TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


1.I.1.1.1
Nuclear Pore Complex (NPC) (Tran and Wente, 2006).  The structure of the NPC core (400kD) has been determined at 7.4 Å resolution revealing a curved Y-shaped architecture with the coat nucleoporin interactions forming the central ""triskeleton"".  32 copies of the coat neucloporin complex (CNC) structure dock into the cryoelectron tomographic reconstruction of the assembled human NPC, thus accounting for ~16 MDa of it's mass (Stuwe et al. 2015).  Import of integral membrane proteins (mono- and polytopic) into the the inner nuclear membrane occurs by an active, transport factor-dependent process (Laba et al. 2015). Ndc1 and Pom52 are partially redundant NPC components that are essential for proper assembly of the NPC. The absence of Ndc1p and Pom152p results in aberrant pores that have enlarged diameters and lack proteinaceous material, leading to increased diffusion between the cytoplasm and the nucleus (Madrid et al. 2006). Pom152 is a transmembrane protein within the nuclear pore complex (NPC) of fungi that is important for NPC assembly and structure. Pom152 is comprised of a short amino-terminal region that remains on the cytosolic side of the nuclear envelope (NE) and interacts with NPC proteins, a transmembrane domain, and a large, glycosylated carboxy-terminal domain within the NE lumen. Here we show that the N-terminal 200 amino acids of Pom152 that include only the amino-terminal and transmembrane regions are sufficient for localization to the NPC (Brown et al. 2021). Atg39 selectively captures the inner nuclear membrane into lumenal vesicles for delivery to the autophagosome (Chandra et al. 2021). The inner nuclear membrane (INM) changes its protein composition during gametogenesis, sheding light on mechanisms used to shape the INM proteome of spores (Shelton et al. 2021). Several nucleoporins with FG-repeats (phenylalanine-glycine repeats) (barrier nucleoporins) possess potential amyloidogenic properties (Danilov et al. 2023).  A multiscale structure of the yeast nuclear pore complex has been described, and its implications have been discussed (Akey et al. 2023).  NPCs direct the nucleocytoplasmic transport of macromolecules, and Akey et al. 2023 provided a composite multiscale structure of the yeast NPC, based on improved 3D density maps from cryoEM and AlphaFold2 models. Key features of the inner and outer rings were integrated into a comprehensive model. The authors resolved flexible connectors that tie together the core scaffold, along with equatorial transmembrane complexes and a lumenal ring that anchor this channel within the pore membrane. The organization of the nuclear double outer ring revealed an architecture that may be shared with ancestral NPCs. Additional connections between the core scaffold and the central transporter suggest that under certain conditions, a degree of local organization is present at the periphery of the transport machinery. These connectors may couple conformational changes in the scaffold to the central transporter to modulate transport. Collectively, this analysis provides insights into assembly, transport, and NPC evolution (Akey et al. 2023).

Accession Number:P49687
Protein Name:Nucleoporin NUP145
Length:1317
Molecular Weight:145661.00
Species:Saccharomyces cerevisiae (Baker's yeast) [4932]
Location1 / Topology2 / Orientation3: Nucleus1 / Peripheral membrane protein2 / Nucleoplasmic side3
Substrate

Cross database links:

DIP: DIP-2074N DIP-2074N DIP-2074N DIP-2074N
RefSeq: NP_011423.1   
Entrez Gene ID: 852788   
Pfam: PF04096    PF12110   
KEGG: sce:YGL092W    sce:YGL092W    sce:YGL092W    sce:YGL092W   

Gene Ontology

GO:0031965 C:nuclear membrane
GO:0031080 C:Nup107-160 complex
GO:0016787 F:hydrolase activity
GO:0005515 F:protein binding
GO:0003723 F:RNA binding
GO:0005198 F:structural molecule activity
GO:0050000 P:chromosome localization
GO:0006406 P:mRNA export from nucleus
GO:0006609 P:mRNA-binding (hnRNP) protein import into nu...
GO:0006607 P:NLS-bearing substrate import into nucleus
GO:0006999 P:nuclear pore organization
GO:0006611 P:protein export from nucleus
GO:0006610 P:ribosomal protein import into nucleus
GO:0006407 P:rRNA export from nucleus
GO:0006408 P:snRNA export from nucleus
GO:0006608 P:snRNP protein import into nucleus
GO:0055085 P:transmembrane transport
GO:0006409 P:tRNA export from nucleus
GO:0006388 P:tRNA splicing, via endonucleolytic cleavage...
GO:0031081 P:nuclear pore distribution
GO:0016973 P:poly(A)+ mRNA export from nucleus
GO:0000973 P:posttranscriptional tethering of RNA polymerase II gene DNA at nuclear periphery
GO:0015031 P:protein transport
GO:0034398 P:telomere tethering at nuclear periphery

