TCDB is operated by the Saier Lab Bioinformatics Group
TCIDNameDomainKingdom/PhylumProtein(s)
2.A.85.1.1









YccS of unknown specificity

Bacteria
Proteobacteria
YccS of E. coli (720 aas) (P75870)
2.A.85.1.2









p-hydroxybenzoate efflux carrier, AaeB (Van Dyk et al., 2004). Several aromatic carboxylic acids serve as inducers of yhcRQP operon expression.

Bacteria
Proteobacteria
AaeB (YhcP) of E. coli (655 aas) (P46481)
2.A.85.1.3









YhfK of unknown specificity

Bacteria
Proteobacteria
YhfK of E. coli (P45537)
2.A.85.1.4









Fusaric acid resistance protein

Bacteria
Proteobacteria
Fusaric acid resistance protein of Pantoea sp. aB (E0M081)
2.A.85.1.5









Uncharacterized transporter YdhK
Bacteria
Proteobacteria
YdhK of Salmonella typhimurium
2.A.85.1.6









Uncharacterized transporter YdhK
Bacteria
Proteobacteria
YdhK of Escherichia coli O157:H7
2.A.85.1.7









Uncharacterized protein of 635 aas and 9 or 10 TMSs in a 5 (or 6) + hydrophilic domain + 4 TMSs + another hydrophilic domain.  The protein shows very little sequence similarity with other members of this family.

Archaea
Euryarchaeota
UP of Methanosphaera stadtmanae
2.A.85.2.1









An inorganic anion (Cl-/NO3-) transporter, ALMT12 or QUAC1 (Quickly activating Anion Channel 1), reported to be incapable of transporting organic anions, is involved in stomatal closure (Sasaki et al, 2010). It is an R-type inorganic anion channel required for stomatal movement in Arabidopsis guard cells (Meyer et al., 2010).  The C-terminal cytosolic domain mediates voltage gating (Mumm et al. 2013).

Eukaryota
Viridiplantae
Orf1 of Arabidopsis thaliana (560 aas) (O49696)
2.A.85.2.2









Putative transport protein, Orf5, of 533 aas and 7 or 8 TMSs in a 5 or 6 TMS bundle near the N-terminus, one more putative TMS near the middle, and one more near the C-terminus.

Eukaryota
Viridiplantae
Orf5 of Arabidopsis thaliana (533 aas) (Q9SX23)
2.A.85.2.3









The root aluminum-activated malate efflux transporter, ALMT1 (required for aluminum tolerance) (Hoekenga et al., 2006).  Also called Quick Anion Channel, QUAC, based on activation kinetics of anion channel currents in response to voltage changes.  Evolutionary studies have been reported (Dreyer et al. 2012).  Plants respond to aluminum (Al) ions by releasing malate from their root apices via ALMT1 with malate bound to the toxic Al ions, contributing to Al tolerance (Sasaki et al. 2014).

Eukaryota
Viridiplantae
ALMT1 of Arabidopsis thaliana (Q15EV0)
2.A.85.2.4









The anion-selective transporter ALMT1 (transports anions) (35% identical to 2.A.85.2.3) (Pineros et al., 2008)
Eukaryota
Viridiplantae
ALMT1 of Zea mays (A1XGH3)
2.A.85.2.5









Aluminum-stimulated anion (Malate >> NO3- > Cl-; Malate/Cl- ≈ 20) channel (Zhang et al., 2008) (67% identical to 2.A.85.2.4). Confers Al+3 resistance (Ryan et al., 2011). May also transport a variety of organic and inorganic anions (Piñeros et al. 2008). It can also transport GABA (Ramesh et al. 2018). ALMT1 has 6 TMSs with the N- and C-termini being on the external surface of the plasma membrane (Motoda et al. 2007).

Eukaryota
Viridiplantae
ALMT1 of Triticum aestivum (Q76LB2)
2.A.85.2.6









Putative aluminum-activated malate transporter 3 (AtALMT3)
Eukaryota
Viridiplantae
ALMT3 of Arabidopsis thaliana
2.A.85.2.7









The vacuolar malate "channel", ALMT9, of 598 aas and 6 - 8 TMSs. TMSs 1 - 6 occur together near the N-terminus; putatives TMS 7 is near the middle of the protein, and putative TMS 8 is near the C-terminus. Citrate is an open channel blocker.  There are probably four subunits, and TMS5 contributes to pore formation (Zhang et al. 2013). It has higher selectivity for malate than for fumarate and exhibits weak chloride conductance (Kovermann et al. 2007). The apple ALMT9 requires a conserved C-terminal domain for malate transport, underlying fruit acidity (Li et al. 2020).


