TCDB is operated by the Saier Lab Bioinformatics Group
« See all members of the family


3.A.3.3.6
Plamsa membrane H+-ATPase, Pma1 (pumps protons out of the cell to generate a membrane potential and regulate cytosolic pH) (Liu et al., 2006; Petrov, 2009). TMSs 4,5,6 and 8 comprise the H+ pathway where essential and important residues have been identified (Miranda et al., 2010). Residues in the loop between TMSs 5 and 6 play roles in protein stability, function, and insertion (Petrov 2015).  Pma1 interacts with the plamsa membrane Cch1/Mid1 (1.A.1.11.10) to regulate its activity by influencing the membrane potential (Cho et al. 2016).  Asp739 and Arg811 are important residues for the biogenesis and function of the enzyme as H+ transport determinants (Petrov 2017). Pma1, is a P3A-type ATPase and the primary protein component of the membrane compartment of Pma1 (MCP). Like other plasma membrane H+-ATPases, Pma1 assembles and functions as a hexamer, a property unique to this subfamily of P-type ATPases. It has been unclear how Pma1 organizes the yeast membrane into MCP microdomains, or why it is that Pma1 needs to assemble into a hexamer to establish the membrane electrochemical proton gradient. Zhao et al. 2021 reported a high-resolution cryo-EM study of native Pma1 hexamers embedded in endogenous lipids. The Pma1 hexamer encircles a liquid-crystalline membrane domain composed of 57 ordered lipid molecules. The Pma1-encircled lipid patch structure likely serves as the building block of the MCP. At pH 7.4, the carboxyl-terminal regulatory α-helix binds to the phosphorylation domains of two neighboring Pma1 subunits, locking the hexamer in the autoinhibited state. The regulatory helix becomes disordered at lower pH, leading to activation of the Pma1 hexamer. The activation process is accompanied by a 6.7 A downward shift and a 40 degrees rotation of transmembrane helices 1 and 2 that line the proton translocation path. The conformational changes enabled the authors to propose a detailed mechanism for ATP-hydrolysis-driven proton pumping across the plasma membrane (Zhao et al. 2021). An ER-accumulated mutant of yeast Pma1 causes membrane-related stress to induce the unfolded protein response (Phuong et al. 2023).

Accession Number:P05030
Protein Name:H+-ATPase
Length:918
Molecular Weight:99619.00
Species:Saccharomyces cerevisiae (Baker's yeast) [4932]
Number of TMSs:10
Location1 / Topology2 / Orientation3: Cell membrane1 / Multi-pass membrane protein2
Substrate

Cross database links:

DIP: DIP-2537N
RefSeq: NP_011507.1   
Entrez Gene ID: 852876   
Pfam: PF00690    PF00122    PF00702   
KEGG: sce:YGL008C   

Gene Ontology

GO:0016021 C:integral to membrane
GO:0045121 C:membrane raft
GO:0005739 C:mitochondrion
GO:0005886 C:plasma membrane
GO:0001950 C:plasma membrane enriched fraction
GO:0005524 F:ATP binding
GO:0008553 F:hydrogen-exporting ATPase activity, phospho...
GO:0046872 F:metal ion binding
GO:0006754 P:ATP biosynthetic process
GO:0015992 P:proton transport
GO:0006885 P:regulation of pH
GO:0055085 P:transmembrane transport

References (13)

[1] “Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+- and Ca2+-ATPases.”  Serrano R.et.al.   3005867
[2] “The nucleotide sequence of Saccharomyces cerevisiae chromosome VII.”  Tettelin H.et.al.   9169869
[3] “The ATP binding site of the yeast plasma membrane proton-translocating ATPase.”  Davis C.B.et.al.   2136852
[4] “Dissection of functional domains of the yeast proton-pumping ATPase by directed mutagenesis.”  Portillo F.et.al.   2901955
[5] “Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae.”  Ficarro S.B.et.al.   11875433
[6] “Global analysis of protein expression in yeast.”  Ghaemmaghami S.et.al.   14562106
[7] “A subset of membrane-associated proteins is ubiquitinated in response to mutations in the endoplasmic reticulum degradation machinery.”  Hitchcock A.L.et.al.   14557538
[8] “Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway.”  Gruhler A.et.al.   15665377
[9] “A global topology map of the Saccharomyces cerevisiae membrane proteome.”  Kim H.et.al.   16847258
[10] “Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae.”  Li X.et.al.   17330950
[11] “Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry.”  Chi A.et.al.   17287358
[12] “Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.”  Smolka M.B.et.al.   17563356
[13] “A multidimensional chromatography technology for in-depth phosphoproteome analysis.”  Albuquerque C.P.et.al.   18407956

External Searches:

Analyze:

Predict TMSs (Predict number of transmembrane segments)
Window Size: Angle:  
FASTA formatted sequence
1:	MTDTSSSSSS SSASSVSAHQ PTQEKPAKTY DDAASESSDD DDIDALIEEL QSNHGVDDED 
61:	SDNDGPVAAG EARPVPEEYL QTDPSYGLTS DEVLKRRKKY GLNQMADEKE SLVVKFVMFF 
121:	VGPIQFVMEA AAILAAGLSD WVDFGVICGL LMLNAGVGFV QEFQAGSIVD ELKKTLANTA 
181:	VVIRDGQLVE IPANEVVPGD ILQLEDGTVI PTDGRIVTED CFLQIDQSAI TGESLAVDKH 
241:	YGDQTFSSST VKRGEGFMVV TATGDNTFVG RAAALVNKAA GGQGHFTEVL NGIGIILLVL 
301:	VIATLLLVWT ACFYRTNGIV RILRYTLGIT IIGVPVGLPA VVTTTMAVGA AYLAKKQAIV 
361:	QKLSAIESLA GVEILCSDKT GTLTKNKLSL HEPYTVEGVS PDDLMLTACL AASRKKKGLD 
421:	AIDKAFLKSL KQYPKAKDAL TKYKVLEFHP FDPVSKKVTA VVESPEGERI VCVKGAPLFV 
481:	LKTVEEDHPI PEDVHENYEN KVAELASRGF RALGVARKRG EGHWEILGVM PCMDPPRDDT 
541:	AQTVSEARHL GLRVKMLTGD AVGIAKETCR QLGLGTNIYN AERLGLGGGG DMPGSELADF 
601:	VENADGFAEV FPQHKYRVVE ILQNRGYLVA MTGDGVNDAP SLKKADTGIA VEGATDAARS 
661:	AADIVFLAPG LSAIIDALKT SRQIFHRMYS YVVYRIALSL HLEIFLGLWI AILDNSLDID 
721:	LIVFIAIFAD VATLAIAYDN APYSPKPVKW NLPRLWGMSI ILGIVLAIGS WITLTTMFLP 
781:	KGGIIQNFGA MNGIMFLQIS LTENWLIFIT RAAGPFWSSI PSWQLAGAVF AVDIIATMFT 
841:	LFGWWSENWT DIVTVVRVWI WSIGIFCVLG GFYYEMSTSE AFDRLMNGKP MKEKKSTRSV 
901:	EDFMAAMQRV STQHEKET