References (83)

[1] “Nup145p is required for nuclear export of mRNA and binds homopolymeric RNA in vitro via a novel conserved motif.”  Fabre E.et.al.   8044840
[2] “NUP145 encodes a novel yeast glycine-leucine-phenylalanine-glycine (GLFG) nucleoporin required for nuclear envelope structure.”  Wente S.R.et.al.   8195299
[3] “Sequence analysis of 203 kilobases from Saccharomyces cerevisiae chromosome VII.”  Rieger M.et.al.   9290212
[4] “The nucleotide sequence of Saccharomyces cerevisiae chromosome VII.”  Tettelin H.et.al.   9169869
[5] “Yeast nucleoporin mutants are defective in pre-tRNA splicing.”  Sharma K.et.al.   8524308
[6] “Two functionally distinct domains generated by in vivo cleavage of Nup145p: a novel biogenesis pathway for nucleoporins.”  Teixeira M.T.et.al.   9305650
[7] “Self-catalyzed cleavage of the yeast nucleoporin Nup145p precursor.”  Teixeira M.T.et.al.   10542288
[8] “Nuclear pore complexes in the organization of silent telomeric chromatin.”  Galy V.et.al.   10638763
[9] “The yeast nuclear pore complex: composition, architecture, and transport mechanism.”  Rout M.P.et.al.   10684247
[10] “Modular self-assembly of a Y-shaped multiprotein complex from seven nucleoporins.”  Lutzmann M.et.al.   11823431
[11] “Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae.”  Ficarro S.B.et.al.   11875433
[12] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[13] “Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded.”  Denning D.P.et.al.   12604785
[14] “Minimal nuclear pore complexes define FG repeat domains essential for transport.”  Strawn L.A.et.al.   15039779
[15] “Peering through the pore: nuclear pore complex structure, assembly, and function.”  Suntharalingam M.et.al.   12791264
[16] “Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway.”  Gruhler A.et.al.   15665377
[17] “Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae.”  Li X.et.al.   17330950
[18] “Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry.”  Chi A.et.al.   17287358
[19] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[20] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956
[21] “Nup145p is required for nuclear export of mRNA and binds homopolymeric RNA in vitro via a novel conserved motif.”  Fabre E.et.al.   8044840
[22] “NUP145 encodes a novel yeast glycine-leucine-phenylalanine-glycine (GLFG) nucleoporin required for nuclear envelope structure.”  Wente S.R.et.al.   8195299
[23] “Sequence analysis of 203 kilobases from Saccharomyces cerevisiae chromosome VII.”  Rieger M.et.al.   9290212
[24] “The nucleotide sequence of Saccharomyces cerevisiae chromosome VII.”  Tettelin H.et.al.   9169869
[25] “Yeast nucleoporin mutants are defective in pre-tRNA splicing.”  Sharma K.et.al.   8524308
[26] “Two functionally distinct domains generated by in vivo cleavage of Nup145p: a novel biogenesis pathway for nucleoporins.”  Teixeira M.T.et.al.   9305650
[27] “Self-catalyzed cleavage of the yeast nucleoporin Nup145p precursor.”  Teixeira M.T.et.al.   10542288
[28] “Nuclear pore complexes in the organization of silent telomeric chromatin.”  Galy V.et.al.   10638763
[29] “The yeast nuclear pore complex: composition, architecture, and transport mechanism.”  Rout M.P.et.al.   10684247
[30] “Modular self-assembly of a Y-shaped multiprotein complex from seven nucleoporins.”  Lutzmann M.et.al.   11823431
[31] “Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae.”  Ficarro S.B.et.al.   11875433
[32] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[33] “Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded.”  Denning D.P.et.al.   12604785
[34] “Minimal nuclear pore complexes define FG repeat domains essential for transport.”  Strawn L.A.et.al.   15039779
[35] “Peering through the pore: nuclear pore complex structure, assembly, and function.”  Suntharalingam M.et.al.   12791264
[36] “Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway.”  Gruhler A.et.al.   15665377
[37] “Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae.”  Li X.et.al.   17330950
[38] “Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry.”  Chi A.et.al.   17287358
[39] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[40] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956
[41] “Architecture of a coat for the nuclear pore membrane.”  Hsia K.C.et.al.   18160040
[42] “Nup145p is required for nuclear export of mRNA and binds homopolymeric RNA in vitro via a novel conserved motif.”  Fabre E.et.al.   8044840
