TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


3.D.4.3.2
Cytochrome bd quinol oxidoreductase, CydA/CydB. Borisov et al. (2011) have presented evidence concerning a proton channel connecting the site of oxygen reduction to the bacteria cytoplasm and the molecular mechanism by which a membrane potential is generated. The CydX protein of 37 aas and 1 TMS, is encoded in the cydAB operon and functions as a subunit of the Cytochrome bd oxidase complex, activating its activity (VanOrsdel et al. 2013). The AppX protein of 30 aas and 1 TMS, is a paralogue of CydX and can substitute for it in activating the Cytochrome bd oxidase complex (VanOrsdel et al. 2013).  Cytochrome bd-type quinol oxidases are structurally unrelated to mitochondrial cytochrome c oxidases. Safarian et al. 2019 determined the structure of the E. coli cytochrome bd-I oxidase by single-particle cryo-electron microscopy to a resolution of 2.7 angstroms. The structure contains a previously unknown accessory subunit CydH, the L-subfamily-specific Q-loop domain, a structural ubiquinone-8 cofactor, an active-site density interpreted as dioxygen, distinct water-filled proton channels, and an oxygen-conducting pathway. Comparison with another cytochrome bd oxidase revealed structural divergence in the family, including rearrangement of high-spin hemes and conformational adaption of a transmembrane helix to generate a distinct oxygen-binding site (Safarian et al. 2019). Subunit I of the cytochrome bd quinol oxidase from E. coli has nine transmembrane helices with the O2 reactive site near the periplasmic surface (Zhang et al. 2004). Two small proteins, YtkA (CtaK; 145 aas; P40768) and YczB (CtaM; 70 aas; O31467; TatAd) facilitate the biogenesis of cytochrome c oxidase in Bacillus subtilis (von Wachenfeldt et al. 2021). The latter protVanOrsdel et al. 2013). The AppX protein of 30 aas and 1 TMS, is a paralogue of CydX and can substitute for it in activating the Cytochrome bd oxidase complex (VanOrsdel et al. 2013).  Cytochrome bd-type quinol oxidases are structurally unrelated to mitochondrial cytochrome c oxidases. Safarian et al. 2019 determined the structure of the E. coli cytochrome bd-I oxidase by single-particle cryo-electron microscopy to a resolution of 2.7 angstroms. The structure contains a previously unknown accessory subunit CydH, the L-subfamily-specific Q-loop domain, a structural ubiquinone-8 cofactor, an active-site density interpreted as dioxygen, distinct water-filled proton channels, and an oxygen-conducting pathway. Comparison with another cytochrome bd oxidase revealed structural divergence in the family, including rearrangement of high-spin hemes and conformational adaption of a transmembrane helix to generate a distinct oxygen-binding site (Safarian et al. 2019). Subunit I of the cytochrome bd quinol oxidase from E. coli has nine transmembrane helices with the O2 reactive site near the periplasmic surface (Zhang et al. 2004). Two small proteins, YtkA (CtaK; 145 aas; P40768) and YczB (CtaM; 70 aas; O31467; TatAd) facilitate the biogenesis of cytochrome c oxidase in Bacillus subtilis (von Wachenfeldt et al. 2021). The latter protein may also function as a constituent of the Tat system (TC# 2.A.64.3.1).  

Accession Number:P0ABJ9
Protein Name:Cytochrome d ubiquinol oxidase subunit 1
Length:522
Molecular Weight:58205.00
Species:Escherichia coli (strain K12) [83333]
Number of TMSs:9
Location1 / Topology2 / Orientation3: Cell inner membrane1 / Multi-pass membrane protein2
Substrate

Cross database links:

DIP: DIP-36181N
Entrez Gene ID: 945341   
Pfam: PF01654   
KEGG: ecj:JW0722    eco:b0733   

Gene Ontology

GO:0016021 C:integral to membrane
GO:0005886 C:plasma membrane
GO:0009055 F:electron carrier activity
GO:0020037 F:heme binding
GO:0016679 F:oxidoreductase activity, acting on diphenols and related substances as donors
GO:0017004 P:cytochrome complex assembly
GO:0022900 P:electron transport chain
GO:0006810 P:transport

References (9)

[1] “The nucleotide sequence of the cyd locus encoding the two subunits of the cytochrome d terminal oxidase complex of Escherichia coli.”  Green G.N.et.al.   2843510
[2] “A 718-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 12.7-28.0 min region on the linkage map.”  Oshima T.et.al.   8905232
[3] “The complete genome sequence of Escherichia coli K-12.”  Blattner F.R.et.al.   9278503
[4] “Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110.”  Hayashi K.et.al.   16738553
[5] “Beta-galactosidase gene fusions as probes for the cytoplasmic regions of subunits I and II of the membrane-bound cytochrome d terminal oxidase from Escherichia coli.”  Georgiou C.D.et.al.   3138232
[6] “Analysis of the topology of the cytochrome d terminal oxidase complex of Escherichia coli by alkaline phosphatase fusions.”  Newton G.et.al.   1724280
[7] “Epitopes of monoclonal antibodies which inhibit ubiquinol oxidase activity of Escherichia coli cytochrome d complex localize functional domain.”  Dueweke T.J.et.al.   1689724
[8] “Protein complexes of the Escherichia coli cell envelope.”  Stenberg F.et.al.   16079137
[9] “Global topology analysis of the Escherichia coli inner membrane proteome.”  Daley D.O.et.al.   15919996
Structure:
6RKO   6RX4     

External Searches:

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MLDIVELSRL QFALTAMYHF LFVPLTLGMA FLLAIMETVY VLSGKQIYKD MTKFWGKLFG 
61:	INFALGVATG LTMEFQFGTN WSYYSHYVGD IFGAPLAIEG LMAFFLESTF VGLFFFGWDR 
121:	LGKVQHMCVT WLVALGSNLS ALWILVANGW MQNPIASDFN FETMRMEMVS FSELVLNPVA 
181:	QVKFVHTVAS GYVTGAMFIL GISAWYMLKG RDFAFAKRSF AIAASFGMAA VLSVIVLGDE 
241:	SGYEMGDVQK TKLAAIEAEW ETQPAPAAFT LFGIPDQEEE TNKFAIQIPY ALGIIATRSV 
301:	DTPVIGLKEL MVQHEERIRN GMKAYSLLEQ LRSGSTDQAV RDQFNSMKKD LGYGLLLKRY 
361:	TPNVADATEA QIQQATKDSI PRVAPLYFAF RIMVACGFLL LAIIALSFWS VIRNRIGEKK 
421:	WLLRAALYGI PLPWIAVEAG WFVAEYGRQP WAIGEVLPTA VANSSLTAGD LIFSMVLICG 
481:	LYTLFLVAEL FLMFKFARLG PSSLKTGRYH FEQSSTTTQP AR