2.B.29 The Tambjamine Derivative Anion Channel (TD-AC) or
Anionophoric Marine Alkaloid Tambjamine (AMAT) Family
The
tambjamine alkaloids and related synthetic analogs are potent
transmembrane anion tranporters promoting bicarbonate/chloride exchange
in model phospholipid liposomes and discharging pH gradients in living
cells (Iglesias Hernández et al. 2012). Ten synthetic analogs of tambjamines, bearing
aromatic enamine moieties, have been synthesized (Hernando et al. 2014). These compounds proved
to be highly efficient transmembrane anion transporters in
liposomes. Changes in the electronic nature of the substituents of the
aromatic enamine or the alkoxy group of the central pyrrole group did
not affect this anionophore activity. These compounds trigger apoptosis in several
cancer cell lines with IC50 values in the low micromolar range. They also modify the intracellular pH, inducing the basification of acidic
organelles (Hernando et al. 2014).
Soto-Cerrato et al. 2015 used two potent anionophore analogues of tambjamines to study the effects induced
by these compounds at the cellular level. They showed that active
anionophores, capable of facilitating the transmembrane transport of
chloride and bicarbonate in model phospholipid liposomes, induce
acidification of the cytosol and hyperpolarization of plasma cell
membranes, the combined effects of which can be used against
cancer stem cells (Soto-Cerrato et al. 2015).
The transmembrane anion transport activity of a series of synthetic
molecules, based on the structure of tambjamine alkaloids, can be tuned
by varying the lipophilicity of the receptor, with carriers within a
certain log P value (n-octanol/water partition coefficient) range performing best (Saggiomo et al. 2012). These compounds transport Cl-, OH- and HCO3-, probably using an antiport mechanism; see Figure 10 in Gale et al. 2017 for the structures of effective derivatives.
Tambjamine-based anionophores 118 and 119.
Indole-tambjamine analogues 120 and 121.
|
References: |
Gale, P.A., J.T. Davis, and R. Quesada. (2017). Anion transport and supramolecular medicinal chemistry. Chem Soc Rev 46: 2497-2519.
|
Hernando, E., V. Soto-Cerrato, S. Cortés-Arroyo, R. Pérez-Tomás, and R. Quesada. (2014). Transmembrane anion transport and cytotoxicity of synthetic tambjamine analogs. Org Biomol Chem 12: 1771-1778.
|
Iglesias Hernández, P., D. Moreno, A.A. Javier, T. Torroba, R. Pérez-Tomás, and R. Quesada. (2012). Tambjamine alkaloids and related synthetic analogs: efficient transmembrane anion transporters. Chem Commun (Camb) 48: 1556-1558.
|
Saggiomo, V., S. Otto, I. Marques, V. Félix, T. Torroba, and R. Quesada. (2012). The role of lipophilicity in transmembrane anion transport. Chem Commun (Camb) 48: 5274-5276.
|
Soto-Cerrato, V., P. Manuel-Manresa, E. Hernando, S. Calabuig-Fariñas, A. Martínez-Romero, V. Fernández-Dueñas, K. Sahlholm, T. Knöpfel, M. García-Valverde, A.M. Rodilla, E. Jantus-Lewintre, R. Farràs, F. Ciruela, R. Pérez-Tomás, and R. Quesada. (2015). Facilitated Anion Transport Induces Hyperpolarization of the Cell Membrane That Triggers Differentiation and Cell Death in Cancer Stem Cells. J. Am. Chem. Soc. 137: 15892-15898.
|