TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


1.A.10.1.6
The heteromeric monovalent cation/Ca2+ channel/glutamate (NMDA) receptor NMDAR1/NMDAR2A/NMDAR2B/NMDAR2C) (Monyer et al., 1992). Note: NR2B is the same as NR3, GluN2A, GRIN2A or subunit epsilon (Schüler et al., 2008). Mediates voltage- and Mg2+-dependent control of Na+ and Ca2+ permeability (Yang et al., 2010).  Mutations in the subunit, GRIN1, a 1464 aa protein, identified in patients with early-onset epileptic encephalopathy and profound developmental delay, are located in the transmembrane domain and the linker region between the ligand-binding and transmembrane domains (Yuan et al. 2014; Ohba et al. 2015).  Karakas and Furukawa 2014 determined the crystal structure of the heterotetrameric GluN1-GluN2B NMDA receptor ion channel at 4 Å resolution. The receptor is arranged as a dimer of GluN1-GluN2B heterodimers with the twofold symmetry axis running through the entire molecule composed of an amino terminal domain, a ligand-binding domain, and a transmembrane domain.  The GluN2 subunit regulates synaptic trafficking of AMPA in the neonatal mouse brain (Hamada et al. 2014).  GRIN1 and GRIN2A mutations are associated with severe intellectual disability with cortical visual impairment, epilepsy and oculomotor and movement disorders being discriminating phenotypic features (Lemke et al. 2016; Chen et al. 2017).The cryoEM structure of a triheteromeric receptor including GluN1 (glycine binding), GluN2A and GluN2B (both glutamate binding) has been solved with and without a GluN2B allosteric antagonist, Ro 25-6981 (et al. 2017). Ogden et al. 2017 implicated the pre-M1 region in gating, providing insight into how different subunits contribute to gating, and suggesting that mutations in the pre-M1 helix, such as those that cause epilepsy and developmental delays, can compromise neuronal health. The severity of GRIN2A (Glu2A)-related disorders can be predicted based on the positions of the mutations in the encoding gene (Strehlow et al. 2019). Knock-in mice expressing an ethanol-resistant GluN2A NMDA receptor subunit show altered responses to ethanol (Zamudio et al. 2019). Results of McDaniel et al. 2020 revealed the role of the pre-M1 helix in channel gating, implicated the surrounding amino acid environment in this mechanism, and suggested unique subunit-specific contributions of pre-M1 helices to GluN1 and GluN2 gating. The human ortholog is 998.5% identical. An autism-associated mutation in GluN2B prevents NMDA receptor trafficking and interferes with dendrite growth (Sceniak et al. 2019). The binding of calcium-calmodulin to the C-terminus of GluN1 has long range allosteric effects on the extracellular segments of the receptor that may contribute to the calcium-dependent inactivation (Bhatia et al. 2020). GluN1 interacts with PCDH7 (O60245) to regulate dendritic spine morphology and synaptic function (Wang et al. 2020).Pluripotential GluN1 (NMDA NR1) functions in cellular nuclei in pain/nociception (McNearney and Westlund 2023).

Accession Number:Q00960
Protein Name:Glutamate [NMDA] receptor subunit epsilon-2 aka NR2B
Length:1482
Molecular Weight:166071.00
Species:Rattus norvegicus (Rat) [10116]
Number of TMSs:4
Location1 / Topology2 / Orientation3: Cell membrane1 / Multi-pass membrane protein2
Substrate monoatomic monocation, sodium(1+), calcium atom

Cross database links:

RefSeq: NP_036706.1   
Entrez Gene ID: 24410   
Pfam: PF01094    PF00060    PF10565    PF00497   
KEGG: rno:24410   

Gene Ontology

GO:0030054 C:cell junction
GO:0043197 C:dendritic spine
GO:0017146 C:N-methyl-D-aspartate selective glutamate re...
GO:0030288 C:outer membrane-bounded periplasmic space
GO:0014069 C:postsynaptic density
GO:0045211 C:postsynaptic membrane
GO:0042734 C:presynaptic membrane
GO:0043083 C:synaptic cleft
GO:0030018 C:Z disc
GO:0050839 F:cell adhesion molecule binding
GO:0031749 F:D2 dopamine receptor binding
GO:0005234 F:extracellular-glutamate-gated ion channel a...
GO:0004972 F:N-methyl-D-aspartate selective glutamate re...
GO:0042165 F:neurotransmitter binding
GO:0046982 F:protein heterodimerization activity
GO:0008270 F:zinc ion binding
GO:0008306 P:associative learning
GO:0035235 P:ionotropic glutamate receptor signaling pat...
GO:0007613 P:memory
GO:0014049 P:positive regulation of glutamate secretion
GO:0001508 P:regulation of action potential
GO:0048169 P:regulation of long-term neuronal synaptic p...
GO:0043408 P:regulation of MAPKKK cascade
GO:0048511 P:rhythmic process

References (9)

