TCID | Name | Domain | Kingdom/Phylum | Protein(s) |
---|---|---|---|---|
2.A.72.1.1 | Low affinity K+ uptake permease, KUP or TrkD. It has 12 established TMSs with four transmembrane acidic residues important for K+ uptake (Sato et al. 2014). | Bacteria |
Proteobacteria | KUP of E. coli (P63183) |
2.A.72.1.2 | Archaea |
Euryarchaeota | Kup of Methanosarcina acetivorans | |
2.A.72.1.3 | Probable potassium transport system protein, Kup 1 of 670 aas | Bacteria |
Firmicutes | Kup1 of Lactococcus lactis |
2.A.72.2.1 | K+ uptake permease | Eukaryota |
Fungi | Hak1 of Debaryomyces (Schwanniomyces) occidentalis |
2.A.72.2.2 | The K+ uptake transporter, DhHAK1 (expressed when K+ starved) (Prista et al., 2007) | Eukaryota |
Fungi | DhHAK1 of Debaryomyces hansenii (Q0G848) |
2.A.72.3.1 | High affinity K+ transporter, KUP1 of 712 aas and 13 -15 TMSs. This protein and KUP2 in barely may play a role in drought resistance (Cai et al. 2019). HAK/KUP/KT8, GrAKT2.1 and GrAKT1.1 potassium channels may function in response to abiotic stress in Gossypium raimondii (Azeem et al. 2021).
| Eukaryota |
Viridiplantae | AtKUP1 of Arabidopsis thaliana |
2.A.72.3.2 | K+:H+ symporter, HAK1. Hak1p is produced at high levels but is down regluated by extracellular K and by expression of Trk1 (2.A.38.2.2) (Rivetta et al. 2013). | Eukaryota |
Fungi | Hak1 of Neurospora crassa |
2.A.72.3.3 | High affinity K+ uptake transporter, Hak1, of 775 aas and 12 TMSs. It is involved in drought resistance and is influenced by the H+-ATPases, HA1 and HA2 (see TC# 3.A.3.3.9) (Cai et al. 2019). | Eukaryota |
Viridiplantae | Hak1 of Hordeum vulgare |
2.A.72.3.4 | Low affinity, Na+-sensitive K+ uptake transporter (vacuolar ?) | Eukaryota |
Viridiplantae | Hak2 of Hordeum vulgare |
2.A.72.3.5 | Eukaryota |
Viridiplantae | Hak1 of Physcomitrella patens (A5PH39) | |
2.A.72.3.6 | High affinity K+ transporter, HAKCV (expressed at an early stage during viral infection) (Greiner et al., 2011). | Viruses |
Phycodnaviridae | HAKCV of Paramecium bursaria Chlorella virus (A7J6G4) |
2.A.72.3.7 | Potassium transporter 1 (OsHAK1) | Eukaryota |
Viridiplantae | HAK1 of Oryza sativa subsp. japonica |
2.A.72.3.8 | Potassium transporter 2 (AtKT2) (AtKUP2) (AtPOT2) | Eukaryota |
Viridiplantae | POT2 of Arabidopsis thaliana |
2.A.72.3.9 | High affinity potassium transporter 5, HAK5 (Nieves-Cordones et al. 2014). It is essential for seed development and postgermination growth in low potassium (Pyo et al. 2010) and probably plays a role in drought resistance (Cai et al. 2019). In rice, it alters the cell architecture via ATP-dependent transmembrane auxin transport (Yang et al. 2020). | Eukaryota |
Viridiplantae | Hak5 of Arabidopsis thaliana |
2.A.72.3.10 | Tiny root hair-1 K+ transporter (TRH1) of 775 aas, also called K+ transporter-3 (POT3; KT3) or KUP4. It regulates root hair elongation (Daras et al. 2015). | Eukaryota |
Viridiplantae | TRH1 of Arabidopsis thaliana (Mouse-ear cress) |
2.A.72.3.11 | K+ transporter, HAK1 of 777 aas and 13 TMSs (Guo et al. 2008). Also capable of anion channel activity at high voltages as those found in plants, fungi and bacteria, but not animal cells, possibly using to a new route formed by oligomerization (Pardo et al. 2015). | Eukaryota |
Viridiplantae | HAK1 of Nicotiana rustica (Aztec tobacco) |
2.A.72.3.12 | KUP9 (POT9) potassium ion transporter of 807 aas and 14 TMSs. It is up-regluated upon salt stress (Yang et al. 2018). | Eukaryota |
Viridiplantae | KUP9 of Arabidopsis thaliana (Mouse-ear cress) |