidylcholine distal leaflet. Bioelectrochemistry 108: 28-35.

Bender, C.L., F. Alarcón-Chaidez, and D.C. Gross. (1999). Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol. Mol. Biol. Rev. 63: 266-292.

Buber, E., A. Stindl, N.L. Acan, T. Kocagoz, and R. Zocher. (2002). Antimycobacterial activity of lipodepsipeptides produced by Pseudomonas syringae pv syringae B359. Nat Prod Lett 16: 419-423.

Carpaneto, A., M. Dalla Serra, G. Menestrina, V. Fogliano, and F. Gambale. (2002). The phytotoxic lipodepsipeptide syringopeptin 25A from Pseudomonas syringae pv syringae forms ion channels in sugar beet vacuoles. J. Membr. Biol. 188: 237-248.

Coraiola, M., R. Paletti, A. Fiore, V. Fogliano, and M. Dalla Serra. (2008). Fuscopeptins, antimicrobial lipodepsipeptides from Pseudomonas fuscovaginae, are channel forming peptides active on biological and model membranes. J Pept Sci 14: 496-502.

Dalla Serra, M., I. Bernhart, P. Nordera, D. Di Giorgio, A. Ballio, and G. Menestrina. (1999). Conductive properties and gating of channels formed by syringopeptin 25A, a bioactive lipodepsipeptide from Pseudomonas syringae pv. syringae, in planar lipid membranes. Mol. Plant Microbe Interact. 12: 401-409.

Fogliano, V., A. Ballio, M. Gallo, S. Woo, F. Scala, and M. Lorito. (2002). Pseudomonas lipodepsipeptides and fungal cell wall-degrading enzymes act synergistically in biological control. Mol. Plant Microbe Interact. 15: 323-333.

Hutchison, M.L. and D.C. Gross. (1997). Lipopeptide phytotoxins produced by Pseudomonas syringae pv. syringae: comparison of the biosurfactant and ion channel-forming activities of syringopeptin and syringomycin. Mol. Plant Microbe Interact. 10: 347-354.

Kang, H. and D.C. Gross. (2005). Characterization of a resistance-nodulation-cell division transporter system associated with the syr-syp genomic island of Pseudomonas syringae pv. syringae. Appl. Environ. Microbiol. 71: 5056-5065.

Miao, V., R. Brost, J. Chapple, K. She, M.F. Gal, and R.H. Baltz. (2006). The lipopeptide antibiotic A54145 biosynthetic gene cluster from Streptomyces fradiae. J Ind Microbiol Biotechnol 33: 129-140.

Scaloni, A., M. Dalla Serra, P. Amodeo, L. Mannina, R.M. Vitale, A.L. Segre, O. Cruciani, F. Lodovichetti, M.L. Greco, A. Fiore, M. Gallo, C. D'Ambrosio, M. Coraiola, G. Menestrina, A. Graniti, and V. Fogliano. (2004). Structure, conformation and biological activity of a novel lipodepsipeptide from Pseudomonas corrugata: cormycin A. Biochem. J. 384: 25-36.

Scholz-Schroeder, B.K., J.D. Soule, and D.C. Gross. (2003). The sypA, sypS, and sypC synthetase genes encode twenty-two modules involved in the nonribosomal peptide synthesis of syringopeptin by Pseudomonas syringae pv. syringae B301D. Mol. Plant Microbe Interact. 16: 271-280.

Singh, S.B., J. Ondeyka, G. Harris, K. Herath, D. Zink, F. Vicente, G. Bills, J. Collado, G. Platas, A. González del Val, J. Martin, F. Reyes, H. Wang, J.N. Kahn, S. Galuska, R. Giacobbe, G. Abruzzo, T. Roemer, and D. Xu. (2013). Isolation, structure, and biological activity of Phaeofungin, a cyclic lipodepsipeptide from a Phaeosphaeria sp. Using the Genome-Wide Candida albicans Fitness Test. J Nat Prod 76: 334-345.

Szabó, Z., M. Budai, K. Blaskó, and P. Gróf. (2004). Molecular dynamics of the cyclic lipodepsipeptides' action on model membranes: effects of syringopeptin22A, syringomycin E, and syringotoxin studied by EPR technique. Biochim. Biophys. Acta. 1660: 118-130.

Szabó, Z., P. Gróf, L.V. Schagina, P.A. Gurnev, J.Y. Takemoto, E. Mátyus, and K. Blaskó. (2002). Syringotoxin pore formation and inactivation in human red blood cell and model bilayer lipid membranes. Biochim. Biophys. Acta. 1567: 143-149.