[1] “Heteromeric NMDA receptors: molecular and functional distinction of subtypes.”  Monyer H.et.al.   1350383
[2] “Identification of two cysteine residues that are required for redox modulation of the NMDA subtype of glutamate receptor.”  Sullivan J.M.et.al.   7524561
[3] “Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95.”  Kornau H.C.et.al.   7569905
[4] “CIPP, a novel multivalent PDZ domain protein, selectively interacts with Kir4.0 family members, NMDA receptor subunits, neurexins, and neuroligins.”  Kurschner C.et.al.   9647694
[5] “An NMDA receptor signaling complex with protein phosphatase 2A.”  Chan S.F.et.al.   11588171
[6] “Assembly with the NR1 subunit is required for surface expression of NR3A-containing NMDA receptors.”  Perez-Otano I.et.al.   11160393
[7] “Association of NR3A with the N-methyl-D-aspartate receptor NR1 and NR2 subunits.”  Al-Hallaq R.A.et.al.   12391275
[8] “Characterization and comparison of the NR3A subunit of the NMDA receptor in recombinant systems and primary cortical neurons.”  Sasaki Y.F.et.al.   11929923
[9] “Structure of the zinc-bound amino-terminal domain of the NMDA receptor NR2B subunit.”  Karakas E.et.al.   19910922
Structure:
3JPW   3JPY   3QEL   3QEM   4PE5   5B3J   5FXG   5FXH   5FXI   5FXJ   [...more]

External Searches:

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MKPSAECCSP KFWLVLAVLA VSGSKARSQK SPPSIGIAVI LVGTSDEVAI KDAHEKDDFH 
61:	HLSVVPRVEL VAMNETDPKS IITRICDLMS DRKIQGVVFA DDTDQEAIAQ ILDFISAQTL 
121:	TPILGIHGGS SMIMADKDES SMFFQFGPSI EQQASVMLNI MEEYDWYIFS IVTTYFPGYQ 
181:	DFVNKIRSTI ENSFVGWELE EVLLLDMSLD DGDSKIQNQL KKLQSPIILL YCTKEEATYI 
241:	FEVANSVGLT GYGYTWIVPS LVAGDTDTVP SEFPTGLISV SYDEWDYGLP ARVRDGIAII 
301:	TTAASDMLSE HSFIPEPKSS CYNTHEKRIY QSNMLNRYLI NVTFEGRNLS FSEDGYQMHP 
361:	KLVIILLNKE RKWERVGKWK DKSLQMKYYV WPRMCPETEE QEDDHLSIVT LEEAPFVIVE 
421:	SVDPLSGTCM RNTVPCQKRI ISENKTDEEP GYIKKCCKGF CIDILKKISK SVKFTYDLYL 
481:	VTNGKHGKKI NGTWNGMIGE VVMKRAYMAV GSLTINEERS EVVDFSVPFI ETGISVMVSR 
541:	SNGTVSPSAF LEPFSADVWV MMFVMLLIVS AVAVFVFEYF SPVGYNRCLA DGREPGGPSF 
601:	TIGKAIWLLW GLVFNNSVPV QNPKGTTSKI MVSVWAFFAV IFLASYTANL AAFMIQEEYV 
661:	DQVSGLSDKK FQRPNDFSPP FRFGTVPNGS TERNIRNNYA EMHAYMGKFN QRGVDDALLS 
721:	LKTGKLDAFI YDAAVLNYMA GRDEGCKLVT IGSGKVFAST GYGIAIQKDS GWKRQVDLAI 
781:	LQLFGDGEME ELEALWLTGI CHNEKNEVMS SQLDIDNMAG VFYMLGAAMA LSLITFICEH 
841:	LFYWQFRHCF MGVCSGKPGM VFSISRGIYS CIHGVAIEER QSVMNSPTAT MNNTHSNILR 
901:	LLRTAKNMAN LSGVNGSPQS ALDFIRRESS VYDISEHRRS FTHSDCKSYN NPPCEENLFS 
961:	DYISEVERTF GNLQLKDSNV YQDHYHHHHR PHSIGSTSSI DGLYDCDNPP FTTQPRSISK 
1021:	KPLDIGLPSS KHSQLSDLYG KFSFKSDRYS GHDDLIRSDV SDISTHTVTY GNIEGNAAKR 
1081:	RKQQYKDSLK KRPASAKSRR EFDEIELAYR RRPPRSPDHK RYFRDKEGLR DFYLDQFRTK 
1141:	ENSPHWEHVD LTDIYKERSD DFKRDSVSGG GPCTNRSHLK HGTGEKHGVV GGVPAPWEKN 
1201:	LTNVDWEDRS GGNFCRSCPS KLHNYSSTVA GQNSGRQACI RCEACKKAGN LYDISEDNSL 
1261:	QELDQPAAPV AVTSNASSTK YPQSPTNSKA QKKNRNKLRR QHSYDTFVDL QKEEAALAPR 
1321:	SVSLKDKGRF MDGSPYAHMF EMPAGESSFA NKSSVPTAGH HHNNPGSGYM LSKSLYPDRV 
1381:	TQNPFIPTFG DDQCLLHGSK SYFFRQPTVA GASKTRPDFR ALVTNKPVVV TLHGAVPGRF 
1441:	QKDICIGNQS NPCVPNNKNP RAFNGSSNGH VYEKLSSIES DV