[43] “NUP145 encodes a novel yeast glycine-leucine-phenylalanine-glycine (GLFG) nucleoporin required for nuclear envelope structure.”  Wente S.R.et.al.   8195299
[44] “Sequence analysis of 203 kilobases from Saccharomyces cerevisiae chromosome VII.”  Rieger M.et.al.   9290212
[45] “The nucleotide sequence of Saccharomyces cerevisiae chromosome VII.”  Tettelin H.et.al.   9169869
[46] “Yeast nucleoporin mutants are defective in pre-tRNA splicing.”  Sharma K.et.al.   8524308
[47] “Two functionally distinct domains generated by in vivo cleavage of Nup145p: a novel biogenesis pathway for nucleoporins.”  Teixeira M.T.et.al.   9305650
[48] “Self-catalyzed cleavage of the yeast nucleoporin Nup145p precursor.”  Teixeira M.T.et.al.   10542288
[49] “Nuclear pore complexes in the organization of silent telomeric chromatin.”  Galy V.et.al.   10638763
[50] “The yeast nuclear pore complex: composition, architecture, and transport mechanism.”  Rout M.P.et.al.   10684247
[51] “Modular self-assembly of a Y-shaped multiprotein complex from seven nucleoporins.”  Lutzmann M.et.al.   11823431
[52] “Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae.”  Ficarro S.B.et.al.   11875433
[53] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[54] “Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded.”  Denning D.P.et.al.   12604785
[55] “Minimal nuclear pore complexes define FG repeat domains essential for transport.”  Strawn L.A.et.al.   15039779
[56] “Peering through the pore: nuclear pore complex structure, assembly, and function.”  Suntharalingam M.et.al.   12791264
[57] “Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway.”  Gruhler A.et.al.   15665377
[58] “Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae.”  Li X.et.al.   17330950
[59] “Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry.”  Chi A.et.al.   17287358
[60] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[61] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956
[62] “Architecture of a coat for the nuclear pore membrane.”  Hsia K.C.et.al.   18160040
[63] “Nup145p is required for nuclear export of mRNA and binds homopolymeric RNA in vitro via a novel conserved motif.”  Fabre E.et.al.   8044840
[64] “NUP145 encodes a novel yeast glycine-leucine-phenylalanine-glycine (GLFG) nucleoporin required for nuclear envelope structure.”  Wente S.R.et.al.   8195299
[65] “Sequence analysis of 203 kilobases from Saccharomyces cerevisiae chromosome VII.”  Rieger M.et.al.   9290212
[66] “The nucleotide sequence of Saccharomyces cerevisiae chromosome VII.”  Tettelin H.et.al.   9169869
[67] “Yeast nucleoporin mutants are defective in pre-tRNA splicing.”  Sharma K.et.al.   8524308
[68] “Two functionally distinct domains generated by in vivo cleavage of Nup145p: a novel biogenesis pathway for nucleoporins.”  Teixeira M.T.et.al.   9305650
[69] “Self-catalyzed cleavage of the yeast nucleoporin Nup145p precursor.”  Teixeira M.T.et.al.   10542288
[70] “Nuclear pore complexes in the organization of silent telomeric chromatin.”  Galy V.et.al.   10638763
[71] “The yeast nuclear pore complex: composition, architecture, and transport mechanism.”  Rout M.P.et.al.   10684247
[72] “Modular self-assembly of a Y-shaped multiprotein complex from seven nucleoporins.”  Lutzmann M.et.al.   11823431
[73] “Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae.”  Ficarro S.B.et.al.   11875433
[74] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[75] “Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded.”  Denning D.P.et.al.   12604785
[76] “Minimal nuclear pore complexes define FG repeat domains essential for transport.”  Strawn L.A.et.al.   15039779
[77] “Peering through the pore: nuclear pore complex structure, assembly, and function.”  Suntharalingam M.et.al.   12791264
[78] “Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway.”  Gruhler A.et.al.   15665377
[79] “Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae.”  Li X.et.al.   17330950
[80] “Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry.”  Chi A.et.al.   17287358
[81] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[82] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956
[83] “Architecture of a coat for the nuclear pore membrane.”  Hsia K.C.et.al.   18160040
Structure:
3BG0   3BG1   3IKO   3KEP   3KES   4XMM   4XMN   3JRO   3JRP      [...more]