Eukaryota
Viridiplantae
ALMT9 of Arabidopsis thaliana
2.A.85.3.1









Hypothetical protein

Eukaryota
Fungi
Ydg8 of Schizosaccharomyces pombe (977 aas) (Q10495)
2.A.85.3.2









Uncharacterized protein of 1125 aas

Eukaryota
Fungi
UP of Saccharomyces cerevisiae
2.A.85.3.3









Uncharacterized protein of 1219 aas

Eukaryota
Fungi
UP of Saccharomyces cerevisiae
2.A.85.3.4









Protein required for ubiquinone biosynthesis of 1035 aas and 14 putative TMSs

Eukaryota
Fungi
Protein of Komagataella pastoris
2.A.85.3.5









Uncharacterized protein of 1040 aas

Eukaryota
Fungi
UP of Gloeophyllum trabeum (Brown rot fungus)
2.A.85.4.1









Lantibiotic protection protein, MutG

Bacteria
Firmicutes
MutG of Aerococcus viridans (D4YEF0)
2.A.85.4.2









YgaE

Bacteria
Firmicutes
YgaE of Bacillus subtilis (P71083)
2.A.85.4.3









DUF939 (N-terminus) with C-terminal HAD hydrolase (Cof or haloacid dehydrogenase) family IIB domain;  450 aas.

Bacteria
Firmicutes
DUF939 protein of Clostridium methylpentosum
2.A.85.4.4









5 or 6 TMS 'half sized', YqjA

Bacteria
Firmicutes
YqjA of Bacillus subtilis (322 aas) (P54538)
2.A.85.6.1









MdtO (YjcQ), Multidrug resistance protein (involved in resistance to puromycin, acriflavin and tetraphenyl arsonium chloride; acts with MdtN (TC# 8.A.1.1.3) and MdtP (TC# 1.B.17.3.9)) (Sulavik et al., 2001).

Bacteria
Proteobacteria
MdtO of E. coli (P32715)
2.A.85.6.2









FUSC family protein of 751 aas and 10 or 12 TMSs.

Bacteria
Proteobacteria
FUSC family protein of Burkholderia gladioli
2.A.85.6.3









FUSC family protein of 517 aas and 12 TMSs.

Bacteria
Proteobacteria
FUSC family protein of Gemmobacter intermedius
2.A.85.7.1









Fusaric acid resistance protein, FusC (YeeA; 352aas; 6 N-terminal TMSs plus a hydrophilic C-terminal cytoplasmic domain).

Bacteria
Proteobacteria
FusC of E. coli (P33011)
2.A.85.7.2









MutG lantibiotic protection protein with 6 N-terminal TMSs and a hydrophilic C-terminal domain.

Bacteria
Proteobacteria
MutG of Psychrobacter sp. 1501 (F5SU14)
2.A.85.8.1









Putative integral membrane protein

 

Bacteria
Actinobacteria
Putative integral membrane protein of Streptomyces coelicolor
2.A.85.8.2









FUSC family protein of 460 aas and probably 12 TMSs.

Bacteria
Terrabacteria group
FUSC family protein of Gordonia paraffinivorans
2.A.85.8.3









FUSC family protein of 383 aas and 11 or 12 TMSs, with no large hydrophilic domain.

Bacteria
Proteobacteria
FUSC family protein of Psychrobacter faecalis
2.A.85.8.4









Uncharacterized protein of 376 aas and 12 probable TMSs with no hydrophilic domain.

Eukaryota
Opisthokonta
UP of Enterococcus faecium
2.A.85.8.5









FUSC family protein of 361 aas and 12 probable TMSs.

Bacteria
Terrabacteria group
Fusc family protein of Demequina subtropica
2.A.85.9.1









Bacteria
Actinobacteria
2.A.85.9.2









FUSC family protein of 423 aas and 6 TM

Bacteria
Terrabacteria group
FUSC family protein of Marmoricola scoriae
2.A.85.9.3









FUSC family protein of 338 aas and 5 or 6 N-terminal TMSs plus a large C-terminal hydrophilic domain.

Bacteria
Terrabacteria group
FUSC family protein of Bacillus velezensis
2.A.85.9.4









FUSC family protein of 374 aas and 6 N-terminal TMSs.

Bacteria
Terrabacteria group
FUSC family protein of Microbacterium oxydans
2.A.85.10.1









Fusaric acid resistance protein homologue

Bacteria
Actinobacteria
FusB homologue of Streptomyces coelicolor
2.A.85.10.2









FusB homologue

Bacteria
Actinobacteria
FusB homologue of Streptomyces coelicolor
2.A.85.11.1









Uncharacterized protein of 1406 aas

Eukaryota
Bangiophyceae
UP of Galdieria sulphuraria
2.A.85.11.2









Uncharacterized protein of 1365 aas

Eukaryota
Bangiophyceae
UP of Galdieria sulphuraria
2.A.85.11.3









Uncharacterized protein of 1638 aas

Eukaryota
Bangiophyceae
UP of Galdieria sulphuraria
2.A.85.11.4









Uncharacterized protein of 1269 aas and 11 - 14 TMSs.

Eukaryota
Viridiplantae
UP of Chlamydomonas reinhardtii (Chlamydomonas smithii)