8.A.96.  The TMEM70 (TMEM70) Family 

Patients with nuclear genetic defects of mitochondrial ATP synthase are characterized by early onset, lactic acidosis, 3-methylglutaconic aciduria, hypertrophic cardiomyopathy and encephalopathy, and most cases have a fatal outcome. Patient tissues show isolated defects of the ATP synthase complex, and its content decreases to ~ 30% of normal due to altered enzyme biosynthesis and assembly. A mutations in the TMEM70 gene encoding a 30kD mitochondrial protein is the cause of the disease. An altered synthesis of this factor in ATP synthase biogenesis was found in most of the known patients with decreased ATP synthase content (Houstek et al. 2009). TMEM70 is specific to higher eukaryotes.  Upregluation of respiratory complexes III and IV results from these mutations in TMEM70 (Havlíčková Karbanová et al. 2012).  Mitochondrial diseases with cardiomyopathies such as the ones caused by TMEM70 mutations have been reviewed (El-Hattab and Scaglia 2016). TMEM70 downregulation promotes the Warburg effect, which directs tumor progression,  hepatocarcinogenesis, in rats (Mizukami et al. 2017). TMEM70 facilitates biogenesis of mammalian ATP synthase by promoting subunit c incorporation into the rotor structure of the enzyme, and TMEM70 absence causes severe ATP-synthase deficiency and leads to a neonatal mitochondrial encephalocardiomyopathy in humans (Kovalčíková et al. 2019). The role of TMEM70 is thus to increase the low efficacy of spontaneous assembly of the subunit c oligomer, the rate-limiting step in ATP-synthase biogenesis. Thus, TMEM70 forms oligomeric scaffolds within mitochondrial cristae, promoting in situ assembly of mammalian ATP synthase proton channels (Bahri et al. 2020). TMEM70 and TMEM242 help to assemble the rotor ring of human ATP synthase and interact with assembly factors for complex I (Carroll et al. 2021).


 

References:

Bahri, H., J. Buratto, M. Rojo, J.P. Dompierre, B. Salin, C. Blancard, S. Cuvellier, M. Rose, A.B.A. Elgaaied, E. Tetaud, J.P. di Rago, A. Devin, and S. Duvezin-Caubet. (2020). TMEM70 forms oligomeric scaffolds within mitochondrial cristae promoting in situ assembly of mammalian ATP synthase proton channel. Biochim. Biophys. Acta. Mol. Cell Res 118942. [Epub: Ahead of Print]

Carroll, J., J. He, S. Ding, I.M. Fearnley, and J.E. Walker. (2021). TMEM70 and TMEM242 help to assemble the rotor ring of human ATP synthase and interact with assembly factors for complex I. Proc. Natl. Acad. Sci. USA 118:.

El-Hattab, A.W. and F. Scaglia. (2016). Mitochondrial Cardiomyopathies. Front Cardiovasc Med 3: 25.

Havlíčková Karbanová, V., A. Cížková Vrbacká, K. Hejzlarová, H. Nůsková, V. Stránecký, A. Potocká, S. Kmoch, and J. Houštěk. (2012). Compensatory upregulation of respiratory chain complexes III and IV in isolated deficiency of ATP synthase due to TMEM70 mutation. Biochim. Biophys. Acta. 1817: 1037-1043.

He, S., G. Tan, Q. Liu, K. Huang, J. Ren, X. Zhang, X. Yu, P. Huang, and C. An. (2011). The LSD1-interacting protein GILP is a LITAF domain protein that negatively regulates hypersensitive cell death in Arabidopsis. PLoS One 6: e18750.

Houstek, J., S. Kmoch, and J. Zeman. (2009). TMEM70 protein - a novel ancillary factor of mammalian ATP synthase. Biochim. Biophys. Acta. 1787: 529-532.

Kovalčíková, J., M. Vrbacký, P. Pecina, K. Tauchmannová, H. Nůsková, V. Kaplanová, A. Brázdová, L. Alán, J. Eliáš, K. Čunátová, V. Kořínek, R. Sedlacek, T. Mráček, and J. Houštěk. (2019). TMEM70 facilitates biogenesis of mammalian ATP synthase by promoting subunit c incorporation into the rotor structure of the enzyme. FASEB J. fj201900685RR. [Epub: Ahead of Print]

Mizukami, S., Y. Watanabe, K. Nakajima, Y. Hasegawa-Baba, M. Jin, T. Yoshida, and M. Shibutani. (2017). Downregulation of TMEM70 in Rat Liver Cells After Hepatocarcinogen Treatment Related to the Warburg Effect in Hepatocarcinogenesis Producing GST-P-Expressing Proliferative Lesions. Toxicol Sci 159: 211-223.

Examples:

TC#NameOrganismal TypeExample
8.A.96.1.1

Mitochondrial TMEM70 with 260 aas and 2 (or 3) TMSs.  Involved in F-type ATPase biogenesis in higher eukaryotes (Houstek et al. 2009). TMEM70 downregulation downregulated the mitochondrial ATPase, ATPB, but upregulated glycolysis-related glucose transporter member 1 (GLUT1) and glucose-6-phosphate dehydrogenase, suggesting a metabolic shift from oxidative phosphorylation to glycolysis, known as the Warburg effect (Mizukami et al. 2017).

TMEM70 in Homo sapiens

 
8.A.96.1.2

TMEM70 homologue of 240 aas and 2 TMSs.

TMEM70 of Anopheles gambiae (African malaria mosquito)

 
8.A.96.1.3

TMEM70 of 248 aas and 2 TMSs.

TMEM70 of Clonorchis sinensis (Chinese liver fluke)

 
8.A.96.1.4

TMEM70 homologue of 148 aas and 2 TMSs.

TMEM70 of Strongylocentrotus purpuratus (Purple sea urchin)

 
8.A.96.1.5

TMEM70 homologue of 260 aas and 2 TMSs.

TMEM70 of Oryza sativa (Rice)

 
8.A.96.1.6

TMEM70 homologue of 214 aas and 2 TMSs.

TMEM70 of Necator americanus (Human hookworm)

 
8.A.96.1.7

TMEM70 homologue of 256 aas and 2 TMSs.

TMEM70 homologue of Ciona intestinalis (Transparent sea squirt) (Ascidia intestinalis)

 
8.A.96.1.8

TMEM70 homologue of 286 aas and 2 TMSs.

TMEM70 of Acanthamoeba castellanii

 
Examples:

TC#NameOrganismal TypeExample
8.A.96.2.1

TMEM70 homologue of 130 aas and 2 TMSs.

TMEM70 of Streptomyces scabiei

 
8.A.96.2.2

TMEM70 homologue of 74 aas and 2 TMSs.

TMEM70 of Nocardiopsis dassonvillei (Actinomadura dassonvillei)

 
8.A.96.2.3

TMEM70 homologue of 68 aas and 2 TMSs.

TMEM70 homologue of Thermomonospora curvata

 
Examples:

TC#NameOrganismal TypeExample
8.A.96.3.1

DUF1499 domain-containing protein of 310 aas and 3 TMSs.

DUF1499 protein of Agrobacterium radiobacter

 
8.A.96.3.2

Uncharacterized protein of 282 aas and 3 TMSs.

UP of Brucella abortus