External Searches:

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MFNKSVNSGF TFGNQNTSTP TSTPAQPSSS LQFPQKSTGL FGNVNVNANT STPSPSGGLF 
61:	NANSNANSIS QQPANNSLFG NKPAQPSGGL FGATNNTTSK SAGSLFGNNN ATANSTGSTG 
121:	LFSGSNNIAS STQNGGLFGN SNNNNITSTT QNGGLFGKPT TTPAGAGGLF GNSSSTNSTT 
181:	GLFGSNNTQS STGIFGQKPG ASTTGGLFGN NGASFPRSGE TTGTMSTNPY GINISNVPMA 
241:	VADMPRSITS SLSDVNGKSD AEPKPIENRR TYSFSSSVSG NAPLPLASQS SLVSRLSTRL 
301:	KATQKSTSPN EIFSPSYSKP WLNGAGSAPL VDDFFSSKMT SLAPNENSIF PQNGFNFLSS 
361:	QRADLTELRK LKIDSNRSAA KKLKLLSGTP AITKKHMQDE QDSSENEPIA NADSVTNIDR 
421:	KENRDNNLDN TYLNGKEQSN NLNKQDGENT LQHEKSSSFG YWCSPSPEQL ERLSLKQLAA 
481:	VSNFVIGRRG YGCITFQHDV DLTAFTKSFR EELFGKIVIF RSSKTVEVYP DEATKPMIGH 
541:	GLNVPAIITL ENVYPVDKKT KKPMKDTTKF AEFQVFDRKL RSMREMNYIS YNPFGGTWTF 
601:	KVNHFSIWGL VNEEDAEIDE DDLSKQEDGG EQPLRKVRTL AQSKPSDKEV ILKTDGTFGT 
661:	LSGKDDSIVE EKAYEPDLSD ADFEGIEASP KLDVSKDWVE QLILAGSSLR SVFATSKEFD 
721:	GPCQNEIDLL FSECNDEIDN AKLIMKERRF TASYTFAKFS TGSMLLTKDI VGKSGVSIKR 
781:	LPTELQRKFL FDDVYLDKEI EKVTIEARKS NPYPQISESS LLFKDALDYM EKTSSDYNLW 
841:	KLSSILFDPV SYPYKTDNDQ VKMALLKKER HCRLTSWIVS QIGPEIEEKI RNSSNEIEQI 
901:	FLYLLLNDVV RASKLAIESK NGHLSVLISY LGSNDPRIRD LAELQLQKWS TGGCSIDKNI 
961:	SKIYKLLSGS PFEGLFSLKE LESEFSWLCL LNLTLCYGQI DEYSLESLVQ SHLDKFSLPY 
1021:	DDPIGVIFQL YAANENTEKL YKEVRQRTNA LDVQFCWYLI QTLRFNGTRV FSKETSDEAT 
1081:	FAFAAQLEFA QLHGHSLFVS CFLNDDKAAE DTIKRLVMRE ITLLRASTND HILNRLKIPS 
1141:	QLIFNAQALK DRYEGNYLSE VQNLLLGSSY DLAEMAIVTS LGPRLLLSNN PVQNNELKTL 
1201:	REILNEFPDS ERDKWSVSIN VFEVYLKLVL DNVETQETID SLISGMKIFY DQYKHCREVA 
1261:	ACCNVMSQEI VSKILEKNNP SIGDSKAKLL ELPLGQPEKA YLRGEFAQDL MKCTYKI