2.B.18 The Pyridine-2,6-Dicarboxamine Derivative (PDCA) Family

Gale 2011 discusses three classes of synthetic compounds that were modified to bind and transport anions across lipid bilayer membranes. All of these compounds were originally designed as anion receptors that form stable complexes with anions but were then further developed as transporters. By studying structurally simple systems and varying their properties to change the degree of preorganization, the affinity for anions, or the lipophilicity, they have rationalized why particular anion transport mechanisms (cotransport or antiport) occur in particular cases. For example, the chloride transport properties of receptors based on the closely related structures of isophthalamide and pyridine-2,6-dicarboxamide: the central ring in each case was augmented with pendant methylimidazole groups designed to cotransport H+ and Cl-. The more preorganized pyridine-based receptor was the more efficient transporter, a finding replicated with a series of isophthalamides in which one contained hydroxyl groups designed to preorganize the receptor. This latter class of compound, together with the natural product prodigiosin, can transport bicarbonate (as part of a chloride/bicarbonate antiport process) across lipid bilayer membranes. 

Gale 2011 also studied the membrane transport properties of calix[4]pyrroles. Although the parent meso-octamethylcalix[4]pyrrole functions solely as a Cs+/Cl- cotransporter, other compounds with increased anion affinities can function through an antiport process. One example is octafluoro-meso-octamethylcalix[4]pyrrole; with its electron-withdrawing substituents, it can operate by chloride/bicarbonate antiport. Moreover, calix[4]pyrroles with additional hydrogen bond donors can catalyze chloride/nitrate antiport. Thus, increasing the affinity of the receptor allows the compound to transport an anion in the absence of a cation.

Finally, they studied the transport properties of simple thioureas and showed that these compounds are highly potent chloride/bicarbonate antiport agents that function at low concentrations, although the urea analogues are inactive. The higher hydrophobicities and lower polar surface areas of the thiourea compounds compared to their urea analogues provide clues to the high potency of these compounds.



Gale, P.A. (2011). From anion receptors to transporters. Acc Chem Res 44: 216-226.